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Abstract
Recently, the Centers for Disease Control and
Prevention (CDC) has worked with other fed-
eral agencies to identify counties with increasing
coronavirus disease 2019 (COVID-19) incidence
(hotspots) and offers support to local health depart-
ments to limit the spread of the disease. Under-
standing the spatio-temporal dynamics of hotspot
events is of great importance to support policy
decisions and prevent large-scale outbreaks. This
paper presents a spatio-temporal Bayesian frame-
work for early detection of COVID-19 hotspots (at
the county level) in the United States. We assume
both the observed number of cases and hotspots de-
pend on a class of latent random variables, which
encode the underlying spatio-temporal dynamics
of the transmission of COVID-19. Such latent
variables follow a zero-mean Gaussian process,
whose covariance is specified by a non-stationary
kernel function. The most salient feature of our
kernel function is that deep neural networks are
introduced to enhance the model’s representative
power while enjoying great interpretability. Our
model demonstrates superior hotspot-detection
performance compared to other baseline methods.

1. Introduction
The ongoing global pandemic caused by the coronavirus
disease (COVID-19) has spread rapidly over more than 200
countries in the world since its emergence in 2019. Even the
largest economies’ resources have been strained due to the
spread of COVID-19. Predicting potential hotspots ahead
of time can play a significant role in deploying targeted
interventions, such as testing, tracing, and isolation, and
slow down the disease spread (Oster et al., 2020b).

Large-scale, population-based testing can indicate regional
hotspots, but at the cost of a delay between testing and
actionable results. Accurately identifying changes in the
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infection rate requires sufficient testing coverage of a given
population, which can be costly and requires substantial
testing capacity. Regional variation in testing access can also
hamper the ability of public health organizations to detect
rapid changes in infection rates. Recent studies (Centers for
Disease Control and Prevention, 2021) aimed at estimating
the spread of COVID-19 by forecasting the number of
confirmed cases or the number of deaths. However, these
methods failed to provide a satisfactory case prediction
accuracy. Therefore, there is a high unmet need for tools
and methods that can facilitate the timely and accurate
identification of infection hotspots and enable policymakers
to act effectively with minimal delay (Rossman et al., 2020).

The Centers for Disease Control and Prevention (CDC) has
worked with other federal agencies to identify counties with
a significant increase in COVID-19 incidence (hotspots)
(Oster et al., 2020b), which offers a unique opportunity
to investigate the spatio-temporal dynamics between the
identified hotspots. The identified hotspots indicate the
relative temporal increases in confirmed cases and mark the
onset of local outbreaks.

In this paper, we propose an effective COVID-19 hotspot de-
tection framework that utilizes the hotspot data and multiple
other data sources to enhance hotspot detection accuracy.
We assume the hotspot and number of cases in the same
location depending on common priori factors, represented
by a latent spatio-temporal random variable. This latent
variable is modeled by a Gaussian process, whose covariance
is characterized by an interpretable non-stationary kernel.
We note that the non-stationarity of our kernel plays a pivotal
role in the success of our model because the spread of the
virus shows heterogeneous spatial correlation across differ-
ent regions. For example, the virus is likely to spread more
slowly in a sparsely populated area such as rural Nebraska
compared to a densely populated area such as New York City.
We formulate our kernel function using carefully crafted
feature functions incorporating neural networks, which pro-
vide greater flexibility in capturing the complex dynamics
of the spread of COVID-19 while still being highly inter-
pretable. To tackle the intractability of Gaussian process
with a large-scale data set, we also derive a sparse model and
fit the model efficiently via a variational learning strategy,
which goes beyond the scope of this paper and will not be
discussed.
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2. COVID-19 Hotspot Detection Framework
This section presents our hotspot detection framework, con-
sisting of two spatio-temporal models: confirmed cases
and hotspots. Consider weeks� = {C = 1, . . . , )} starting
from March 15, 2020 to January 17, 2021 and locations
(counties) ℐ = {8 = 1, . . . , �}, with latitude and longitude
B8 ∈ � ⊂ R2, 8 ∈ ℐ, where � represents the space of
geographic coordinate system (GCS). The two models, re-
spectively, focus on weekly confirmed cases H8C ∈ Z+ and
identified hotspots ℎ8C ∈ {0, 1} of COVID-19 at location
8 ∈ ℐ and time C ∈ �, where ℎ8C = 1 if there is a hotspot at
location 8 and time C, and 0, otherwise.

CDC (Oster et al., 2020b) defined the hotspots based on
relative temporal increases in the number of cases, i.e., the
occurrence of the hotspots depends on the spatio-temporal
correlation across different locations and over time, and
not on the mean number of cases. Hence, we capture the
correlation between H8C and ℎ8C by connecting these two
models in the spatio-temporal space (C, B8) through a latent
spatio-temporal random variable 5 (C, B), characterized by
a Gaussian process (GP) with zero mean and covariance
specified by a kernel function : .

The goal is to find the optimal pair of these two models that
best predict the hotspots and the cases for one week ahead.
We refer to the proposed framework as the spatio-temporal
Gaussian process (STGP).

2.1. Spatio-Temporal Gaussian Process (STGP) Models
For the notational simplicity, we first denote the spatio-
temporal coordinate (C, B8) by x8C ∈ �,� B � ×� ⊂ R3.
For any subset X ⊆ � with # spatio-temporal coordinates,
the set of function variables f B { 5 (x8C )}x8C ∈X has joint
zero-mean Gaussian distribution

?(f) = N(f |0,K-- ), (1)

where K-- is a # × # matrix and its entries are pairwise
evaluations of : (x, x′), ∀x, x′ ∈ X.
Case model. We define a spatio-temporal model for the
confirmed cases in the following form:

H8C = `8C + 5 (x8C ) + n8C , 8 ∈ ℐ, C ∈ �,

where n8C ∼ N(0, f2
n ) is assumed to be i.i.d. normally

distributed; `8C is the mean of number of confirmed cases at
week C in location 8.

We assume the mean of the number of confirmed cases in a
certain location relates to covariates in other locations accord-
ing to an underlying undirected graph� = (ℐ,ℰ), whereℐ
is the set of vertices representing all the locations, andℰ ⊆
{(8, 9) ∈ ℐ2} is a set of undirected edges representing the
connections between locations. There is an edge between two
vertices whenever the corresponding locations are geograph-
ically adjacent. Let (8C B [[8C1, . . . , [8C; , . . . , [8C!]> ∈ R!

denote the data of location 8 ∈ ℐ at time C ∈ � and
88C B [l8C1, . . . , l8C; , . . . , l8C!]> ∈ R! denote the param-
eters of the corresponding location; ! denotes the number of
features. Here, in practice, we use the number of confirmed
cases, the number of deaths, and six community mobilities
variables in the past two weeks as the input features with
! = 16. Formally, we define `8C as

`8C =
∑
g∈HC

∑
9:(8, 9) ∈ℰ

( 9 g8 9 g , ∀8 ∈ ℐ, C ∈ �, (2)

whereHC = {g : C − 3 ≤ g < C} represent the recent history
with memory depth 3 < ) .

For a set of # observed spatio-temporal coordinates X, we
denote the number of confirmed cases and their estimated
means as y B {H8C }(8,C):x8C ∈X and - B {`8C }(8,C):x8C ∈X, re-
spectively. Then we can express the conditional probability
distribution of y as

?(y|f) = N(y|-,K-- + fn I), (3)

where I is a # × # identity matrix.
Hotspot model. We express the conditional probability of
the hotspots h for a subset of spatio-temporal coordinates X
as:

?(h|f) =
∏

x8C ∈X
B(ℎ8C |q( 5 (x8C ))), (4)

whereB(ℎ8C |q( 5 (x8C ))) = q( 5 (x8C ))ℎ8C (1−q( 5 (x8C )))1−ℎ8C
is the likelihood for the Bernoulli distribution and q is a
sigmoid function.
Learning objective. We aim to detect the hotspot while
taking advantage of the information that have been recorded
in the number of confirmed cases. To this end, we find the
optimalmodel parameters by solving the following combined
objective:

max
)∈Θ

ℓ()) B ℓℎ ()) + XℓH ()), (5)

where X controls the ratio between two objectives and ) ∈ Θ
is the set of parameters defined in GP. The ℓH ()) B log ?(y)
denotes the log marginal likelihood of observed confirmed
cases and ℓℎ ()) B log ?(h) denotes the log marginal like-
lihood of observed hotspots. We note that log marginal
likelihood of cases in the second term plays a key role in
“regularizing” the model by leveraging the information in
the case records as shown in Fig. 7 (Appendix D). We also
present the :-fold cross validation that quantitatively mea-
sures the �1 score of the hotspot detection and the mean
square error of the case prediction with different X in Fig. 8
(Appendix D). The result confirms that the appropriate
choice of X can significantly improve the performance of
hotspot detection.
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Figure 1. An illustration of the deep neural network that maps an ar-
bitrary spatial location B to its covariance ΣB and the corresponding
weight FB .

2.2. Spatio-Temporal Deep Neural Kernel
We discuss the choice of the kernel function : in this
subsection. Standard GP models use a stationary covariance,
in which the covariance between any two points is a function
of Euclidean distance. However, stationary GPs fail to adapt
to variable smoothness in the function of interest. This is
of particular importance in geophysical and other spatial
data sets, in which domain knowledge suggests that the
function may vary more quickly in some parts of the input
space than in others. For example, COVID-19 is likely to be
spreading slower than in sparsely versus densely populated
regions. Here, we consider the following non-stationary
spatio-temporal kernel:

: (C, C ′, B, B′) = a(C, C ′) ·
(
'∑
A=1

F
(A )
B′ h

(A ) (B, B′)
)
, (6)

where a(C, C ′) is a stationary kernel that captures temporal
correlation between time C and C ′; h (A ) (B, B′) is a component
of the non-stationary spatial kernel which evolves over
the space and F (A )

B′ is the corresponding weight satisfying∑'
A=1 F

(A )
B′ = 1. ' is the number of components considered.

By likening the relationship between the spatial kernel
component to that of the Gaussian component in Gaussian
mixture, we seek to enhance the representative power of
our kernel by adding more independent components to the
spatial kernel.
Stationary temporal kernel. We define the kernel func-
tion that characterizes the temporal correlation between
C, C ′ ∈ � as an stationary Gaussian function:

a(C, C ′) = exp
{
− 1

2f2
a

| |C − C ′ | |2
}
,

where fa ∈ R+ is the bandwidth parameter. This kernel
function hypothesizes that the level of virus’ transmission is
highly related to its recent history and their correlation will
decay exponentially over time.
Non-stationary spatial kernel. To account for non-
stationarity, we now allow the smoothing kernel to depend
on spatial location B. For ease of discussion and simplicity
of notation, we omit the superscript A in h (A ) (B, B′) and F (A )

B′ ,
and present the structure of a single non-stationary spatial
kernel component. We use ^B (·) to denote a kernel which
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Figure 2. An examples of the spatial kernel with two components∑
A F
(A )
B h (A ) (·, B) evaluated at the same location B. This instance is

constructed using two different kernel ^, which are parameterized
by two randomly generated i1 and i2.

is centered at the point s and whose shape is a function of
location s. Once ^B (·) is specified for all B ∈ � ⊆ R2, the
correlation between two points B and B′ is then

h(B, B′) ∝
∫
R2
^B (D)^B′ (D)3D. (7)

Because of the constructive formulation under the mov-
ing average specification, the resulting correlation function
h(B, B′) is certain to be positive definite. We favor working
with the kernels ^B (·) rather than working directly with the
correlation function h(B, B′) since this makes it difficult to
ensure symmetry and positive definiteness for all B and B′.
Following the idea of (Bernardo et al., 1998; Zhu et al.,
2021), we define each ^B (·) to be a normal kernel centered
at B with spatially varying covariance matrix ΣB . In this case
given the parameterized ΣB and ΣB′ , the correlation function
is given by an easy to compute formula

h(B, B′) ∝ |ΣB + ΣB
′ |− 1

2

2c
exp

{
− (B

′ − B)> (ΣB + ΣB′)−1 (B′ − B)
2

}
.

The derivation of this formula can be found in Appendix B.

To assure that the kernel {^B (·)} vary smoothly over space�,
we parameterize ΣB and then allow the parameters to evolve
with location. For this paper we will focus on a geometrically
based specification which readily extends beyond the use of
the Gaussian kernel considered here.

There is a one-to-one mapping from a bivariate normal
distribution to its one standard deviation ellipse, so we
define a spatially varying family of ellipses which, in turn,
defines the spatial distribution for ΣB. Let the two focus
points in Ψ ⊂ R2 denoted by 7B B (kG (B), kH (B)) ∈ Ψ and
−7B B (−kG (B),−kH (B)) ∈ Ψ define an ellipse centered at
B with fixed area �. This then corresponds to the Gaussian
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(a) New York (b) Atlanta (c) Chicago (d) Los Angeles
Figure 3. Examples of the learned spatial kernel

∑'
A=1 F

(A )
B h (A ) (·, B) with four components evaluated at four major metropolitan areas in

the U.S.. These maps show the spatial influence of these area to other region of the U.S.. The color depth indicates the intensity of the
kernel value; the darker the color the higher the kernel’s value.

(a) April 12, 2020 (b) August 9, 2020 (c) October 4, 2020 (d) December 6, 2020
Figure 4. Spatial view of one-week-ahead and county-wise hotspot probability ?(h∗) suggested by our fitted model (X = 10−5) using real
COVID-19 data. This figure presents examples at four particular weeks, where the color depth indicates the probability of predicted
hotspots and the black circles represent the hotspots given in the data.

kernel with covariance matrix ΣB defined by

ΣB = _
2

(
& + ‖7B ‖2

2 cos 2U ‖7B ‖2
2 sin 2U

‖7B ‖2
2 sin 2U & − ‖7B ‖2

2 cos 2U

)
, (8)

where U = tan−1 (kH (B)/kG (B)), & =
√

4�2 + ‖7B ‖4c2/2c,
and _ is a scaling parameter that controls the overall intensity
of the covariance. This demonstrates how the spatially
distributed pairs7B B (kG (B), kH (B)) give rise to a spatially
distributed covariance matrix ΣB . The derivation of (8) can
be found in Appendix C.
Neural network representation for focus points. Here
we represent the mapping i : S → Ψ × [0, 1] from the
location space S to the joint space of focus point Ψ and the
weight [0, 1] using a deep neural network. To be specific,
the input of the network is the location B and the output
of the networks is the concatenation of the corresponding
focus points 7B of that location and the weight FB defined
in (6). The architecture of the neural network has been
described in Fig. 1. In Fig. 2, we also demonstrate two
specific instances of the resulting spatial kernel h given two
different ^. This implies that the neural network i encodes
the non-homogeneous geographical information across the
region that plays a key role in virus’ transmission.

3. Results
Model interpretation. To intuitively interpret the learned
spatial kernel, we visualize the kernel evaluation given one of
its inputs, i.e.,

∑'
A=1 F

(A )
B h (A ) (B, ·). Such kernel evaluation

represents the spatial correlation (or sphere of influence) of
a particular location spreading the virus. Fig. 3 shows four
examples of the spatial kernel for the latitude and longitude
of New York, Atlanta, Chicago, and Los Angeles, respec-
tively. We observe that these major metropolitan areas have a

substantially different spatial correlation with their neighbor-
ing regions due to the non-stationarity of the spatial kernel.
For example, as one of the nation’s major economic and
transportation hubs, New York has a significant impact on
the entire Eastern United States, while Atlanta only has a re-
gional influence in the Southeastern United States. Chicago
and Los Angeles, the second and third most populous cities
in the United States, can extend their influences to the entire
north and south of the country, respectively. Increasing
the number of spatial kernel components could increase the
flexibility and the interpretability of the model (Appendix E);
however, due to the need for additional parameters in the neu-
ral networks, the computational time dramatically increases
when ' ≥ 3, with minimal performance improvement.
Hotspot detection. In Fig. 4, we visualize the prediction
results on the map to intuitively examine the predictive
performance from the spatial perspective. We select four
particular weeks that represent different stages of the COVID-
19 pandemic in 2020. As we can see, the hotspot probability
resulting from our model is considerably high whenever
a genuine hotspot occurs and considerably low otherwise,
which confirms the effectiveness of our framework. Our
method can also capture the spatial occurrence of these
hotspots nicely, in which regions with sparsely distributed
hotspots usually have a lower probability. In comparison,
other regions with densely distributed hotspots have a higher
probability. We emphasize that our hotspot detection frame-
work can provide a realistic prediction that varies smoothly
over time and space due to our GP assumption. This can
be extremely useful when we try to make a continuous
prediction or estimate the likelihood of a hotspot to happen
at an arbitrary spatio-temporal coordinate. We also com-
pare the performance of our method and six other baseline
approaches (Appendix F).
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A. COVID-19 data description
The data sets we used in our study includes number of cases
and deaths, COVID-19 hotspots identified by Centers for
Disease Control and Prevention (CDC), and community
mobility provided by Google. The study period is from
March 15, 2020 to January 17, 2021, consisting of 50 weeks
and 3,144 US counties. We exclude the data after February
2021 when large-scale COVID-19 vaccine rollout had been
launched across the United States, which effectively shifted
the dynamics of the COVID-19 spread.

Confirmed cases and deaths. We used the data set from
The New York Times (Times, 2020) which includes two
parts: (i) confirmed cases are counts of individuals whose
coronavirus infections were confirmed by a laboratory test
and reported by a federal, state, territorial, or local govern-
ment agency; (ii) confirmed deaths are individuals who have
died and meet the definition for a confirmed COVID-19 case.
In practice, we have observed periodic weekly oscillations
in daily reported cases and deaths, which could have been
caused by testing bias (higher testing rates on certain days
of the week). To reduce such bias, we aggregate the number
of cases and deaths of each county by week.

Hotspots. OnMay 7, 2020, CDC, along with other federal
agencies, began identifying counties with increasing COVID-
19 hotspots to better understand transmission dynamics and
offer targeted support to health departments in affected com-
munities. CDC identified hotspots daily starting on January
22, 2020 among counties in U.S. states and the District
of Columbia by applying standardized criteria developed
through a collaborative process involving multiple federal
agencies (Oster et al., 2020b;a); in general, hotspots were
defined based on relative temporal increases in number of
cases. To match the temporal resolution with the number
of cases and deaths, we expand the definition of a hotspot
from daily-level to weekly-level, where a week is identified
as a hotspot if it contains at least one hotspot day identified
by CDC. The weekly number of counties meeting hotspot
criteria peaked in early April, decreased and stabilized dur-
ing mid-April–early June, then increased again during late
June–early July. The percentage of counties in the South
and West Census regions meeting hotspot criteria increased
from 10% and 13%, respectively, during March–April to
28% and 22%, respectively, during June–July. Fig. 5 gives
snapshots of the identified hotspots at four particular weeks.

Community mobility. The COVID-19 Community Mo-
bility Reports (Google, 2020) record people’s movement by
county daily, across various categories such as retail and
recreation, groceries and pharmacies, parks, transit stations,
workplaces, and residential. The data shows how visitors to
(or time spent in) categorized places change compared to
the baseline days (in percentage). The negative percentage
means that the level of mobility is lower than the baseline,

(a) June 28, 2020 (b) December 20, 2020

Figure 5. Snapshots of hotspot identified by CDC. The black circles
indicate the counties that have been identified as hotspot in that
week.

(a) Transit on March 1, 2020 (b) Transit on July 12, 2020

(c) Workplace on March 1, 2020 (d) Workplace on July 12, 2020

Figure 6. Overview of Google mobility data in two selected cat-
egories: workplace and transit on two different days. Counties
in red and blue indicate their mobility is lower and higher than
the normal level, respectively. The mobility level varies over time
and space due to local government policy change in response to
COVID-19.

and the positive percentage represents the opposite. The
mobility on a baseline day represents a normal value for
that day of the week. This mobility report sets the baseline
as the median value from the five weeks from January 3rd
to February 6th, 2020. Similar to the aforementioned two
data sets, we aggregate each county’s mobility data by week.
Examples of two categories, transit stations and workplaces,
are shown in Fig. 6.

B. Proof of non-stationary kernel
Assume two independent bivariate Gaussian random vari-
ables -B, -B′ centered at locations B, B′, respectively, with
ΣB , ΣB′ parameterized by

ΣB =

[
02 d01

d01 12

]
, ΣB′ =

[
0′2 d′0′1′

d′0′1′ 1′2

]
.

Given two independent Gaussian random variables - and
. and their probability density functions 5- and 5. , the
distribution 5/ of / = - + . equals the convolution of 5-
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and 5. , i.e.,

5/ (I) =
∫ ∞

−∞
5. (I − G) 5- (G)3G

Denote the probability density function of -B and -B′ as
^B (·), ^B′ (·), we have

5-B+-B′ (G) =
∫
R2
^B (D)^B′ (G − D)3D.

We also have the following equation due to the property of
the Gaussian function:

^B′ (2B′ − D) = ^B′ (D), ^B (2B − D) = ^B (D).

Let G = 2B′ or G = 2B, we therefore have

5-B+-B′ (2B
′) = 5-B+-B′ (2B) =

∫
R2
^B (D)^B′ (D)3D = h(B, B′),

which leads to (7).

Since -B + -B′ follows a Gaussian distribution -B + -B′ ∼
N (B + B′, ΣB + ΣB′), the non-stationary kernel h(B, B′) can
be written as

h(B, B′)
= 5-B+-B′ (2B

′)

=
1

2c |ΣB + ΣB′ |
1
2

exp
{
−1

2
(B′ − B)> (ΣB + ΣB′)−1 (B′ − B)

}
.

Let % = (d2 − 1)12 and %′ = (d′2 − 1)1′2, we have

h(B, B′) ∝ 1
@1

exp
{
− 1
@2
(B − B′)>, (B − B′)

}
,

where

, =

[
12 + 1′2 −(d01 + d′0′1′)

−(d01 + d′0′1′) 02 + 0′2
]
,

@1 = 2c
√
−2dd′00′11′ − 02 (% − 1′2) − 0′2 (%′ − 12),

@2 = − 2(2dd′00′11′ + 02 (% − 1′2) + 0′2 (%′ − 12)).

C. Reparametrization of Gaussian
distribution

Assume an ellipse centered at the origin with area � has two
focus points (kG , kH), (−kG ,−kH) in R2 where kG , kH ∈ R.
We define the semi-major and semi-minor axis of the ellipse
as f1, f2. According to the ellipse formula we have:{

cf1f2 = �,

f2
1 − f

2
2 = k2

G + k2
H = ‖k‖2.

By solving the above linear equation system, we have

f1 = (
√

4�2 + ‖k‖4c2

2c
+ ‖k‖

2

2
) 1

2 ,

f2 = (
√

4�2 + ‖k‖4c2

2c
− ‖k‖

2

2
) 1

2 .

Since the rotation angle U of the ellipse is U = tan−1 (kH/kG),
a bivariate normal random variable - can be defined as

- =

[
cosU − sinU
sinU cosU

] [
/1
/2

]
,

where /1 and /2 are two independent random variables
with variance f2

1 and f2
2 , respectively. Here we introduce a

kernel scale parameter gI and derive the covariance of - as
follows:

Σ = g2
I

[
f2

1 cos2 U + f2
2 sin2 U (f2

1 − f
2
2 ) cosU sinU

(f2
1 − f

2
2 ) cosU sinU f2

1 sin2 U + f2
2 cos2 U

]
Substitute the solution of f1 and f2 into the above equation,
we have

f2
1 cos2 U + f2

2 sin2 U

=

√
4�2 + ‖k‖4c2

2c
(cos2 U + sin2 U) + ‖k‖

2

2
(cos2 U − sin2 U)

=

√
4�2 + ‖k‖4c2

2c
+ ‖k‖

2

2
cos(2U),

and similarly

f2
1 sin2 U + f2

2 cos2 U =

√
4�2 + ‖k‖4c2

2c
− ‖k‖

2

2
cos(2U),

(f2
1 − f

2
2 ) cosU sinU = ‖k‖2 cosU sinU =

‖k‖2
2

sin 2U.

Thereby we obtain the matrix shown in Equation (8).

D. Cross-validation for X
This section presents the cross-validation result for X in (5)
defined in Section 2.1. Fig. 7 gives several examples of the
predictions using different X. Fig. 8 summarizes the :-fold
cross validation that quantitatively measures the �1 score of
the hotspot detection and the mean square error of the case
prediction with different X.

E. Model comparison with different ' in the
spatial kernel

This section presents the comparison of our model using
different number of spatial components in the kernel function.
Fig. 9 gives an example of visualized kernel evaluation
centered at Chicago. It shows that the representative power
of the kernel can be greatly enhanced by increasing the
number of spatial components '.
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Figure 7. Comparison of one-week-ahead and county-wise hotspot
probability ?(h∗) using different X. The model with X = 10−5

attains the best performance in �1 score.

Figure 8. Cross-validation result for X displaying the mean-square
error (blue) and �1-score (red).

(a) ' = 1 (b) ' = 2

(c) ' = 4 (d) ' = 6

Figure 9. visualization of spatial kernel at Chicago for different '.

Table 1. �1 score of out-of-sample hotspot detections.

Precision Recall �1 score
Perceptron 0.424 0.242 0.308
Logistic 0.564 0.178 0.270
Linear SVM 0.622 0.064 0.117
:-NN 0.517 0.398 0.450
Kernel SVM 0.599 0.360 0.450
Decision Tree 0.537 0.293 0.340
STGP (X = 10−5) 0.457 0.968 0.621

F. Comparison with baselines
We adopt standard performance metrics, including precision,
recall, and �1 score. This choice is because hotspot detection
can be viewed as a binary classification problem. We aim
to identify a hotspot for a particular location at a particular
week in the data. Define the set of all identified hotspots
as *, the set of detected hotspots using our method as
+ . Then precision % and recall ' are defined as % =

|* ∩+ |/|+ |, ' = |* ∩+ |/|* |, where | · | is the number of
elements in the set. The �1 score combines the precision
and recall: �1 = 2%'/(% + ') and the higher �1 score the
better. Since numbers of hotspots in real data are highly
sparse (comparing to the total number of spatio-temporal
coordinates), we do not use the ROC curve (true positive
rate versus false-positive rate) in our setting. The evaluation
procedure is described as follows. Given the observed
hotspot and other covariates (cases, deaths, and mobility)
until week C, we perform detection for all the locations at
week C + 1. If the detected hotspot were indeed identified as
a true hotspot by CDC, then it is a success. Otherwise, it is
a misdetection. In our data, there are 50 × 3144 = 157, 200
spatio-temporal coordinates in total, and 12,000 of them
were identified as true hotspots.

We compare the hotspot detection results of our proposed
method and several standard methods in binary classification,
including perceptron, logistic regression, linear support
vector machine (SVM), :-nearest neighbor (:-NN), kernel
SVM with Gaussian kernel, and decision tree; see (Shalev-
Shwartz & Ben-David, 2014) for a detailed review of those
machine learning algorithms. Table 1 shows the �1 score
for the out-of-sample prediction at county-level using our
method. The result confirms that our model significantly
outperforms other baseline methods.


