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Abstract
Time series clustering is an important task in
its own right, and often a subroutine in other
higher-level algorithms. However, clustering sub-
sequences of a time series is known to be a partic-
ularly hard problem, and it has been shown that
naive clustering of subsequences yields “meaning-
less” results under common assumptions. In this
work, we introduce Time2Cluster, a novel repre-
sentation and accompanying algorithm that mean-
ingfully clusters time series subsequences. Our
key insight is to avoid depending solely on relative
distance information between subsequences, and
instead to exploit information about the “neighbor-
hood” subsequences. Our algorithm uses neigh-
borhood information to mitigate the negative ef-
fects of small variations, such as phase shift, be-
tween the subsequences of time series data.

1. Introduction
Clustering is a prominent research area in data mining. It
is essentially the process of partitioning data into mean-
ingful groups to gain new insights into problems. Ideally
this partitioning happens such that data within each cluster
is similar to each other, while dissimilar to data in other
clusters. Many data mining algorithms use clustering as
a subroutine to solve problems in their domain (Ye & Li,
2005)(Jiménez-Pérez & Mora-López, 2016)(Lopez et al.,
2012).

In this work we consider subsequence time series cluster-
ing. Our proposed representation allows every index of a
time series to be labeled in one of K classes and each index
is annotated by a score that reflects our confidence in the
labeling. As we will show, this more expressive representa-
tion, in conjunction with our algorithm, allows us to cluster
datasets that stymie state-of-the-art algorithms. In Fig. 1 we
show one sample issue that our representation can mitigate.
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Figure 1: The correlation coefficient between a subsequence
of walking behavior (green) and its neighbors is very low
because of the phase shift between subsequences. All these
subsequences describe walking behavior. Pos denotes posi-
tion in respect to the position of green subsequence.

With classic algorithms/representations it is often the case
that a subsequence is partitioned into one cluster and its
“close” neighbors are partitioned into another cluster, even
though they are describing the same behavior. Fig. 1 shows a
subsequence of walking behavior green and its correspond-
ing neighbors, along with correlations to the green sub-
sequence. Note that correlation coefficient between the
walking subsequence and its neighbors is low (i.e. distance
is large). One would expect that subsequences that are
neighbors and describe the same behavior to have a high
correlation coefficient (i.e. low distance) with each other,
but this is not the case here. The small amount of phase shift
that exists in the green subsequence and its neighbors leads
to low correlation.

Here we outline major contributions in this work:

• We introduce a novel representation for time series
clustering. Our model is expressive enough to repre-
sent sparse conserved clusters, essentially time series
motifs (Chiu et al., 2003), and, at the other extreme,
very dense conserved clusters, essentially time series
snippets (Imani et al., 2018).

• We introduce Time2Cluster algorithm to meaningfully
cluster subsequences in our representation by utilizing
“temporal locality” information for each subsequence.
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We organize rest of the paper as follows: In Section 2 we
introduce necessary notation and definitions. Section 3 re-
views related works. We explain the proposed Time2Cluster
algorithm, in Section 4. In Section 5, we perform empirical
evaluation and compare our results with different baselines.
Section 6 draws conclusions and suggests directions for
future work.

2. Definitions and Notation
We begin by describing necessary definitions and notation.

Stride length: In time series data, stride length is the num-
ber of data points that we shift the position of current subse-
quence to extract position of the next subsequence.

In our algorithm we define BAG as:

BAG: BAGks
(i,m) is a continuous ordered subset of subse-

quences which consists of ks subsequences (kernel size =
ks) starting at position i and the subsequence length of m.

BAGks
(i,m) = Ti,m, Ti+1,m, ..., Ti+ks−1,m

Kernel size is the number of subsequences that we want to
consider in each BAG which we denote as ks.

We can store distances between a subsequence of a time
series with all the other subsequences from the same time
series in an ordered array called distance profile [16].

Correlation matrix: A correlation matrix M stores the
Pearson correlation coefficient between all subsequences
of the time series. Note that the distance profile calculates
the Pearson correlation of each subsequence with the time
series. This means we can compute distance profile for
all subsequences of the time series and create a correlation
matrix by storing each distance profile in one row of the
correlation matrix.

3. Related Work
Clustering algorithms can be classified into three categories
of “whole time series clustering”, “calendar-based cluster-
ing” 1, and “subsequence time series clustering”.

For subsequence time series (STS) clustering we can further
refine the taxonomy into three different approaches.

• Shape-based clustering: This method uses raw time
series data and a distance measure such as Euclidean
distance (ED) to measure similarity between data. For
example, in (Paparrizos & Gravano, 2015) authors in-
troduce k-shape clustering algorithm, which is similar

1Note that the “calendar” here does not need to be the familiar
days or weeks. It can be anything that produces unambiguous
cycles, for example tides or batch-cycles in batch processing.

to K-means, and it uses cross-correlation as a distance
measure.

• Model-based clustering: In this approach, raw time
series is used to find parameters of some model. For
example, in (Hallac et al., 2017) authors used model-
based clustering approach for multivariate time series
data. Moreover, model-based clustering can suffer
from scalability issues (Vlachos et al., 2004).

4. Time2Cluster
In brief, Time2Cluster consists of the following steps: Com-
puting correlation matrix, Computing augmented correla-
tion, and , Using kmean++ algorithm on the augmented
correlation matrix.

Correlation matrix: The correlation matrix is Pearson cor-
relation coefficient between each two subsequences in the
time series. Basically the correlation matrix can be written
as:

M =



ρm0,0 ρm0,1 ... ρm0,i ρm0,n
ρm1,0 ρm1,1 ... ρm1,i ρm1,n
... ... ... ... ...
ρmj,0 ρmj,1 ... ρmj,i ρmj,n
... ... ... ... ...
ρmn,0 ρmn,1 ... ρmn,i ρmn,n

 =


DP0

DP1

...
DPj

...
DPn


and

ρmi,j = corr(Ti,m, Tj,m)

Where corr is the Pearson correlation coefficient between
two subsequences of length m starting at position i and j.
Note that ρmi,i is equal to one since each subsequence is per-
fectly correlated to itself. We can calculate M using distance
profile DP as above, where DPj is distance profile of sub-
sequence j and changing the distance to Pearson correlation
by using the formula of distance profile definition in Section
2.

Augmented correlation matrix: Due to phase shift be-
tween two subsequences that are close to each other, corre-
lation coefficient of such subsequences would have a low
value, even though the subsequences represent the same
behavior. We would like to have an algorithm that gives
us a high correlation coefficient if any two subsequences
represent the same semantic behavior in spite of the phase
shift. To understand this concept, consider some time se-
ries comprised of walking followed by running as shown in
Fig. 2. The time series represents X-acceleration data of a
sensor mounted on the shoe (Ainsworth et al., 2000).

As hinted at in Fig. 1, due to existence of a phase shift
between a subsequence and its neighbors (“neighbor” in
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the sense of similar time index), the correlation coefficient
between them is low, thus using the correlation matrix as
the input for any clustering method will likely not generate
correct results. An ideal clustering algorithm partitions all
the walking subsequences in one cluster and all the running
subsequences in another cluster, given that these are two
distinct behaviors. However, if we use any classic clustering
algorithms such as Kmean++ (Arthur & Vassilvitskii, 2006)
with K = 2 (K is the number of clusters), we do not obtain
ideal results as shown in Fig. 2.

For visualization purposes, we show part of the time se-
ries from Fig. 2 with labeling of Kmean++ algorithm for
walking-running time series. We show labeling results in
red (walking) and blue (running) colors. The ground truth
label (green) consists of walking behavior for about 2.5 min-
utes and then followed by running behavior for about 2.5
minutes. As Fig. 2 shows the algorithm randomly labels
each subsequence as red or blue. This means the Kmean++
algorithm produces a random transition of walking and run-
ning labels. The reason is that the correlation coefficient
between each subsequence and its neighbors is low due to
phase shift, which in turn makes the subsequences appear
distinct from each other. However, time series are not inde-
pendent and identically distributed (i.i.d) random variables,
and neighbors are not independent from each other. We
argue that we should take this into account when clustering
time series data.

In this section, we introduce augmented correlation matrix
which will address the aforesaid problem. We need to mit-
igate the phase shift effect, for which one simple solution
might be that if each behavior repeats exactly after a certain
period of time, we can extract subsequences with the stride
length of that certain period. This approach can give us
subsequences with phase shift equal to zero. However, there
are only a handful of special time series for which this solu-
tion might work. One example is the pedestrian count data
in Melbourne (Set, 2009). Since the natural subsequence
length in this dataset is exactly 24 hours, for each day we
can extract one subsequence starting at 12:00 AM which
means the stride length is one day.

Figure 2: top) The green binary vector represents the ground
truth bottom) The labels of Kmean++ for walking and run-
ning subsequences are shown in red and blue color, respec-
tively.

Figure 3: Contents of BAGi and BAGj . Each BAG con-
tains one behavior but different subsequences of the same
behavior (different phase shifts). Comparing two BAGs is
meaningful because allows us to compare different behav-
iors, since each BAG contains different phase shifts of one
behavior.

Thus, we need to create a clustering representation that does
not assume all subsequences of the time series have ex-
actly the same period. Our proposed method, Time2Cluster,
computes the best stride length for each subsequence and
therefore we have a variable stride length for time series. To
achieve this, we use Bag definitions from Section 2.

BAGks
(i,m) consists of a subsequence i and its neighbors

where ks is the kernel size. We use a stride length of one
to extract the next subsequence and m is the subsequence
length. Consider two bags of walking behavior, BAGks

(i,m)

and BAGks
(j,m) as shown in Fig. 3.

We compute correlation coefficient between each two BAGs
rather than two subsequences. This helps to solve the phase
shift problem. The correlation coefficient between BAGks

i,m

and BAGks
j,m can be computed by calculating correlation

coefficient between subsequences of two BAGs and then
finding maximum correlation between the two BAGs.

Fig. 4 shows the result of using augmented correlation ma-
trix for clustering of walking and running time series shown
in Fig. 2. As shown in Fig. 4 using augmented correlation
as an input to the Kmean++ clustering algorithm generates
correct results. Using BAGs instead of subsequences helps
with assigning subsequences and their neighbors to the same
cluster and forms a temporal consistency.

Confidence Score: In the last step, we compute confidence
score for each label. This score indicates confidence of
the result of Time2Cluster algorithm for each label. We
compute the confidence score for each index i by summing
up the augmented correlation coefficient at index i for all
neighbors of index i that are clustered as in the same class.
The confidence score is a real number between zero and
one. A score of one for index i means we are very confident
about the label of that index, while a score of zero means,
that the labels are probably random.

5. Experimental Evaluation
To ensure that our experiments are easy to reproduce,
we have created a website that contains all data/code/raw
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Table 1: The performance of Time2Cluster and baselines.
Clustering MethodDataset Chicken Tilt Table
Time2Cluster 0.90 0.97
TICC (Hallac et al., 2017) 0.74 0.81
GMM (Banfield & Raftery, 1993) 0.87 0.51
Euclidean Kmeans 0.75 0.44

Figure 4: top) The green vector represents the ground truth
bottom) Clustering walking and running behaviors using
Time2Cluster algorithm using red and blue colors, respec-
tively.

spreadsheets for all the experiments (Author, 2021). To
measure the performance, we fix the number of clusters
for our algorithm and all baseline algorithms and evaluate
clustering performance by measuring Macro-F1 score:

Macro-F1 score In order to compute Macro-F1 score, first
for each cluster we compute F1 score which is the harmonic
mean of the precision and recall as follows:

Then we compute Macro-F1 score which is the average of
F1-score for all clusters. F1-score and Macro-F1 score are
in the range of [0, 1] with F1-score equal to one means
perfect clustering.

5.1. Chicken Behavior

It is believed that frequency and timing of behaviors such as
pecking, preening and dustbathing can be good indicators
of chicken health (Abdoli et al., 2018). Pecking refers to act
of chicken striking at the ground with its beak for feeding
purposes; while, cleaning and aligning of feathers with the
beak is referred to as preening (Daigle et al., 2014).

Fig. 5 shows a time series of chicken data beginning with
pecking behavior followed by preening behavior. The green
binary vector shows the ground truth for chicken data. Using
clustering can help us to analyze, understand and extract
useful information from this data set.

5.2. Tilt Table

We use the arterial blood pressure (ABP) signal to find
clusters in the time series as shown in Fig. 6. The ABP signal
is a key source of information for determining hemodynamic
state of the patient.

Figure 5: top) The green binary vector represents ground
truth for chicken behavior bottom) Time series correspond-
ing to X axis of chicken data.

As shown in Fig. 6, the clustering result of Time2Cluster
algorithm is very similar to the ground truth label. Let us
revisit the confidence score for Time2Cluster algorithm as
we explained in Section 4. Note, the confidence score of all
labels is high (close to one) except for a small region. The
reason is that the original data contains a small region in
which the sensor failed to record physiological data, and in-
stead reported a square-wave calibration signal (Samaniego
et al., 2003).

Figure 6: top) The confidence score (pink), labeling of
Time2Cluster algorithm (purple) and ground truth (green),
respectively. bottom) Time series of arterial blood pressure.

As we can see from Table 1, Time2Cluster significantly out-
performs the baseline algorithms. On average Time2Cluster
has a Macro-F1 score of 0.93. For chicken dataset, there is
a big gap between Time2Cluster and baselines performance.
In future we want to compare our algorithms with other
baselines, with a larger collection of time series dataset.

6. Discussion and Conclusions
We have introduced Time2Cluster, an expressive representa-
tion/algorithm for clustering time series subsequences. Our
method is a shape-based clustering algorithm that is invari-
ant to phase shift effects, allowing us to find meaningful
clusters where other algorithms struggle. In future work,
we will investigate pruning, indexing and early abandoning
techniques to further scale up our approach.
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