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Abstract
Consider a heterogeneous population of points
evolving with time. While the population evolves,
both in size and nature, we can observe it pe-
riodically, through snapshots taken at different
timestamps. Each of these snapshots is formed by
sampling points from the population at that time,
and then creating features to recover point clouds.
While these snapshots describe the population’s
evolution on aggregate, they do not provide di-
rectly insights on individual trajectories. This
scenario is encountered in several applications,
notably single-cell genomics experiments, track-
ing of particles, or when studying crowd motion.
In this paper, we propose to model that dynamic as
resulting from the celebrated Jordan-Kinderlehrer-
Otto (JKO) proximal scheme. The JKO scheme
posits that the configuration taken by a popula-
tion at time t is one that trades off a decrease
w.r.t. an energy (the model we seek to learn) pe-
nalized by an optimal transport distance w.r.t. the
previous configuration. To that end, we propose
JKONET, a neural architecture that combines an
energy model on measures, with (small) optimal
displacements solved with input convex neural
networks (ICNN). We demonstrate the applicabil-
ity of our model to explain and predict population
dynamics.

1. Introduction
Population Dynamics Many fields in science draw in-
sights by monitoring a complex system of interacting parti-
cles. Typically, this monitoring consists of sampling repre-
sentative particles from that system at various timestamps
to measure their characteristics. As a result, the observer
has access to a collection of time-indexed discrete mea-
sures that describe the overall dynamic of the population;
these measures provide a macroscopic view of the system
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Figure 1. Given an observed trajectory of point clouds (blue), we
seek a parameter ξ for the parameterized energy Jξ such that the
reconstructed JKO curve ρ0, . . . , ρT (gray) is as close as possible
to the blue trajectory. For this to happen, we minimize, as a func-
tion of ξ, the sum of (regularized) Wasserstein distances between
the data observed at t and the output of the JKO module formed
from ξ and ρt−1, obtained via an ICNN.

(tracking the population’s evolution) at different time points,
but lack microscopic dynamic information (individuals can-
not be tracked between timestamps). Such problems arise
in many scientific studies, when for instance, observing a
population of cells in biology to infer their developmental
mechanisms (Schiebinger et al., 2019; Moon et al., 2019),
or when monitoring brain activations in the cortex (Janati
et al., 2020).

The JKO Scheme as a Model for Evolution The goal
of this paper is to develop a new method to model such
complex dynamics, by explaining the mechanism driving
the population’s time evolution. To this end, we exploit the
Jordan-Kinderlehrer-Otto (JKO) flow (Jordan et al., 1998),
widely regarded as one of the most influential mathematical
papers in recent history. The JKO flow describes an iterative
method that can solve partial differential equations (PDEs)
such as the Fokker-Planck equations. Simply put, the JKO
flow model states that the time evolution of a set of particles
is controlled by an energy (a real-valued function defined
on the space of measures): the particles take steps toward
minimizing that energy, yet may not deviate too far from
the previous configuration, as measured by the Wasserstein
distance. A few approaches have been recently proposed to
solve it in the literature (Burger et al., 2010; Carrillo et al.,
2021; Peyré, 2015). In this work, our goal is to differentiate
through the JKO flow, with the differentiating factor being
the energy parameterization.
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Contributions Our contributions are two-fold. First, we
establish a novel way of solving JKO flows that builds
on the recent proposal of input convex neural networks
(ICNN) (Amos et al., 2017; Makkuva et al., 2020). We treat
the JKO optimization as a single layer in our framework:
given an energy and a configuration, the JKONET module
outputs a new configuration by moving these particles along
the gradient of an optimal ICNN. We then propose to differ-
entiate a loss computed on the output of that module as a
function of the energy itself, as illustrated in Figure 1. We
demonstrate JKONET’s range of applications by deploying
it to potential- and trajectory-based population dynamics.

2. Background
Optimal Transport Let µ =

∑n
i=1 aiδxi and ν =∑m

j=1 bjδyj be two discrete probability measures in Rd.
Given ε ≥ 0, the regularized optimal transport (OT) prob-
lem (Cuturi, 2013) reads
Wε(µ, ν) := min

P∈U(a,b)
〈P, [‖xi − yj‖2]ij〉 − εH(P) (1)

where H(P) := −
∑
ij Pij(logPij − 1), the polytope

U(a, b) is {P ∈ Rn×m+ ,P1m = a,P>1n = b}. No-
tice that the definition above reduces to that of the usual
(squared) 2-Wasserstein distance when ε = 0. For compu-
tational reasons that involve parallelism, speed and, most
importantly in what follows, differentiability of Wε with
respect to its inputs, we use in this work ε > 0. A minor
drawback of this setting lies in the fact that Wε(µ, µ) 6= 0
in general. To correct that bias, we use the Sinkhorn diver-
gence (Ramdas et al., 2017; Genevay et al., 2019; Salimans
et al., 2018; Feydy et al., 2019) to recover a nonnegative
discrepancy,

W ε(µ, ν) := Wε(µ, ν)− 1

2
(Wε(µ, µ) +Wε(ν, ν)) . (2)

Brenier’s Theorem The Brenier theorem 1987 states that
for any two probability measures µ and ν supported on Rd,
if at least one of the two input measures (denoted µ) has
a density, the optimal transport map between µ and ν is
unique and can be uniquely defined as the gradient of a
convex function ψ:

W 2
2 (µ, ν) = inf

T :T#µ=ν

∫
X
||x− T (x)||2dµ(x)

=

∫
X
||x−∇ψ(x)||2dµ(x)

(3)

where T ?(x) = ∇ψ(x) and ψ is the unique convex function
(up to an additive constant) such that (∇ψ)#µ = ν, estab-
lishing an equivalence between the Kantorovich formulation
of OT (1), and the Monge formulation involving maps.

JKO Flows In their seminal paper, Jordan et al. (1998)
study diffusion processes under the lens of the optimal trans-
port metric (see also Ambrosio et al., 2006) and introduce a
scheme that is now known as the JKO flow (following the
name of the authors): starting with an initial configuration

ρ0 they define iteratively for t ≥ 0:

ρt+1 = arg min
ρ
J(ρ) +

1

2τ
W 2(ρt, ρ). (4)

These successive minimization problems defined on the set
of probability measures P2(Rd) describe the evolution of
a measure in the Wasserstein space. The JKO flow can
thus be seen as the analogy of the usual proximal descent
scheme, tailored for probability measures (Santambrogio,
2017, p.285). Jordan et al. (1998) show that in the limit
where step size τ → 0, the measures describing the JKO
flow can be interpreted as solutions to a very wide family of
PDEs, chiefly among them the Fokker-Planck equations.

Convex Neural Architectures Convex neural network ar-
chitectures are neural networks f(x; θ) with specific con-
straints on the architecture and parameters θ, such that the
output is a convex function of some elements of the input
x (Amos et al., 2017). We consider in this work fully input
convex neural networks (ICNNs), such that the output is
a convex function of the entire input x. A typical ICNN
architecture is a k-layer, fully connected network such that,
for i = {0, · · · , k − 1}:
hi+1 = ai(W

x
i x+Wh

i hi + bi) and f(x; θ) = hk, (5)
where by convention, h0 and Wh

0 are 0, ai are con-
vex non-decreasing (non-linear) activation functions, θ =
{bi,Wh

i ,W
x
i }

k−1
i=0 are the weights and biases of the neural

network, among which Wh
i are non-negative weights. Since

Amos et al. (2017)’s work, convex neural architectures have
been further extended and shown to capture relevant models
despite these constraints (Amos et al., 2017; Chen et al.,
2019; Makkuva et al., 2020; Huang et al., 2021).

3. Proximal Optimal Transport Model
Given snapshot observations data0, . . . , dataT of a popula-
tion, we posit that such an evolution follows a JKO flow
for the free energy functional Jξ, and our goal is to learn
ξ. Our approach relies on finding a differentiable formula-
tion, amenable for the resolution of the JKO step. This is
needed because the JKO step is an implicit minimization (4),
yet our goal is to build a loss that uses directly its solution
(see Fig. 1). To that end, we introduce a novel approach to
numerically solve JKO flows using ICNNs (§ 3.1), which
allows to form a bilevel optimization problem that targets
next the energy Jξ (§ 3.2).

3.1. Reformulation of JKO Flows via ICNNs

Given an initial condition datat and energy functional Jξ,
the JKO step consists in finding a measure ρt+1 defined
as the minimizer of Equation 4. That minimizer is then
used to form a prediction for the population’s configuration
at time t + 1. A direct approach aiming at solving ρt+1

involves substantial computational costs: Different numer-
ical schemes have been developed, e.g., based notably on
Eulerian discretization of measures (Carrillo et al., 2021;
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Benamou et al., 2016), and/or entropy-regularized optimal
transport (Peyré, 2015). However, these methods are limited
to small dimensions since the discretization of space grows
exponentially. Apart from the Eulerian approach (Peyré,
2015), their direct differentiation is challenging.

We build upon Brenier’s (1987) theorem to propose an ex-
plicit parameterization of the OT map when solving for the
JKO scheme. As a result, we can bypass the computation
of OT distances, relying instead on that alternative param-
eterization, which uses the gradient of an ICNN to define
pushforward operations. This alternative parameterization
allows to solve a variant of (4) parameterized using a family
of ICNNs {ψθ}θ, to set

ρξt+1 := ∇(ψθ?)#ρt (6)
given that θ? is implicitly defined through ξ and ρt as

θ? := arg min
θ

[
Jξ(∇ψθ#ρt)

+
1

2τ

∫
‖x−∇ψθ(x)‖2dρt(x)

]
.

(7)

3.2. Learning the Free Energy Functional

The energy function Jξ : P(Rd)→ R can be parameterized
using neural networks taking as inputs measures of variable
size. Our model assumes that the entire observed dynamics
is parameterized by that energy; the evolution between two
steps being (locally) an optimal transport, governed by Jξ,
acting as a rudder. The more complex this dynamics, the
more complex the energy Jξ should be chosen from. In
this first work we have limited ourselves to linear functions
in the space of measures, that is expectations over ρ of a
vector-input neural network Eξ

Jξ(ρ) :=

∫
Eξ(x)dρ(x), (8)

where Eξ : Rd → R is a multi-layer perceptron (MLP).
Future work will focus on inferring nonlinear energies on
the space of probability measures that can account for popu-
lation growth and decline, as well as interactions.

To address slow convergence and instabilities, we use
teacher forcing (Williams and Zipser, 1989) to learn Jξ
through time. During training and validation, Jξ uses the
ground truth as input instead of predictions from the previ-
ous time step. At test time, we do not use teacher forcing.

3.3. Bilevel Formulation of JKONET

Learning the free energy functional Jξ while solving each
JKO step via an ICNN results in an advanced bilevel op-
timization problem. At each time step, we measure the
accuracy of the predicted dynamics to the ground truth
population dynamics data [data0, data1, . . . , dataT ] via the
Sinkhorn loss (2),

min
ξ

∑
t

W ε(datat+1, ρ
ξ
t+1). (9)

0 25 50 75 100 125
Training Iterations

0

2000

4000

6000

IC
N

N
 G

ra
di

en
t N

or
m

Figure 2. Optimization of the ICNN used in JKO steps. The bumps
correspond to a change in the outer iteration, the smooth decrease
in between correspond to a single minimization (7).

The dependence of the Sinkhorn divergence losses (9) on ξ
only appears in the fact that the predictions ρξt+1 are them-
selves implicitly defined as solving a JKO step parameter-
ized with the energy Jξ. Learning Jξ through the exclusive
supervision of data observations requires therefore to differ-
entiate the arg-minimum of a JKO problem, down therefore
through to the lower-level optimization of the ICNN. We
achieve this by implementing a differentiable double loop
in JAX, differentiating first the Sinkhorn divergence using
the OTT1 package, and then backpropagating through the
ICNN optimization by unrolling Adam steps (Kingma and
Ba, 2014; Metz et al., 2017; Lorraine et al., 2020). The full
procedure of JKONET is outlined in Algorithm 1.

Challenges A question that arises when defining ρξt+1 lies
in the budget of gradient steps needed or allowed to optimize
the parameters θ of the ICNN, before taking a new gradient
step on ξ in the outer loss. A straightforward approach in
JAX (Bradbury et al., 2018) would be to use a fixed num-
ber of iterations with a for loop (jax.lax.scan). We do
observe, however, that the number of iterations needed to
converge in relevant scenarios can vary significantly with
the ICNN architecture and/or with the hardness of the un-
derlying task. We propose to use instead a differentiable
fixed-point loop to solve each JKO step up to a desired con-
vergence threshold, using an adaptive number of iterations.
We measure convergence of the optimization of the ICNN
via the average norm of the gradient of the JKO objective

w.r.t. the ICNN parameters θ, i.e., α =
∑
i‖∇θiJKO(θi,ξ)‖

2∑
i count(θi)

.
We observe that this approach is robust across datasets and
architectures of the ICNN. An exemplary training curve for
the ICNNs updated successively along a time sequence is
shown in Figure 2.

4. Evaluation
In the following, we evaluate our method on potential- and
trajectory-based population dynamics, using convex (e.g.,
J(x) = ‖x‖22) and nonconvex potentials (e.g., Styblinski-

1https://github.com/google-research/ott

https://github.com/google-research/ott
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(a) Linear Potential
Hashimoto et al. (2016)

(b) Linear Potential
JKONET

Figure 3. Comparison between learned energy functionals Jξ
based on explicit methods or JKONET.

(a) Quadratic Potential
JKONET

(b) Styblinski-Tang Potential
JKONET

Figure 4. Learned energy functionals Jξ of JKONET

on potential-based population dynamics.

(a) JKONET with Teacher Forcing (b) JKONET without Teacher Forcing (c) Learned energy functional Jξ of JKONET

Figure 5. Trajectory-based population dynamics learned by JKONET.

Table 1. Comparison of JKONET to explicit methods for predicting
and extrapolating linear translations (see Figure 3).

Method Sinkhorn Distance (W ε)
Validation Test

Hashimoto et al. (2016) 1.94 ± 0.06 26.10 ± 1.76
JKONET 2.90 ± 0.37 20.30 ± 0.65

Tang flow). We generate the data using the Euler-Maruyama
method (Kloeden and Platen, 1992). For details, see § C.

Comparison to Explicit Methods Instead of parameter-
izing the next iteration ρξt+1 as we do in the JKONET for-
mulation 4, the explicit scheme simply states that ρt+1 can
be obtained as (∇Fξ)#ρt, where Fξ is any arbitrary neural
network (Hashimoto et al., 2016; Salim et al., 2020). While
this energy is still estimated by minimizing a Sinkhorn loss
as in (9), this explicit approach can more easily get trapped
in local minima. Figure 3 shows a simple experiment, in
which we want to learn a translation. Due to the less con-
strained energy, the explicit method perfectly resembles the
seen trajectory during training, but fails to extrapolate on
shifted test data (see Table 1). For details, see § D.1.

Prediction of Synthetic Population Dynamics For the
experiments on synthetic potential- and trajectory-based
population dynamics, we parameterize both energy Jξ and
ICNNθ with linear layers (ε = 0.1, τ = 1.0, § D.2). More

details on the architectures can be found in § B. Figure 4
demonstrates JKONET’s ability to recover convex and non-
convex potentials via energy Jξ. As a sanity check, we
further evaluate if JKONET can recover a potential from
trajectories (Figure 5). As described in § 3.2, Jξ is trained
using teacher forcing and receives a ground truth population
for each time step. We test the learning dynamics without
teacher forcing, i.e., when only provided with the initial
distribution. JKONET successfully learns energies Jξ from
which one can infer the entire trajectory.

5. Conclusion
In this paper, we present JKONET, a model to infer and pre-
dict the evolution of population dynamics using a proximal
optimal transport scheme, the JKO flow. Besides propos-
ing a novel numerical scheme for solving JKO flows using
ICNNs, we establish a framework to learn the underlying
temporal dynamics of time-resolved snapshot data via a
fully differentiable bilevel optimization problem. This ap-
proach is validated here through simple experimental on
potential- and trajectory-based dynamics. Using proximal
optimal transport to model real complex population dynam-
ics makes for an exciting avenue of future work, including
trajectory inference for time-resolved single-cell genomics,
which will certainly require pushing the limits of our scheme
by inferring nonlinear energies on the space of probability
measures.
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Appendix

A. Proximal Optimal Transport Algorithm
JKONET provides a model to understand complex population dynamics, by inferring the mechanism driving the population’s
time evolution. This is achieved by solving a bilevel optimization problem which, given a potential function (the variable in
the upper level problem) and an initial configuration of the data, outputs a new configuration by moving population particles
along the JKO gradient flow, here approximated as the gradient of an ICNN that is recomputed precisely for that task (lower
level objective). We describe the full framework in Algorithm 1. The Jacobian ∂ρξt+1/∂ξ that appears when computing
∇ξW ε(datat+1, ρ

ξ
t+1) is computed by unrolling the iterations of the while loop above.

Algorithm 1 JKONET Algorithm.

Input: Dataset D = {{data0t}Tt=0, {data1t}Tt=0, . . . , {dataNt }Tt=0} of time-resolved snapshot data, initial parameters ξ for
free energy potential Jξ, learning rates lrθ and lrξ, JKO step size τ , Sinkhorn regularization parameter ε, and
convergence threshold α. TeacherForcing is set to True during training.

Output: Optimal free energy functional Jξ? able to explain the underlying population dynamics of the snapshot data.
1 for data ∈ D do
2 for t← 0 to T − 1 do
3 initialize θ
4 if TeacherForcing then
5 ρt ← datat

6 while
∑
i‖∇θiJKO(θi,ξ)‖

2∑
i count(θi)

≥ α do
7 JKO(θ, ξ)← Jξ(∇ψθ#ρt) + 1

2τ

∫
‖x−∇ψθ(x)‖2d ρt(x)

8 θ ← θ − lrθ ×∇θJKO(θ, ξ)

9 θ? ← θ

10 ρξt+1 ← ∇(ψθ?)#ρt

11 ξ ← ξ − lrξ ×∇ξW ε(datat+1, ρ
ξ
t+1)

12 ξ? ← ξ
13 return Jξ?

B. Network Architectures
In the following, we describe network architectures used in JKONET to parameterize the Brenier map ψθ (Section B.1) as
well as the free energy functional Jξ (Section B.2).

B.1. Parameterization of Brenier Map

In the following, we describe the architectural details of the ICNN, parametrizing the Brenier map ψθ. We set the hidden
layer size of W x

i and Wh
i (5) to 64 and use 3 hidden layers before the final output layer (k = 4 layers). Similar to (Makkuva

et al., 2020), we use a squared leaky ReLU function with a small positive constant β as convex activation function for the first
layer, i.e., a0(x) = max(βx, x)2, and leaky ReLU ai(x) = max(βx, x), i = 1, . . . , k−1 as monotonically non-decreasing
and convex activation functions the remaining layers.

We tested the performance of the vanilla ICNN to advanced formulations such as input-augmented ICNNs (Huang et al.,
2021), whereby no difference in performance is evident.

B.2. Parameterization of Energy Functional

The free energy functional Jξ can take various forms, accounting for diffusion as well as potentials of interaction. In this
work, we concentrate on linear functions in the space of measures (8). We parametrize Eξ as a MLP with 2 hidden layers of
size 64 with softplus activation functions, followed by a one-dimensional output layer. Future work will involve an extension
of the framework to energy functionals covering higher-level interactions and population growth and decline.
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C. Datasets
To evaluate JKONET we use different data sources, which are either defined from a ground truth potential or directly
computed using velocity fields.

C.1. Potential-Based Dynamics

In the following, we assume a random diffusion process evolving according to an Îto stochastic difference equation (SDE)
across time

dX(t) = −∇Φ(X(t))dt+
√

2σ2dB(t),

where B(t) is the unit Brownian motion (standard Wiener process with magnitude σ > 0) and the drift is defined via a
potential function Φ(x) : Rd → R. The population-level inference problem onX(t) at each t then satisfies the Fokker-Planck
equation with fixed diffusion coefficient

∂ρt
∂t

= div (∇Φ(x)ρt) + σ−1∆ρt

with given initial condition ρ0 = ρ0. We generate the potential-based data by approximating trajectories Xt via the
Euler-Maruyama method (Kloeden and Platen, 1992, § 9.2). In our experiments, we consider examples of convex, i.e., the
quadratic potential Ψ(x) = ‖x‖22, and nonconvex potentials, i.e., Styblinski-Tang flow Ψ(x) = ‖3x3 − 32x+ 5‖22.

C.2. Trajectory-Based Dynamics

Besides population dynamics evolving according to a potential Ψ, we consider population dynamics following trajectories
in space. To achieve this, we generate data by moving a 2-dimensional Gaussian distribution along a pre-defined trajectory.
One example considered in the experiments above is a population moving along a semicircle (T = 5). Other trajectories and
configurations are possible.

D. Experimental Details
D.1. Baselines

We compare JKONET with explicit integration schemes (forward methods) such as Hashimoto et al. (2016). In our proximal
method, the prediction of the population ρt at the next time step t+ 1 is parameterized via a separate function (ψθ (6)) and
is thus decoupled from the free energy functional Jξ driving the underlying dynamics. When learning explicit methods,
however, the prediction is based on the gradient of an energy functional Fξ. Given a distribution ρt at time t and energy Fξ,
the population particles at time t+ 1 are thus predicted via

ρt+1 := (∇Fξ)#ρt.

While this energy is still estimated by minimizing a Sinkhorn loss as in (9), this explicit approach can fall more easily in
local minima and overfit to seen population trajectories during the training phase.

To demonstrate this behavior, we design a simple experiment of a synthetic population, undergoing a translational shift.
During training, the particles move in the interval [−10,−2.5] (T = 3). During test time, however, we shift the interval by 5
units. In order to compare JKONET with explicit methods such as Hashimoto et al. (2016), we parameterize Fξ and Eξ (8)
using an identical neural network architecture. We report the validation and test loss average over three independent runs
(Table 1).

D.2. Hyperparameters and Training

For all experiments, we use a batch size of 250. For training the ICNN ψθ, we use the Adam optimizer (Kingma and Ba,
2014) with learning rate lrθ = 0.01 (β1 = 0.5, β2 = 0.9). The fixed-point loop runs for minimally 50 and maximally 100
iterations with α = 1. We again use the Adam optimizer for learning the energy functional Jξ with learning rate ranging
from lrξ = 0.001 to 0.0001 (β1 = 0.5, β2 = 0.9). In our experiments, we use a constant JKO step size τ = 1.0. For all
experiments, we use ε = 0.1 for the Sinkhorn loss (9).


