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Abstract
With the increasing adoption of renewable en-
ergy generation and different types of electronic
devices, electric load forecasting, especially short-
term load forecasting, has attracted more and
more attention. Accurate short-term load forecast-
ing is of significant importance for the safety and
efficiency of power grids. Deep learning-based
models have shown impressive success on several
applications, including short-term load forecast-
ing. However, for several real-world scenarios, it
may be very difficult or even impossible to collect
enough training data to learn a reliable machine
learning model. Specifically, in this paper, we pro-
pose a sample-based transfer learning algorithm to
assist the learning performance of short-term load
forecasting for houses with limited training data,
e.g., newly built houses. The proposed method
is evaluated on several real-world data sets and
shows significant improvement over the baselines.

1. Introduction
Electric load forecasting is of significant importance for
the secure and economic operation of the power grids (Wu,
2018; Wu et al., 2019). Depending on the forecasting hori-
zons, electric load forecasting ranges from short-term (hours
or minutes ahead) load forecasting to long-term (years
ahead) load forecasting. Short-term load forecasting (STLF)
is mainly used to assist real-time energy dispatching while
long-term load forecasting is mainly applied for power grid
infrastructure planning. Accurate short-term electric load
forecasting can facilitate efficient residential energy man-
agement and power grid operation (Wu et al., 2017b). It
is hard to store the electricity in a large quantity, thus is is
important to keep the power generation close to the actual
power demand. As reported in (Bunn and Farmer, 1985),
even a 1% forecasting error increase can lead to more than
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£10 million increase on the operation cost of UK power
grid.

The modern power grid is now facing fundamental changes
from both the power supply side and the power demand
side. The penetration of renewable energy generation is
increasing very fast in recent years. The renewable energy
generation (including wind and solar power generation) has
been increasing exponentially in the last ten years (REN21,
2019),. The generation of renewable energy is highly influ-
enced by weather conditions. Meanwhile, different types of
electric appliances have been deployed in the power grids.
The adoption of EVs has been growing very fast in the last
few years. The annual EV sale increase in 2018 is 79%
in Canada and 81% in US (InsideEVs, 2019). The EV
charging demand could be directly affected by people’s ac-
tivities. Therefore, the consumption uncertainties will keep
increasing very fast because of electric vehicles (EVs) and
other electric appliances. Due to these reasons, electric load
forecasting, especially short-term residential electric load
forecasting, is very challenging. In this paper, we focus on
tackling short-term load forecasting for single home houses.

Electric load forecasting has been an important research
topic for a few years. Many approaches have been proposed
for the forecasting of electric load (). The approaches can be
generally categorized into two approaches: statistical meth-
ods and machine learning methods. The most frequently
used classical statistical method is the autoregressive inte-
grated moving average (ARIMA) model (He et al., 2012;
Matsila and Bokoro, 2018). ARIMA-based models have
been developed for load forecasting for distribution power
grids (He et al., 2012) and hospital buildings (Matsila and
Bokoro, 2018).

More recently, machine learning-based methods have ap-
peared and due to their good performance, these approaches
have drawn considerable attentions. There are a number
of different kinds of machine learning-based approaches
including support vector regression (SVR) (Ceperic et al.,
2013; Ye and Yang, 2018; Chen et al., 2017), general addi-
tive models (Wu et al., 2017a), regression trees (Wu et al.,
2016), neural networks (NNs) (Hippert et al., 2001; Kong
et al., 2017; Kim et al., 2018), and Gaussian process re-
gression (Di et al., 2018). SVR-based STLF methods are
described in (Ye and Yang, 2018). In (Chen et al., 2017), a
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SVR-based forecasting model is used to predict the hourly
load of office buildings. The performance of the general
additive model for residential STLF is studied in (Wu et al.,
2017a).

However, most of the previous work on electric load fore-
casting assumes a large amount of training data for the
house we are interested in, referred to as the target house.
This assumption may not be satisfied for several real-world
scenarios, e.g., newly built houses and buildings. Without
enough training data, it will be very difficult to learn a re-
liable forecasting model. However, it is possible that we
can have access to houses in the same area or with simi-
lar properties (e.g., building size), referred to as the source
houses. Thus, we can apply transfer learning to use the in-
formation from the source houses to improve the forecasting
performance of the target domain, which is the focus of this
work. Specifically, in this paper, we propose a sample-based
forecasting method that can help improve the forecasting
performance of the target house by transferring samples
from source houses.

The main contributions of this paper are summarized as
follows: 1) a multi-source sample based boosting trans-
fer method is proposed which can transfer the instances
from source domain to improve the learning performance
in the target domain; 2) The proposed method is investi-
gated against other baselines on real-world data sets and
has shown superior forecasting performances over other
baselines. The rest of this paper is organized as follows.
The technical background is presented in Section 2 and the
proposed two forecasting algorithms are presented in Sec-
tion 3. Section 4 presents the experimental results. Finally,
the conclusion and future work for this paper are presented
in Section 5.

2. Technical Background
2.1. Boosting

Ensemble is a type machine learning technique that can im-
prove the performance of base machine learning learner by
formulating an final model with several base learners. Boost-
ing is an ensemble algorithm primarily focus on reducing the
bias in a sequential manner. The boosting framework can be
naturally combined with transfer learning. TrAdaboost (Dai
et al., 2007) is designed to improve the classification ac-
curacy by transferring samples from the source domain to
the target domain in a boosting framework. Latterly, TrAd-
aboost was further extended to transfer with multiple source
domains in (Yao and Doretto, 2010). Besides the classifi-
cation tasks, boosting based knowledge transfer has also
been adopted for the regression problems. In (Wu et al.,
2019), a gradient boosting based model transfer was pro-
posed for regression tasks. Different from these previous

Algorithm 1 TrAdaM: Transfer Adaptive sample based re-
gression from Multiple sources
Input: Data set for target domain DT (size of n), S data sets
DS1(totalsizeofm), . . . ,DSM , number of iteration T , number
of steps K, let T be the combination of all the source data sets and
target data set, iteration number T
1: Initialize the weight vector w1 such that w1

i = 1/(n+m)
TraAdaM

2: for s = 1, ...,K do
3: call the LSTM base learner
4: calculate the adjusted error eti
5: Update the weight vector following TrAdaS (Pardoe and

Stone, 2010)
6: end for
7: Return the regression model

Output: the final forecasting model F (x)

works, we propose to transfer samples from multiple sources
to improve the target domain forecasting performance in a
boosting framework.

2.2. Transfer Learning

Without enough training data, it will be very challenging
to learn a reliable machine learning model. Transfer learn-
ing (Pan and Yang, 2010) is aimed to tackle this challenge.
Specifically, transfer learning aims to improve the learning
in the domain we are interested in (referred to as the tar-
get domain) via reusing the knowledge learned from other
correlated domains (referred to as source domains). De-
pending on the reused knowledge from source domains,
there are mainly two types of algorithms: sample-based
transfer learning methods and model-based transfer learning
methods. The sample-based transfer learning algorithms
aim to reuse the samples from source domains, while the
model-based algorithms aim to reuse the models learned
from source domains. Transfer learning has been applied in
various applications, including image recognition, language
processing, and robotics. However, transfer learning has not
been well studied for electric load forecasting. In (Wu et al.,
2019), the authors proposed a multiple kernel-based transfer
learning model for residential load forecasting. This paper
proposes a boosting-based sample-based transfer learning
algorithm with a deep learning model as the base forecasting
model.

3. Methods
In this section, we first present the based forecasting model,
i.e., an LSTM based forecasting model and then we present
the sample-based electric load forecasting framework.

3.1. LSTM based Load Forecasting

Different types of neural networks have been applied for
short-term electric load forecasting including feedforward
neural networks, recurrent neural networks, and convolu-
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Table 1. MAPE (%) and MAE (%) for short-term load forecasting
Metric MAPE MAE
Method House 1 House 2 House 3 House 4 House 5 House 1 House 2 House 3 House 4 House 5
Linear 7.61 10.89 7.63 8.67 6.69 2.12 3.67 2.04 1.62 2.12
SVR 7.86 15.68 6.64 9.28 6.56 2.21 5.36 1.81 1.80 2.16
NN 7.17 10.9 7.63 8.83 9.16 1.98 3.67 2.04 1.63 3.03
LSTM 6.92 13.91 5.36 8.18 7.05 1.86 4.77 1.52 1.55 2.38
TrAdaS 4.16 4.36 4.48 6.50 4.94 1.12 1.27 1.27 1.19 1.76
TrAdaM 4.06 4.31 3.97 6.35 4.64 1.11 1.26 1.14 1.15 1.63

tional neural networks. Among all these types of neural
networks, RNNs have shown to be more suitable for STLF
due to its sequential nature (Kong et al., 2017). However,
RNNs will suffer from gradient vanishing and gradient ex-
plosion issues when dealing with long sequences. Compared
with RNNs, the LSTM model is better on capturing long-
term dependencies with additional gate mechanisms. In this
paper, an LSTM based forecasting model is used as the base
forecasting model. Specifically, the base model is consisted
of an input layer, a set of LSTM layers, a dense layer and
a output (corresponding to the predicted one hour ahead
electric load consumption).

3.2. Boosting based Sample Transfer

In this paper, we use the sample transfer to tackle the con-
cern on the limited amount of target house data. Specifically,
our work is inspired by the two-stage TrAdaBoost.R2 (Par-
doe and Stone, 2010) which transfers samples from one
source house. For the simplicity, in this work, the two-stage
TrAdaBoost.R2 is referred to as TrAdaS. In TrAdaS, sam-
ples are transferred from the source domain to the target
domain and the sample weights will be reweighted based on
the error of all the source samples. The final output model
will be a model learned on all the target domain samples as
well as re-weighted source domain samples.

Furthermore, in the real-world, we may have more than one
source domains. Thus, we propose a simple extension of
TrAdaS, i.e., extending it to the multiple sources scenario.
As shown in Algorithm 1, we assume that we can have
abundant data from multiple sources. Instead of transferring
samples from one source, here we can transfer samples
from multiple sources. The final output model will be a
model learned on all the target domain samples as well as
re-weighted source domain samples from all the available
source domains.

4. Experiments and Simulation Results
The residential electric load data sets from
OpenEI (OPENEI, 2021) are used to evaluate the
effectiveness of proposed LSTM based forecasting algo-
rithm. The data set include one-year (2014) hourly load

consumption data (8760 data points) for 72 residential
houses in New York.

In this paper, three types of features are used as the inputs
to forecast one hour ahead electric load consumption of
a single household. Specifically, features for the lagged
electric load (electricity consumed in the last four hours),
lagged temperature information (temperature in the last four
hours), and weekday/weekend information (1 for weekday
and 0 for the weekend) are used for short-term electric load
forecasting. All the features are normalized between zero
and one with min-max normalization.

4.1. Baselines and Evaluation Metrics

In this paper, Mean average percentage error (MAPE) as
shown in Eq. 1 and mean absolute error (MAE) as shown in
Eq. 2 are used to evaluate the effectiveness of the proposed
algorithms. As shown in these two equations, y′i is the
predicted load consumption and yi is the real value for load
consumption at i−th time slot. For benchmark results, apart
from the base LSTM model, three other frequently used
forecasting methods are used as baseline models: Linear
regression, SVR and feed-forward Neural Network. All
baseline models are tuned with parameters with the best
performance for the data set.

MAPE =

∑N
i=1

|yi−y′
i|

yi

N
(1)

MAE =

∑N
i=1 |yi − y′i|

N
(2)

We randomly picked five houses from the data set as the
target houses for our experiments. We use the last two days
data of November with features described above as target
house training data and evaluate the models’ performance
on the whole month of December. For the transfer learn-
ing methods, October and November data of other houses
are used as source domain data. For single source setting
(TrAdaS), one source house is randomly picked, for multi-
ple sources setting (TrAdaM), 9 source houses are randomly
picked.
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Table 2. MAPE (%) and MAE (%) for short-term load forecasting with noisy data
Metric MAPE MAE
Method House 1 House 2 House 3 House 4 House 5 House 1 House 2 House 3 House 4 House 5
Linear 8.61 12.26 7.46 8.15 7.03 2.52 4.11 1.98 1.58 2.26
SVR 8.39 18.06 7.46 10.00 7.55 2.36 6.15 1.20 1.92 2.39
NN 8.35 12.26 7.48 8.16 7.03 2.43 4.12 1.99 1.58 2.26
LSTM 7.96 16.40 6.88 9.56 8.36 2.20 5.36 1.90 1.81 2.61
TrAdaS 4.52 4.61 4.23 6.45 5.23 1.23 1.34 1.20 1.19 1.86
TrAdaM 4.41 4.44 4.15 6.40 5.44 1.20 1.30 1.20 1.17 1.99

4.2. Evaluations on five houses

We first evaluate the performance of the proposed methods
on the aforementioned five randomly chosen target houses.
For the sample-based transfer algorithms, we have one ran-
domly picked house as source house for TrAdaS and nine
randomly picked houses as source houses for TrAdaM.

Table 1 shows the average forecasting performance of dif-
ferent algorithms on the five houses. As shown in this table,
we can see that the proposed TrAdaM can show consistent
superior average performance over other baseline models.
Specifically, TrAdaBoost with multiple sources (TrAdaM)
has the best performance for all houses. Compared with
the base LSTM model, TrAdaM has 38.56% improvement
for MAPE and 39.24% improvement for MAE on average.
These results show that with the knowledge transfer, the
forecasting performance can be significantly improved.

4.3. Evaluations on five houses with noisy data

To further showcase the robustness of the proposed method
(TrAdaM), we compare its performance with other baselines
on noisy data. Specifically, we add Gaussian noise of mean
0 and standard deviation 0.5 to all data.

Table 2 shows the average forecasting performance of differ-
ent algorithms on the five houses with noisy data. As shown
in this table, we can see that the proposed method can also
significantly outperform other baselines. TrAdaM still has
the best performance for most houses. Specifically, on aver-
age, TrAdaM had 45% improvement over the base LSTM
model for MAPE and 43.42% improvement for MAE. These
results show that the proposed methods are robust. Also,
we can see that TrAdaM can outperform TrAdaS on four
houses out of five target houses for MAPE and on all the
five target houses for MAE.

4.4. Evaluations with varying number of training
samples

To further analyze the benefits of the proposed forecasting
methods. We analyze the effectiveness of the proposed
method with a varying number of training samples for the
target house. Specifically, we analyzed the performance
House 5 with different numbers of training samples.

Figure 1. MAPE on House 5 with varying training samples

Fig. 1 shows the MAPE (note that the Y axis is not in
percentage) on House 5 of all models with varying training
samples. We can see that our proposed transfer learning
method can achieve the best forecasting performance in all
three cases. Also, it can get higher performance gain with
fewer training samples in the target domain. This implies
that knowledge transfer is more beneficial when little data
is available in the target domain.

5. Conclusion and Future Work
With the fast development of different types of electric ap-
pliance, the electric consumption is increasing fast and its
pattern is becoming more complex. Meanwhile, the pen-
etration of renewable energy generation is also increasing
very fast. Short-term electric load consumption is of cru-
cial importance for the safe and secure operation of modern
power systems. However, most of the current work on load
forecasting assumes that there is a large amount of training
data available which could be very challenging in the real
world. In this work, we proposed an instance based trans-
fer forecasting framework. Specifically, we fist propose a
single source based transfer regression algorithm and we
lately extend it to multiple sources. Experiment results show
that with the proposed methods, the forecasting algorithms
can be significantly improved. In the future, we plan to
investigate the possibility of jointly transferring both the
learned models and as well as samples.
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