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Abstract

We consider the framework of non-stationary On-
line Convex Optimization where a learner seeks to
control its dynamic regret against an arbitrary se-
quence of comparators. When the loss functions
are strongly convex or exp-concave, we demon-
strate that Strongly Adaptive (SA) algorithms can
be viewed as a principled way of controlling dy-
namic regret in terms of path variation Vp of
the comparator sequence. Specifically, we show
that SA algorithms enjoy O(v/TVz V log T') and
O(VdTVr V dlog T') dynamic regret for strongly
convex and exp-concave losses respectively with-
out apriori knowledge of Vr, thus answering an
open question in (Zhang et al., 2018b). The versa-
tility of the principled approach is further demon-
strated by the novel results in the setting of learn-
ing against bounded linear predictors and online
regression with Gaussian kernels.

1. Introduction

Online Convex Optimization (OCO) is a powerful learning
paradigm for real-time decision making. It has been applied
in many influential applications such as portfolio selection,
time series forecasting, and online recommendation systems
to cite a few (Hazan et al., 2007; Koolen et al., 2015; Hazan,
2016). The OCO problem is modelled as an iterative game
between a learner and an adversary that proceeds for T’
rounds as follows. At each time step ¢, the learner chooses
a point x; in a convex decision set D. Then the adversary
reveals a convex loss function f; : D — R. The most
common way of measuring the performance of a learner
is via its static regret, R5.(z) = ZtT:l(ft(:ct) — fi(2)),
where z is termed as a fixed comparator in hindsight which
can be any point in D. For example z can be chosen as
argming 23:1 f+(x) with the knowledge of the entire
sequence of loss functions. Learning is said to happen when-
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ever the regret grows sub-linearly w.r.t. 7. However, in the
case of non-stationary environments such as stock market,
one is often interested in matching the performance of a se-
quence of decisions in hindsight. In such circumstances, the
notion of static regret fails to assess the performance of the
learner. To better capture the non-stationarity, (Zinkevich,
2003) introduces the notion of dynamic regret:

T
Rr(z1,...,27) = Z(ft(mt) = fi(z1)),
t=1
where z1,...,zp is any sequence of comparators in D.

The degree of non-stationarity present in the comparator
sequence is measured using the path variational defined as

T
VT(zla .- .,ZT) = ZHzt - Zt—l”’
t=2

where ||| is the Euclidean norm. In what follows, we drop
the arguments and represent the variation by V7 for brevity.
The dynamic regret bounds are usually expressed as a func-
tion of T" and V.

It is known that with convex loss functions the optimal
dynamic regret is O(1/T(1 + Vr)) (Zhang et al., 2018a)
which improves to O(v/dTVr V dlogT) (Yuan & Lam-
perski, 2019), where d is the dimensionality of D and
(a V b) = max{a, b}, with additional curvature properties
such as exp-concavity.

A parallel line of research (Hazan & Seshadhri, 2007;
Daniely et al., 2015; Adamskiy et al., 2016) focus on de-
veloping algorithms whose static regret is controlled in any
time interval. Specifically, (Daniely et al., 2015) develops
the notion of Strongly Adaptive (SA) algorithms defined as:
Definition 1. (Daniely et al., 2015) Let [T] :={1,...,T}.
An algorithm is said to be Strongly Adaptive if for every
continuous interval I C [T, the static regret incurred by
the algorithm is O(poly(log T)R*(|1|)), where R*(|I|) is
the value of minimax static regret incurred in an interval of
length |1|.

(Zhang et al., 2018b) shows that SA algorithms incur dy-
namic regret of O(T%/3C}/®) ! for convex losses and

'O(-) hides polynomial factors of log T.
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O(V/TCr) for strongly convex losses, where

Cr =Y suplfil@) - fi1(a)]

=2 xzeD

to captures the non-stationarity of the problem in terms
of the degree to which the sequence of losses changes over
time. They further show that both results are optimal modulo
poly logarithmic factors of 7T'. For exp-concave losses, they
derive a regret bound of O(/dT'C7). However, in (Zhang
et al., 2018b), a question that was left open is whether it is
possible to derive dynamic regret rates for SA methods that
depend on the variational V7.

In this paper, we answer this affirmatively for strongly
convex (Theorem 3) and exp-concave (Theorem 6) losses.
Specifically, we show that for SA methods,

,ZT) = O(\/TVT(Zl, e

for strongly convex losses and

ZT) = O(\/dTVT(Zl, N

RT(zla"' ,ZT)\/IOgT),

RT(Zl,...7 ,zT)\/dlogT),

for exp-concave losses.

This result immediately implies that SA algorithms can
be seen as a unifying framework that allows one to con-
trol dynamic regret under different variationals (Cr and
Vr) simultaneously whenever losses have curvature prop-
erties. Though this dynamic regret is attained by (Yuan &
Lamperski, 2019) (without log T factors) by fundamentally
different algorithms, our proof techniques are much simpler
and shorter. Further, we demonstrate the versatility of this
perspective by deriving new dynamic regret rates in various
other interesting use cases where the results of (Yuan &
Lamperski, 2019) do not apply (see Section 3). Every dy-
namic regret rate proposed in this paper are adaptive to Vp
in the sense that the algorithms do not require the knowledge
of Vr ahead of time.

Before ending this section, we summarize our key contribu-
tions below.

e We show that Strongly Adaptive (SA) algorithms are
sufficient to guarantee the dynamic regret rates of
O(\/TVr V logT) for strongly convex losses and
O(\/dTVT V dlog T') for exp-concave losses (see The-
orems 3 and 6 respectively). Combined with the results
of (Zhang et al., 2018b), we feature SA methods as
a unifying framework for simultaneously controlling
dynamic regret with variationals V7 and C'r.

e We demonstrate the versatility of this perspective by
deriving several extensions (Theorems 9 and 10) where
the results of (Yuan & Lamperski, 2019) don’t apply.

In particular, for competing against set of linear predic-
tors that output bounded predictions as in (Luo et al.,
2016), we show that SA methods enjoy dynamic regret
rate that is independent of the diameter of the deci-
sion set. To the best of our knowledge this is the first
time, dynamic regret rate has been proposed for such a
benchmark set which is often more of practical interest
than set of linear predictors with bounded L? norm.

The rest of the paper is organized as follows. We present
the dynamic regret guarantees for strongly convex losses
and exp-concave losses in Section 2. The extensions to
competing against bounded linear predictors and online
kernel regression is presented in Section 3. A section on
preliminaries is provided in Appendix A

2. Dynamic regret for strongly convex and
exp-concave losses

We start by showing that SA methods can serve as a prin-
cipled way of achieving dynamic regret rates (up to log
factors) of (Yuan & Lamperski, 2019). We assume that the
loss functions are Lipschitz in the decision set. The main
SA method we use in this paper is the Follow-the-Leading-
History algorithm from (Hazan & Seshadhri, 2007). We
provide a description of this algorithm in Appendix A for
completeness.

Assumption 2. The loss functions fy satisfy | f(x)— f(y)|<
Gllx — y|| for all z,y € D.

2.1. Strongly convex losses

In this section we derive dynamic regret rates when the
loss functions are H-strongly convex. We show that by
appropriately instantiating the base learners in FLH, one
can control the dynamic regret rates. The unspecified proofs
are provided in the Appendix.

Theorem 3. Suppose the loss function f; are H-strongly
convex loss and satisfy Assumption 2. Running FLH with
learning rate ( = H/G? and base learners as online gra-
dient descent (OGD) with step size , = 1/Ht results in
a dynamic regret ofO (\/TVT \Y 1), where O() hides de-
pendence on constants H, G and poly-logarithmic factors
of T.

Remark 4. When compared with the O(\/T (1 + Vr)) dy-
namic rate for convex functions from (Zhang et al., 2018b),
the rate we derived for strongly-convex or exp-concave
losses (which have extra curvature properties beyond con-
vexity) shows its benefit in the regime when we can represent
Vp = C/TQ(T), where c is a constant and g : N — RT,
In this case, the regret bounds of O(v/TVr) obtained us-
ing curvature could be better than those obtained without
using curvature. The regret bounds we derived grows as
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O(1 v VT1=9M)) as opposed to the larger rate O(\/T)
obtained without curvature. Such a regime is of interest
in a practical application where the comparator sequence
changes slowly. A concrete example would be online time-
series forecasting of average ocean temperatures.

2.2. Exp-concave losses

In this section, we assume that the losses are a-exp-concave
and the domain is bounded. Specifically:

Assumption 5. There exists a constant D such that
maxg yep || — yl[< D.

We have the following Theorem.

Theorem 6. Suppose the losses f; are a-exp-concave and
satisfy Assumptions 2 and 5. Running FLH with learning
rate { = o and ONS as base learners results in a dynamic

regret of O (\/ dTV v d), where O(-) hides dependence on
constants G, D, a and poly-logarithmic factors of T.

We conclude this section by two remarks that are applicable
to every dynamic regret guarantee presented throughout the
paper.

Remark 7. Let T be the running time of OGD per round.
The FLH procedure incurs a run-time of O(7T') per round.
This can be improved to O(1logT) by using the AFLH
procedure of (Hazan & Seshadhri, 2007) at the cost of
increasing the dynamic regret by a logarithmic factor in
time horizon T.

Remark 8. The FLH procedure doesn’t require to know
an apriori bound on Vi ahead of time. Hence the dynamic
regret in Theorems 3 and 6 is adaptive to the variation V.

3. Extensions

In this section, we demonstrate the versatility of SA meth-
ods by deriving new dynamic regret guarantees in various
interesting settings.

3.1. Dynamic regret against bounded linear predictors

Consider the following learning protocol:

e Fort=1,...,T:

1. Adversary reveals a feature vector v; € RY,
2. Learner chooses w; € R? and predict w! v;.
3. Adversary reveals a loss f;(w) := £;(wTvy).
4. Learner suffers loss ¢;(wlv;).

Under the above protocol, most of the OCO algorithms
typically minimize the regret against a set of benchmark
weights (where each weight define a linear predictor) that

is bounded in some norm (e.g., the Euclidean ||-||2 norm).
In this section, we follow the path in (Ross et al., 2013;
Luo et al., 2016) and study dynamic regret against a set of
weights that rather produce bounded predictions. Specifi-
cally, define K; := {w : jwTv;|< B}. We aim to compete
with a benchmark of linear predictors:

K=n,K;,
= {w : Vt € [T]7 "LUT'Ut|S B}7

which basically defines a set of weights that outputs pre-
dictions in [— B, B] at the given feature set. As noted in
(Luo et al., 2016), the benchmark set C can be much larger
than an L2 norm ball. The set K is often more useful in
practice than a set of weights with bounded norm since it is
more easier to choose a reasonable interval of predictions
rather than choosing a bound on perhaps non-interpretable
norm of the weights. We have the following dynamic regret
guarantee.

Theorem 9. Suppose the losses f; are a-exp-concave and
satisfy Assumption 2. Further assume that {; are Lipschitz
smooth. Running FLH with learning rate ( = « and invari-
ant ONS algorithm from (Luo et al., 2016) as base learners

results in a dynamic regret OfO~ (d\/TV \Y, d2), where O()

hides dependence on constants G, o and poly-logarithmic
factors of T.

The dynamic regret bounds of (Yuan & Lamperski, 2019)
are derived under the assumption that the norm of the el-
ements in the benchmark set is bounded by some known
constant. Specifically, the dynamic regret bound of (Yuan
& Lamperski, 2019) grows as O(D+/dT'Vr) where D is
the maximum L? norm of a predictor in the benchmark set.
With benchmark set being /C, this D can be prohibitively
large. In this case the diameter independent regret guaran-
tee in Theorem 9 can be much smaller. To the best of our
knowledge this is the first time a diameter independent regret
guarantee has been proposed for controlling the dynamic
regret in terms of V7 when the losses are exp-concave.

3.2. Dynamic regret for regression against a function
space

In this section, we derive dynamic regret guarantees for
competing against a sequence of functions in an RKHS
induced by the Gaussian kernel. We study a regression setup
where the loss is measured using squared errors. Specifically
we consider the protocol in Fig.1

Setup and notations. We represent each function in the
RKHS H;, by a weight vector w € R” where D can be
possible infinite. Let z € R?. For a function f,,(x) €
Hr, we have fo(z) = wT ¢(x) where ¢p(x) € RY is the
feature embedding of the vector « induced by the Kernel
function k£ : R? x R? — R. We consider the gaussian
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1. Fortimet=1,...,T":

(a) Receive z; € RY.
(b) Learner predicts g; € R.
(c) Adversary reveals a label y; € [—B, B].

(d) Player suffers a loss of (y; — ).

Figure 1: Interaction protocol with squared error losses.

kernel where k(x,y) = exp(—||z — y||?/(20?)) for some
bandwidth parameter o. The RKHS norm of the function
fw which corresponds to the weight vector w is denoted by
[lw]l:= || fwll#,- We denote the determinant of a matrix A
by |A]|.

For a sequence of comparator functions fo,,,. ..
‘H, define the path variational as

7f’lUT €

T
Vr = lef’wt = fw, H?-lk'
t=2
We are interested in controlling the dynamic regret,

T
Z@t - yt)2 = (faw, (z1) — yt)27

t=1

for a sequence of functions f,,, that belong to the class
of functions with bounded RKHS norm defined as D =
{w : ||w||< B}. For any w € D, since |[w¢(x;)|<
lwllé(@)= l[w]y/E@nz) < B and [yl< B, we
have that the losses £, (w) := (w? ¢(x;) —y;)? are 1/(8B?)
exp-concave in the domain D (Hazan et al., 2007). Specifi-
cally, for all u, v € D, we have

le(v) > () + (v — u) TV (u) + % (v— u)TV&(u))Q ’

where o = 1/(8B2).

The following theorem (proof deferred to Appendix) con-
trols the dynamic regret in the above prediction framework.

Theorem 10. Assume that the comparator function se-
quence obeys || fuw, |1, < B and labels obey |y:|< B for
all t € [T). Running FLH with learning rate ( = 1/(8B2)
and base learners as PKAWYV from (Jézéquel et al., 2019)
with parameter \ = 1 and basis functions that approximate
Gaussian kernel yields a dynamic regret:

Z(@t —ue)? - (f, (1) — yt)®

t=1

<0 ((1ogT)% TVr vV (bgT)%) .

By Theorem 4 of (Jézéquel et al., 2019), computational
complexity of PKAWYV run with the configurations in Theo-
rem 10 is O((log T')2?) per round. Hence by Remark 7 the
runtime of the strategy in Theorem 10 is O(7T'(log T')??) per
iteration, and improves to O((log 7)?¢*1) via AFLH.

4. Conclusion

In this work, we derived dynamic regret rates for SA meth-
ods when the loss functions have curvature properties such
as strong convexity or exp-concavity. Combined with the
work of (Zhang et al., 2018b), our results indicate that SA
methods can be viewed as a unifying framework for control-
ling dynamic regret in an OCO setting. (Yuan & Lamperski,
2019) (see Proposition 1 there) establishes minimax opti-
mality of O(\/T'Vr) rate for certain ranges of V. However
it is an open question to establish lower bounds that holds
for all values of V.
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A. Preliminaries

The results in this paper hold for general Strongly Adaptive algorithms, but for concreteness we will phrase them in terms of
a particular algorithm called Follow-the-Leading-History (FLH) (Hazan & Seshadhri, 2007).

FLH: inputs - Learning rate ¢ and T base learners E*, ..., ET

1. Foreach t, vy = (vﬁl), e ,vgt)) is a probability vector in R?. Initialize v%l) =1

2. Inround ¢, set Vj < ¢, :1:? < FEJ(t) (the prediction of the j*" base learner at time t). Play

. A
T = Zj:l Ut(j)l’z(sj)-

3. After receiving f;, set ﬁt(fil) = 0 and perform update for 1 < ¢ < ¢:

ot ) e (@Y
Zj:l Ugj)e Cfe(@)

4. Addition step - Set vt(fll) tol/(t+1)andfori # ¢+ 1:

v =1 = (t+ 1) HalY,.

Figure 2: FLH algorithm

We recall that a function f; is said to be H-strongly convex in the domain in the domain D if it satisfies
T H 2
fe(y) 2 fil@) + (y — )" V() + S llz —yl7 (D

for all ¢, y € D. Further, f; is said to be a-exp-concave if the last term in Eq.(1) is replaced by & ((y — x)TV f,g(ar:))2 .

FLH enjoys the following guarantee against any base learner.

Proposition 11. (Hazan & Seshadhri, 2007) Suppose the loss functions are exp-concave with parameter o. For any interval
I = [r, s| in time, the algorithm FLH with learning rate { = o gives O(a~(logr +log|I|)) regret against the base learner
in hindsight.

For the case of exp-concave losses, one can maintain base learners E*, ..., E7 in Fig.2 as ONS algorithms that start at time
points 1,...,T. Since each ONS instance achieves an O(d log T') static regret, Proposition 11 implies that the corresponding
FLH with ¢ = « attains O(d log T') static regret in any interval.

Losses that are H-strongly convex and G-Lipschitz are known to be O(H /G?) exp-concave (Hazan et al., 2007). Further
OGD attains O(log T') static regret. Hence FLH with OGD base learners and ( = H/G? can yield an O(log T') static regret
in any interval when the loss functions are H-strongly convex. In Definition 1 if we restrict to minimax optimality wrt to
interval length, these observations give rise to the following proposition.

Proposition 12. FLH algorithm in Fig.2 with base learners as OGD and ONS are Strongly Adaptive when the losses are
strongly convex and exp-concave respectively.

B. Proofs for Section 2

We start with some useful lemmas for proving this theorem. In Lemma 13, we divide the time horizon into various bins such
that the path variation of the comparator sequence incurred within these bins is at-most a quantity that will be tuned later. In
Lemma 14, for each bin, we bound the dynamic regret by the sum of static regret against the first comparator point within
the bin and a term that captures the drift of the remaining sequence of comparator points from the first point.

Lemma 13. Let V. > 0 be a constant. There exists a partitioning P of the sequence z1,. ..,z into M bins viz
Hlis,ie] YL, } such that:
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1. M:=[P|=0 (max{vT/V, 1}).

2. Forall [is,ic] € P withis < i, Z] iz — z-1lI< V.

Proof. For an interval [s, e] define V, . = >_y__ . [lz¢ — 2¢_1|| which is the path variation incurred by the comparator
within the interval [s, e]. Define V;_, s = 0. Consider the following partitioning scheme.

1. Inputs: V> 0,21,...,27.

2. Initialize P <~ ® and s < 1.

3. Fortimet=1,...,1":

(@) If Vi > V:
i. Add[s,t —1]toP.
ii. Set s < t.

Let M := |P|. Let’s enumerate the intervals in P by [is, ic] withi = 1,..., M. Assume that M > 1. We have,

Vr > Z Vie—sio+1,

Z (M - 1)‘77
where the last line follows from Steps 3(a,i,ii) of the partitioning scheme. Now rearranging yields the lemma. O

Lemma 14. Assume that the losses are a-exp-concave. Let x; be the predictions made by FLH with learning rate set as
¢ = . Let R(L) be the static regret incurred by the base learners in an interval of length L. Let P be the partition of [T
produced in Lemma 13. Represent each element in the partition by [is, i), i = 1,..., M. Then we have,

T Te
< inf Vi |V + GTV Rie —is+ 1 R(T 2
Zj 1(@e) — fi(z) <O ~lvn><T/+ +ZZ H))v() 2)

YT
V-T— i=1 t=i,

Proof. Consider a bin [is, i.] € P where i € [M]. Let a; be the predictions of the FLH with learning rate { = «. Let p, be
the predictions made by the base learner that wakes at time 5. Due to Theorem 3.2 of (Hazan & Seshadhri, 2007), we have

Zﬁ fi(®:) = fi(z1) th (py) — fr(ze) + O(log T).

t=1is t=1s

‘We have,

i:ft(l’t = fi(z) fo ) ft(zis)JFi:ft(zis)*ft(zt),

t=ig t=ig t=is

<(a) Rlic —is+ 1)+ Z filzi,) = fe(z1),

t=ig
<@y Rlic —is+ 1)+ GV (i —is + 1),

where line (a) follows from static regret guarantee of the base learner and line (b) is due to Assumption 2 and the fact that
Z;ﬁ:iﬁ_l llz; — zj—1]|< V. due to the partitioning scheme in Lemma 13.

Hence summing across all bins yields,

M i
th SCt ft Zt) O(VT/V-FGTV—FZZR(ZG—%—Fl)),

i=1 t=1i,
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whenever Vi / V > 1 due to Lemma 13. Taking an infimium across such V and including the static regret case Vr = 0 now
yields the Lemma. O

Proof. of Theorem 3. We assume the notations in Lemma 14. An H-strongly convex loss is H/G? exp-concave in the
decision set D (Hazan et al., 2007). Further, when the losses are strongly convex, from Theorem 1 of (Hazan et al., 2007)
we have R(T) = O(log T') for OGD with step size 7, = 1/Ht. Hence by Lemmas 13 and 14 we have,

th:ct — fi(z1) <O (VT/V+GTV+ZZR —is+1)>,

1=1 t=1is

IN

M
o} (VT/VJrGTf/JerogT) ,
i=1

<0 (VT/f/ + GTV) : 3)

whenever Vr/ V>1.

Assume that Vpr > 1/T. In this setting, if we choose V= /' V/T, we have V/V > 1. Plugging this value to Eq. (3) yields
a dynamic regret of O(vVTV).

When Vi = O(1/T), then we have,

T T
Z — fi(zt) th z;) — fi(z1) + Y fi(z1) = fulz1),

t=1
S(a) O(lOg T) + GTVyp,
S(b) O(log T)a

where line (a) is by strong adaptivity of FLH and Lispchitzness of f;. Line (b) is by the assumption Vr = O(1/T).
Combining both cases now yields the theorem. O

Proof sketch of Theorem 6. Theorem 2 of (Hazan et al., 2007), provides O(d log T') static regret for ONS under Assump-

tions 2 and 5. Theorem 6 follows by plugging in this static regret guarantee in the arguments of the proof of Theorem
3

C. Proofs for Section 3

Proof sketch of Theorem 9. Theorem 4 of (Luo et al., 2016), provides O(d2 log T') static regret for a variant of ONS when
4y are Lipschitz and f; are exp-concave. Theorem 9 follows by plugging in this static regret guarantee in the arguments of
the proof of Theorem 3,

Proof. of Theorem 10 By Theorem 4 of (Jézéquel et al., 2019), if PKAWYV algorithm is run with parameter A > 0 and
appropriately chosen basis, then we incur a regret:

3B2

T
> (=) = (fuol@e) = 90)* < M| a3+~ log [T+ A7 K]
t=1

where K € R x R7 is the kernel evaluation matrix with K ;; = k(x;, ;). When k(x, ) < 1, Lemma 3 of (Calandriello
et al., 2017) implies:
log [T+ A'K| < deyr(N)(1+log(1+T/N)),

where the effective dimension is defined as dey () = Tr (K (K + AI)~'). It is known from (Altschuler et al., 2019) that
for Gaussian kernels and covariates ¢ € R? with k(z, z) < 1, we have d.;(\) = O ((log %)d).
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Hence whenever the comparator functions have bounded RKHS norm, by choosing A = 1 we have the static regret bounded
as

T
S = w)? = (fw(z) —90)* < O ((log T)™1) .

t=1

Let 4;(w) = (fw(x:) — y;)?. Since || V4 (w)||< 2B, we have that ¢;(w) is Lipschitz smooth in D. Now plugging the
above static regret bound and G = 2B? into Eq.(2) and following similar steps as in the proof of Theorem 3, we obtain the
stated final regret bound.

O
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