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Abstract
We propose an extended Hawkes process model
where the self–effects are of both excitatory and
inhibitory type and follow a Gaussian Process.
Whereas previous work either relies on a less flex-
ible parameterization of the model, or requires
a large amount of data, our formulation allows
for both a flexible model and learning when data
are scarce. Efficient approximate Bayesian infer-
ence is achieved via data augmentation, and we
describe a mean–field variational inference ap-
proach to learn the model parameters. To demon-
strate the flexibility of the model we apply our
methodology on data from two different domains
and compare it to previously reported results.

1. Introduction
Sequences of self exciting, or inhibiting, temporal events are
frequent footmarks of natural phenomena: Earthquakes are
known to be temporally clustered as aftershocks are com-
monly triggered following the occurrence of a main event
(Ogata, 1988); in social networks, the propagation of news
can be modeled in terms of information cascades over the
edges of a graph (Zhao et al., 2015); and in neuronal activity,
the occurrence of one spike may increase or decrease the
probability of the occurrence of the next spike over some
time period (Dayan & Abbott, 2001).

A common model for time series of events with history de-
pendence is the Hawkes process. Originally, the dependence
on the history in the Hawkes process is assumed to be self
excitatory Assuming only excitatory relation between the
events, does not hold for some of the phenomena we wish
to model. For example, inhibitory effects between neurons
(Maffei et al., 2004), and even self–inhibition (Smith &
Jahr, 2002), are crucial for regulating the neuronal activity.
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Thus, the memory kernel should also include inhibitory rela-
tions between the events and by doing so the intensity may
become negative. To ensure that the intensity function is
non–negative, a nonlinear link function is applied on the
memory kernel, and the resulting model is often referred
to as a Nonlinear Hawkes process (Brémaud & Massoulié,
1996; Zhu, 2013; Truccolo, 2016).

In this work we present a Nonlinear Hawkes process with
Gaussian Process Self–effects (NH-GPS) which extends
the class of Nonlinear Hawkes processes. We choose a
non–parametric approach which avoids the limiting param-
eterization of the memory kernel and the background rate.
We assume a Gaussian Process (GP) prior on the exogenous
events intensity and on the memory kernel, which allows
also for an inhibitory effect between the events, and use the
Sigmoid link function over the linear intensity. This model-
ing approach is not only descriptive, but also allows us to
obtain a fast inference procedure. The history of self–effects
defines an aggregated Gaussian process, and we perform the
inference directly on this aggregation rather than obtaining
a posterior over each self effect.

2. Related Work
A highly flexible approach to estimating the intensity func-
tion of the linear Hawkes process relies on GP priors (Zhang
et al., 2018; Zhou et al., 2019; Zhang et al., 2020; Zhou et al.,
2020). Differently to our work, Zhou et al. (2020) remain
in the linear Hawkes process regime and assume that the
effects of past events are assumed to be only excitatory,
whereas our approach allows both excitatory and inhibitory
effects.

A recent variation of the nonlinear Hawkes process is the
Mutually Regressive Point Process (Apostolopoulou et al.,
2019), which was designed to model neuronal spike trains.
In this work, the classical self–excitatory Hawkes Process
intensity function is augmented by a probability term. This
term induces inhibition when it is close to zero. In a sense,
this model includes two memory kernels – one excitatory
only which appears in the intensity function and another
which can also induce inhibition in the augmenting proba-
bility term. In the current work, we achieve such flexibility
of the self–effects in a simpler fashion by assuming the GP
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prior on the self effects. As mentioned before this also al-
lows for the type of effect to change over time, which does
not appear in the work of Apostolopoulou et al. (2019).

3. Proposed Model
3.1. Classical Hawkes Process

Let TT = [0, t] ∈ R. We define the counting measure
N(Tt) as the number of arrivals in the sequence Ht =
{T1, ..., TN(Tt) : Ti ∈ Tt ∧ Ti−1 < Ti} where Ht defines
the history of the process until time t, and Ti corresponds
to the time of arrival i. For a temporal point process, the
counting measure N(·) has an associated intensity defined
as

λ(t) = lim
∆t→0

E[N(Tt+∆t)−N(Tt)|Ht]
∆t

.

The intensity function may depend on the history of the
process. An example of such a process is the Hawkes pro-
cess, or self exciting point process, (Kingman, 1993) which
defines self excitations (Daley & Vere-Jones, 2007) around
exogenous events.

Following Hawkes & Oakes (1974), the intensity of the
Hawkes process is defined by

λ(t|Ht) = s (t) +
∑
tn<t

g (t− tn) , (1)

where s(t) is the base intensity of exogenous arrivals and
g (t− tn) is the memory kernel defining the change in the
excitation value for each arrival. In the classical Hawkes
process, only excitations are allowed and the memory ker-
nel is usually of the form g(t − tn) = βe−β(t−tn) for an
exponentially decaying memory.

3.2. Nonlinear Hawkes process with Gaussian Process
Self–Effects

In the classical Hawkes process, the memory kernel g in
Equation 1 must be non–negative, to prevent the intensity
function from being negative. As a result the history of the
model has only excitatory effect on future events. We are
interested in a model that includes inhibition between events,
and we release the constraint over g so it can be negative,
and define the following nonlinear intensity function

λ (t) = λ∗σ (φ(t)) (2)

σ (φ(t)) =
1

1 + exp (−φ (t))
(3)

φ(t) = s (t) +
∑
tn<t

g (t− tn) exp (−β (t− tn)) . (4)

Here, we choose the sigmoid function to ensure that the
intensity function λ (·) is non–negative. λ∗ is the intensity
bound and we refer to φ (·) as the linear intensity function.

We explicitly add the exponential decay to enforce the for-
getting constraint which is essential for most realistic pro-
cesses and β determines the forgetting rate. Although we
choose here a specific parameterization of the memory de-
cay, one can choose other forms of memory decay with
minimal adaptation to the learning procedure of the model
parameters.

To maximize the flexibility of the model we avoid any spe-
cific parameterization of the background rate or the memory
kernel. Thus, rather than specifying a functional form for
s (t) and g (t), we assume the following GP priors

s ∼ GP (0,Ks) (5)
g ∼ GP (0,Kg) (6)

KRBF (t1, t2) = a · exp

(
−‖t1 − t2‖

2

σ2

)
. (7)

In this work we use the Radial Basis Function (RBF) kernel
for the GP priors. This choice is not a constraint of the
model – one can choose any other kernel, and it will not
effect the augmentation and inference processes described
bellow.

Finally, we assume a prior distribution also on the upper
intensity bound

λ∗ ∼ Gamma (β0, β0) .

and we identify the hyperparameters of the model as
{σg, ag, β, σs, as}.

In this work we propose Bayesian inference for fitting the
model to data. Due to the non–linearity over φ (·) we are no
longer able to easily utilize the branching structure of the
Hawkes process which allowed for the estimation of s (·)
and g (·) (Rasmussen, 2013; Zhou et al., 2020). Thus, a
natural solution is to perform the inference directly on φ (·).

Next, we identify the prior over the entire linear intensity
p (φ). From Equation 4 we see that the linear intensity
function φ is nothing but the sum of GPs, and as such it is
also a GP

φ ∼ GP
(

0, K̃
)

K̃lk =

Ks
lk +

∑
ti<tl

∑
tj<tk

Kg
tl−ti,tk−tj exp (−β (tl − ti + tk − tj)) .

4. Inference
Conditioned on the intensity function λ (·), the likelihood
of observations {t1, ...tn} from a Hawkes process is (Daley
& Vere-Jones, 2003)
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Figure 1. (a) Comparison of the ground truth predictive intensity and the one sampled from the VI and Gibbs inference. (b) Comparison
of the ground truth linear intensity φ (·) and the ones learned by the VI and Gibbs sampler. (c) Comparison of the Ground truth intensity
bound and the one learned by the inference, and the prior distribution. (d) The autocorrelation of the intensity bound Gibbs samples. (e)
The variational lower bound as a function of the algorithm iteration. (f) Comparison of the test log–likelihood of the Gibbs sampler and
the VI.

` ({t1, ...tn}|λ (·)) = exp

{
−
∫ T

0

λ (t′) dt′

}
N∏
i=1

λ(ti).

(8)

Looking at the likelihood defined above, Equations 4 and
8, implementing Bayesian inference for the model is not
straightforward, due to the non-conjugate structure of the
likelihood and prior. Similarly to previous work on Cox
and Hawkes processes (Donner & Opper, 2018a; Apos-
tolopoulou et al., 2019; Zhou et al., 2020), we augment the
model with auxiliary variables, which leads to a condition-
ally conjugated model with closed form solutions for Gibbs
sampler and variational inference. The details of the aug-
mentation can be found in the supplementary material. The
augmented posterior takes the following form

p
(
{t̂m, ŵm}, {wn}, φ, λ∗|{tn}

)
∝ exp (−λ∗T )× (9)

M∏
m=1

λ∗ef(ŵm,−φ(t̂m))PG (wm; 1, 0)×

N∏
n=1

λ∗ef(wn,φ(tn))PG (wn; 1, 0)× p (φ) p (λ∗) .

To summarize, we augment the model with two sets of vari-
ables – the Pólya-Gamma Polson et al. (2013) variables
{wn} which augment the actual realizations and the tuples
{t̂m, ŵm} which are the realizations and marks of the auxil-
iary marked Poisson process.

As mentioned above, we intend to learn directly the linear
intensity function φ (·). This allows us to utilize the efficient
mean–field variational inference previously introduced in
Donner & Opper (2018a) and Donner & Opper (2018b). As
a baseline for evaluating the mean–field variational infer-
ence algorithm we use a Gibbs sampler. Details of both the
variational inference and the Gibbs sampler can be found in
the supplementary material.

5. Experiments
5.1. Synthetic Data

To assess the performance of the inference algorithms pre-
sented in Section 4, we learn the parameters of data gener-
ated by the model, and compare the learned parameters to
the ground truth. To generate data we start by sampling the
memory GP and the background GP, based on Equations 6
and 7 and generate events using Poisson thinning (Lewis &
Shedler, 1979).

The results for the synthetic data are included in Figure 1.
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Figure 2. Results of the Kolmogorov-Smirnov test for the monkey
cortex dataset. The model passes the goodness of fit test.

The time window used was one second, and the dataset in-
cludes 18 events. We use the test log–likelihood per data
point, averaged over ten datasets, to quantify the perfor-
mance of the two inference algorithms. The Gibbs sampler
and the VI achieve very similar results. Thus, in the next
section we present the results only from the VI.

5.2. Real Data

5.2.1. CRIME REPORT DATA

Our model assumes both inhibitory and excitatory self ef-
fects, but it should also be able to capture phenomena where
only one of the two types of effects exist. To test this, we fit
our model to crime report data, where it is assumed that past
events have excitatory effect on future events (Mohler et al.,
2011). We use the same two datasets described in Zhou
et al. (2020), and follow their data processing procedure.
Each dataset contains one type of crime and so we use the
univariate version of the model. The work of Zhou et al.
(2020) includes several inference methods and we compare
our results to the results of their reported mean–field varia-
tional inference approach, as it is the closest to our inference
procedure.

Table 1 compares the log of the mean of the test likelihood of
our NH-GPS model to the one reported in Zhou et al. (2020).
For details regarding the computation of the test likelihood
can be found in the supplementary material. We perform the
experiment five times and report the mean and variance, our
model performs similarly to the non–parametric Hawkes
process presented by Zhou et al. (2020).

5.2.2. NEURONAL ACTIVITY DATA

One of the motivating real world phenomena behind our
work is the spiking activity of neurons, where it is known
that the process has both self–excitatory and self–inhibitory
effects. As an example for our model’s ability to capture

Table 1. Crime Report Data Test Log–Likelihood.

Dataset Zhou et al. (2020) NH–GPS

Vancouver 453.11± 8.94 453.8± 12.2
NYPD −200.7± 3.32 −202.8± 7.54

neuronal activity we use the datasets that were first pre-
sented in Gerhard et al. (2017) (Figure 2.c and 2.b there).
These data were further analyzed in Apostolopoulou et al.
(2019) (Figure 5 there) where the Mutually Regressive Point
Process (MR-PP) is introduced. One dataset includes ten
recordings from a single neuron in a monkey cortex, with
the duration of one second each, and the other includes
ten recordings from single neuron in a human cortex for a
duration of ten seconds each.

To quantify how suitable the model is to the data, we ap-
ply the random time change theorem (Daley & Vere-Jones,
2003) to the inferred intensity and the experimental data.
The theorem states that realizations from a general point
process can be transformed to realizations from a homo-
geneous Poisson process with unit rate. Similarly to the
work of Apostolopoulou et al. (2019), we further transform
the exponential realizations to those from a uniform dis-
tribution, following Brown et al. (2002). We then use the
Kolmogorov-Smirnov test to compare the quantiles of the
distribution of the transformed realizations to the quantiles
of the uniform distribution. The model passes the good-
ness of fit test (p value > 0.05). The results of the KS test
are shown in Figure 2. Further results can be found in the
supplementary material.

6. Conclusion
In this work we presented the nonlinear Hawkes model with
Gaussian process self–effects (NH-GPS). We motivated the
development of the new model with the need for a flexible
model that can capture both exciting and inhibiting interac-
tions between events, while maintaining the ability to learn
also when data are scarce.

Due to the structure of the model, we dispense with the
branching structure that is commonly used for Bayesian
inference in Hawkes processes. We propose an efficient
mean–field variational inference algorithm which relies on
a data augmenting scheme. We show that the results of the
variational inference are comparable with those of a Gibbs
sampler.

We demonstrate the performance of our model in two dif-
ferent real world applications. Due to the flexibility of our
model, it achieves good results on data where events have
only excitatory effects and on data where events have both
excitatory and inhibitory effects.
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Supplementary Material

1. Inference for NH–GPS model
1.1. Model Augmentation

The first step we take in treating the likelihood function is
using the Pólya-Gamma (PG) augmentation scheme. Fol-
lowing Theorem 1 in Polson et al. (2013), we can rewrite
the nonlinear intensity function as

σ (φ (t)) =

∫ ∞
0

ef(w,φ(t))PG (w; 1, 0) dw (10)

f (w, φ (t)) = −φ (t)
2
w

2
+
φ (t)

2
− ln 2. (11)

As we augment each observation with a variable wn from a
PG distribution, the joint likelihood of the observed events
{tn} and PG variables {wn} is

p
(
{tn}Nn=1, {wn}Nn=1|φ, λ∗

)
= (12)

exp

(
−
∫ T

0

λ∗σ (φ (t)) dt

)
·
N∏
n=1

λ∗ef(wn,tn)PG (wn; 1, 0)

with

exp

{
−
∫ T

0

λ∗σ (φ (t)) dt

}
= (13)

exp

(
−
∫ T

0

∫ ∞
0

λ∗PG (w; 1, 0)
(

1− ef(w,−φ(t))
)
dwdt

)
.

Where we used σ(t) = 1− σ(−t).

Next, we utilize the Campbell’s theorem (Kingman, 1993)
which states that for a Poisson process Π with intensity ϕ

Eϕ

(∏
x∈Π

exp (h (x))

)
=

exp

(
−
∫

(1− exp (h (x)))ϕ (x) dx

)
.

Looking at Equation 13 we identify x = (t, w) and
ϕ (t, w) = λ∗PG (w|1, 0) is the intensity of a marked Pois-
son process in T with marks w ∼ PG (0, 1). Further, we
determine h (x) = f (w,−φ (t)). We can now rewrite the
exponential in Equation 12 as

exp

{
−
∫ T

0

λ∗σ (φ (t)) dt

}
= Eϕ

(
M∏
m=1

ef(ŵm,t̂m)

)
(14)

for realizations {t̂m, ŵm}Mm=1.

We substitute Equation 14 into Equation 12 which results in
the full augmented likelihood. Given the prior distribution
over φ and λ∗, we can now write the model’s posterior
distribution as

p
(
{t̂m, ŵm}, {wn}, φ, λ∗|{tn}

)
∝ exp (−λ∗T )× (15)

M∏
m=1

λ∗ef(ŵm,−φ(t̂m))PG (wm; 1, 0)×

N∏
n=1

λ∗ef(wn,φ(tn))PG (wn; 1, 0)× p (φ) p (λ∗) .

To summarize, we augment the model with two sets of vari-
ables – the PG variables {wn} which augment the actual
realizations and the tuples {t̂m, ŵm} which are the realiza-
tions and marks of the auxiliary marked Poisson process.

1.2. Variational Inference for NH–GPS model

In variational inference (Jordan et al., 1999; Bishop, 2006)
we define a tractable distribution family and adapt it
to approximate the posterior by maximizing the lower
bound L(Q) defined below. This procedure minimizes the
Kullback–Leibler divergence between the unknown pos-
terior and the proposed approximating distribution. The
posterior density is approximated by

p
(
{t̂m, ŵm}, {wn}, φ, λ∗|{tn}

)
≈ q1 (φ, λ∗) q2

(
{wn}Nn=1, {t̂m, ŵm}Mm=1

)
.

This leads to the following lower bound on the evidence

L(Q) = EQ

[
log

{
p
(
{t̂m, ŵm}, {wn}, φ, λ∗|{tn}

)
q1 (φ, λ∗) q2

(
{wn}Nn=1, {t̂m, ŵm}Mm=1

)}] .

Here Q refers to the probability measure of the variational
posterior. We can maximize the bound by alternating the
maximization over each of the factors (Bishop, 2006). The
optimal solution for each factor is

log q∗1 (φ, λ∗) = (16)

Eq2({wn}Nn=1,{t̂m,ŵm}Mm=1)
[logP ({t̂m, ŵm}, {wn}, φ, λ∗, {tn})]

log q∗2
(
{wn}Nn=1, {t̂m, ŵm}Mm=1

)
= (17)

Eq1(φ,λ∗)[logP ({t̂m, ŵm}, {wn}, φ, λ∗, {tn})].

Thus, to obtain the optimal distribution of one of the factors,
one must calculate expectations of the logarithm of the joint

7
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distribution over the remaining factors in the approximation,
resulting in an iterative algorithm.

In the following subsections, we explicitly express the func-
tional form of the optimal distributions, and obtain the cor-
responding expectations required for updating the factors.
The hyperparameters ({σg, ag, β, σs, as}) are learned via
gradients update of the lower bound, we present details in
the Supplementary Material.

1.3. Optimal q1

We find that the optimal q1 is factorized as

q1 (φ, λ∗) = q1 (λ∗) q1 (φ)

The first factor is identified as a Gamma distribution

q1 (λ∗) = Gamma (β, β) (18)

β = β0 +N +

∫
T xW

λq2 (t, w) dtdw

β = β0 + T

with known expectations.

The optimal distribution for the second factor is of the form

q?1 ∝ e−U(φ)+log p(φ)

U(φ) =
1

2

∫
A(t)φ2(t)dt−

∫
b(t)φ(t)dt

A(t) =
∑
n

〈ωn〉q?2 δ(t− tn) + 〈ω(t)〉q?2λq?2 (t)

b(t) =
∑
n

1

2
δ(t− tn)− 1

2
λq?2 (t) .

Generally, the integrals above cannot be evaluated analyti-
cally. Thus, we resort to another variational approximation,
where we approximate the likelihood term, by a distribu-
tion that depends only on a finite set of inducing point {c},
q̃ (φc, φ) = p (φ|φc) q (φc) and the ELBO is〈

log
e− log〈U(φ)〉p(φ|φc)p(φc)

q̃(φc)

〉
q̃

and we use the notation 〈p〉q = Eq (p). The optimal q̃ (φc)
is given by

q̃?(φc) ∝ e− log〈U(φ)〉p(φ|φc)p(φc).

From here, using known results of conditional GPs and
sparse variational GPs (Csató et al., 2001; Titsias, 2009) we
have

q̃?(φc) = N (φc|µc,Σc) (19)

Σc =

[∫
κ(t)>A(t)κ(t)dt+K−1

c

]−1

µc = Σc

(∫
b(t)κ(t)dt

)

with Kc the covariance kernel between the inducing points,
κ(t) = kc(t)

>K−1
c and kc(t) is the kernel between the

inducing points and another set of points (either the real
data or the integration points). The mean and the variance
of the sparse approximated GP are

〈g(t)〉 =κ(t)µc (20)

σ2(t) =K(t, t)− κ(t)>kc(t) + κ(t)>Σcκ(t)

1.4. Optimal q2

Similarly to the previous section, we find that the optimal
q2 is factorized as

q2

(
{wn}Nn=1,Π

)
= q2

(
{wn}Nn=1

)
q2

(
{t̂m, ŵm}

)
Given Equation 15, we define the first factor as

q?2(wn) ∝ exp

(
−
〈φ2
n〉q?1
2

wn

)
PG(wn|1, 0),

which corresponds to a tilted PG distribution

q?2(wn) = PG
(
wn|1,

√
〈φ2
n〉q?1

)
. (21)

with known expectations (Polson et al., 2013).

The second factor takes the form

q?2({t̂m, ŵm}Mm=1)

∝
M∏
m=1

exp

(
−
〈φm〉q?1

2
−
〈φ2
m〉q?1
2

wm

)
· exp

(
〈lnλ?〉q?1

)
.

It can be shown that this distribution corresponds to a Pois-
son process with intensity function

λq2
(
t̂, ŵ
)

(22)

= exp
(
〈lnλ∗〉q?1

) exp
(
−
〈φ〉q?1

2

)
2 cosh

(
〈φ2〉q?1

)PG(wm|1,√〈φ2〉q?1
)

where to simplify the notation we write φ instead of φ
(
t̂
)
.

2. Results
2.1. Crime Data

Here, we describe the computation of the results reported in
Table 1. Once we are done fitting the model to the training
data, we have an approximation for the posterior distribution
Q. To estimate the likelihood on the test data, we sample
the model parameters from Q multiple times and evaluate

` (Dtest) ≈ lnEQ (p (Dtest|φ, λ∗, w)). (23)
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Figure 3. (a) raster plot of a neuron from a monkey cortex. (b) Data generated from the learned model. (c) Results of the Kolmogorov-
Smirnov test. The NH–GPS generates data that resembles the real data, and passes the goodness of fit test.
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Figure 4. (a) raster plot of a neuron from a human cortex. (b) Data generated from the learned model. (c) Results of the Kolmogorov-
Smirnov test. The NH–GPS generates data that resembles the real data, and passes the goodness of fit test.
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2.2. Neuronal Data

In Figures 3 and 4 we assess the ability of the model to
capture the data for the recordings from monkey cortex and
human cortex. In both figures, panel a and b present the
raster plot of the real data and the raster plot generated from
the fitted model respectively. Similarly to the real data,
the generated data displays both excitation, in the form of
clustered events, and inhibition.

The results of the Kolmogorov-Smirnov test are displayed
in the in Panel c. The comparison relies between the 95%
confidence bounds, which are indicated by the dashed lines.
The model passes the goodness of fit test (p value > 0.05).


