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Abstract
We propose ST-DETR, a Spatio-Temporal
Transformer-based architecture for object detec-
tion from a sequence of temporal frames. We treat
the temporal frames as sequences in both space
and time and employ the full attention mecha-
nisms to take advantage of the features correla-
tions over both dimensions. This treatment en-
ables us to deal with frames sequence as temporal
object features traces over every location in the
space. We explore two possible approaches; the
early spatial features aggregation over the tempo-
ral dimension, and the late temporal aggregation
of object query spatial features. Moreover, we
propose a novel Temporal Positional Embedding
technique to encode the time sequence informa-
tion. To evaluate our approach, we choose the
Moving Object Detection (MOD) task, since it is
a perfect candidate to showcase the importance of
the temporal dimension. Results show a signifi-
cant 5% mAP improvement on the KITTI MOD
dataset over the 1-step spatial baseline.

1. INTRODUCTION
For many years, ConvNets (Redmon & Farhadi, 2018) (Mo-
hamed et al., 2021) have been the architecture of choice
in computer vision in general, and for performing object
detection tasks in particular. Recently, transformers have
shown promising results compared to ConvNets, in object
detection, (Carion et al., 2020) ,where the input image is
treated as a sequence of spatial features, and full attention
mechanisms are employed to extract features interactions.
This motivates us to extend DETR to handle the sequence
information in both spatial and temporal dimensions.

In the general problem setup, we need to perform a Spatio-
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Figure 1. High level framework of the proposed ST-DETR archi-
tecture. Lower part shows 4 time-stamp inputs consists of RGB
and OF frames for each time-step. Upper part shows the output of
the network.

temporal sequence-to-sequence mapping. The input Spatio-
temporal sequence is formulated as a sequence of frames
in the temporal dimension within a certain window of time,
each is, in turn, a sequence of features in the spatial di-
mension. The output Spatio-temporal sequence is also a
sequence of temporal outputs, each having a list of objects
queries.

In order to transform DETR into a Spatio-Temporal model,
we undergo some architectural changes. First, we adopt the
classical spatial features extraction, and apply it on each
input frame across the temporal window. Then we modify
both the transformer encoder and decoder to handle the
temporal aggregation. Here we have two options, either 1)
early temporal aggregation of the spatial features, resulting
in a temporal trace of features at each spatial location, or
2) later temporal objects queries aggregation, where we
extract the objects queries per time step, and then stack them,
resulting in a trace of objects queries. The output of either
architecture is a list of object queries features, which are
used to predict the bounding boxes and their corresponding
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classes. The same Hungarian matching and bi-partite loss
(Carion et al., 2020) are adopted from DETR.

2. MODEL
2.1. Spatio-Temporal Detection Transformer

To transform the vanilla 1-step DETR to deal with tempo-
ral sequences, firstly, we have to first deal with multiple
streams across T time steps, each having a spatial feature
IHW×d, resulting in IHW×Td streams. Then using Spatio-
Temporal Transformer Encoder (ST-TE) which performs
self-attention over the spatial HW dimension, resulting in
E ∈ RHW×Td. Finally, by exploiting the Spatio-Temporal
Query Transformer Decoder (ST-TD), which performs the
query-to-spatial multi-head attention transformation, result-
ing in D ∈ RNq×dfinal , where dfinal is the final dimension
after spatio-temporal queries aggregation. The rest of the
components remains the same as in vanilla transfomer.

One can think of two alternatives of temporal features ag-
gregation in both the ST-TE and ST-TD, where we can early
aggregate the spatial features over the temporal dimension in
the ST-TE, or defer the temporal aggregation to the ST-TD
to be done late over the object queries.

2.1.1. EARLY TEMPORAL AGGREGATION

In this alternative, the list of T spatial features IHWxd

are aggregated and flattened into IHWxTD. This aggre-
gated tensor IHWxTD can thought of as a spatial map
of T temporal traces of spatial features, each of dimen-
sion d, mapped to the spatial locations H × W . This
is visualized in Figure 2. The ST-TE will then per-
form multi-head self-attention over the spatio-temporal
map of object features traces. In this case, we have
Q = V = K = IHW×Td. The spatio-temporal features
traces attention map WHW×HW =Softmax(QKT ) is then
used to obtain the spatio-temporal features EHW×Td =
WHW×HW IHW×Td.

The ST-TD will perform multi-head query-to-spatio-
temporal features traces attention, where Q ∈ RNq×Td and
V = K = EHW×Td. The query-spatio-temporal features
traces attention map will be WNq×HW =Softmax(QKT ),
resulting in DNq×Td = WNq×HWEHW×Td. This repre-
sents the final object queries spatio-temporal features, where
dfinal = Td in this case.

2.1.2. LATE TEMPORAL AGGREGATION

We could also defer the temporal aggregation until the object
queries are obtained per each time step. In this case, the
resulting list of T spatial features each of IHW×d dimension
are not stacked and flattened as in the early aggregation.
The ST-TE is formed on T Spatial Transformer Encoders,

Table 1. Detailed comparisons on the effect of the motion features.

Method mAPTotal AP50 AP75

RGB-only 23% 42.2% 23.7%
RGB+RGB 25.3% 47.2% 24.5%
RGB + OF 33.9% 59.3% 37.2%

same as in the vanilla DETR, each performing multi-head
self-attention, resulting also in a list of T spatial features
EHWxd. Finally, the ST-TD is formed of two levels of
decoders; spatial and temporal query decoders.

Spatial Query Decoders which are a list of T decoders,
each performing multi-head attention, resulting in a list of
T query features each is DNq×d, which are then reshaped
into an aggregated tensor over the temporal dimension to
be DT×Nqd. Those represent the Spatio-temporal queries
traces.

Temporal Query Decoder which transforms the Spatio-
temporal queries traces into the final query features, using
multi-head attention. The Spatio-temporal queries traces are
first flattened such that V = K = DTNq×d. The attention
learn-able object queries will be Q ∈ Nq × , resulting in an
attention map of dimensions WNq×TNq

=Softmax(QKT ).
This is illustrated in Figure 2. The TNq dimension repre-
sents the flattened late T object queries features, each of
dimension d. This can be thought of as the temporal traces
of objects queries as opposed to the objects features traces
in the early aggregation alternative. while the Nq dimen-
sion represents the final object queries of the last time step,
which are to be learned from attending to all the T times
steps objects queries. Thus, the final object query features
are then DNq×d = WNq×TNqDTNq×d.

2.2. Sequence-to-sequence prediction

One can notice from Figure 2 that the temporal attention
takes place between the last time (t = T ) step queries;
QNqxd and the temporal traces of object queries over all the
previous steps; DTNqxd. The reason is that we predict the
objects in the last frame, given all the features of the pre-
vious frames. However, it is straightforward to modify the
architecture to obtain a sequence of temporal predictions of
Nq object queries per each time step T . Simply, in the Tem-
poral Query Decoder, we need to set the queries to QTNq×d,
and thus we have a temporal attention map WTNq×TNq.
This can be thought of as a sequence-to-sequence prediction
problem, similar to the Neural Machine Translation (NMT)
setup in (Vaswani et al., 2017), where we have an input
sequence of the spatial feature over time, and we predict
another sequence of object bounding boxes and classes that
corresponds to those inputs.
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Figure 2. Architectural details of the Early vs. Late Temporal Aggregation variants.

Table 2. Comparing the Early architecture, Late architecture, and
vanilla one step DETR.

Method mAPTotal AP50 AP75

1-Step DETR 33.9% 59.3% 37.2%
Early 38.7% 63.1% 44.6%
Late 34% 61.1% 36.1%

2.3. Temporal Positional Encoding (TPE)

Transformers are originally presented as a replacement to
recurrent models, due to their fast parallel encoding nature
(Vaswani et al., 2017). However, this comes at the cost
of losing the sequential information of the input. To over-
come that, positional encoding embedding was proposed
in (Vaswani et al., 2017). Following on that, the vanilla
1-step DETR (Carion et al., 2020) treats the input features
as being sequential in the spatial dimension HW , which
leads to the proposal of Spatial Positional Encoding (SPE).
In ST-DETR, a similar encoding is needed to distinguish
the temporal sequential information of frames. Hence, we
propose a Temporal Positional Encoding (TPE), which is
added just before the temporal aggregation takes place, be-

ing it early across the spatial features traces TPEHWxd or
late across the object queries traces TPENqxd, see Figure
2.

3. EXPERIMENTS AND RESULTS
In this section, we first describe the used datasets. After
that, we specify the experimental setup, including all hyper-
parameters, and hardware specifications. Finally, We design
our experiments to evaluate each of our contributions, in the
form of an ablation study to evaluate the impact of each one.

3.1. Dataset

We use the extended version (Rashed et al., 2019) of the pub-
licly available KittiMoSeg dataset (Siam et al., 2018), that
consists of 12919 frames which are split into 80% for train-
ing, and 20% for testing. The image resolution is 1242×375,
and the labels determine whether the object is moving or
static, includes the object bounding box and the motion
mask.
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Figure 3. Attention maps for each quires and the corresponding output bounding box .

Table 3. Quantitative comparison results showing the effect of TPE

Method mAPTotal AP50 AP75

Early 36% 62.3% 43.4%
Early+TPE 38.7% 63.1% 44.6%

3.2. Experimental Setup

We initialize our backbone networks with the weights pre-
trained on ImageNet (Deng et al., 2009), then train the whole
network for 30 epochs on COCO dataset (Lin et al., 2014)
while freezing the backbone during the first 10 epochs. In
all our experiments, ResNet-50 (He et al., 2016) was used.
Our network is trained with Adam optimizer (Kingma &
Ba, 2014) with a scheduled learning rate that is decreased
from 1e−3 to 1e−5, the whole network is end-to-end trained
with learning rate exponentially decayed. We train a total
of 200 epochs, using a warm-up learning rate of 1e−3 to
5e−3 in the first 5 epochs. 460 × 140 resolution images
have been used across all the experiments. Our approach is
implemented in Python using PyTorch on a PC with Intel
Xeon(R) 4108 1.8GHz CPU, 64G RAM, Nvidia Titan-XP.

3.3. Motion Features

Previous works on MOD (Siam et al., 2017; 2018) indicates
that input features can have a strong impact on the results. In
particular, features holding motion cues can be of high im-
pact. Thus, we evaluate the best input features at each time
step, where we compare RGB, RGB+RGB, and RGB+OF
options. In this setup, we use the vanilla 1-step DETR ar-
chitecture. Optical flow is generated using FlowNet 2.0 (Ilg
et al., 2017). The results are infavor of the RGB+OF setup
as shown in Table 1.

3.4. Early vs Late temporal aggregation

In this setup, we evaluate the two architectural alternatives
in Figure 2. For the sake of comparison, we fix the time
window T = 2, the number of queries Nq = 100 and
the transformer hidden dimension d = 256. Results are
shown in Table 2. Both results of early and late architec-
tures improve over the 1-step baseline. However, the early

Table 4. Quantitative comparison results showing the effect of the
temporal window size T

T mAPTotal AP50 AP75

1-Step 33.9% 59.3% 37.2%
2-Steps 38.7% 63.1% 44.6%
4-Steps 38.7% 64.8% 43%

architecture provides a significant improvement of 5% mAP.

3.5. Effect of TPE

In this experiment, we evaluate the addition of TPE. Build-
ing on the results of early temporal aggregation in Table 2,
we perform this comparison on the early temporal setup as
shown in Figure 2. As expected, results in Table 3, show
2% mAP improvement over the variant without TPE.

3.6. Effect of the temporal window size T

In this setup, we evaluate the effect of the increased window
size, for T = 1, 2, 4. Results in Table 4 show increased
performance with the increase of T . However, a saturation
barrier is hit at T = 4.

4. CONCLUSION
In this work, we extend the vanilla DETR architecture, into
a Spatio-Temporal model to deal with video inputs. We
explore various design choices in our endeavor; the early vs.
late temporal aggregation setups. Results are in favor of the
early architecture which deals with temporal traces of spatial
motion features. Our analysis of the 1-step motion features
suggests that the best option is to feed the RGB+OF frames
of the input 1-step scene, which is also in line with previous
works. We also propose an extra Temporal Positional Em-
bedding (TPE) step, to enable the temporal differentiation
of features. Results show improved performance with TPE
introduced to the architecture. The new ST-DETR architec-
ture achieves 5% mAP improvement on the KITTI MOD
dataset.
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