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Abstract
Irregularly, asynchronously and sparsely sampled
multivariate time series (IASS-MTS) data occur
naturally in practical domains. They are char-
acterized by sparse non-uniform time intervals
between successive observations and different
sampling rates amongst series. These proper-
ties pose substantial challenges to contemporary
machine learning models for learning compli-
cated intra-series and inter-series relations within
and across IASS-MTS. To address these chal-
lenges, we present a time-aware Dual-Attention
and Memory-Augmented Networks architecture
(DAMA-Net). The proposed model aims at lever-
aging both time irregularity, multi-sampling rates
and global temporal patterns information inher-
ent in time series so as to learn more effective
representations and improve prediction perfor-
mance. We evaluate our model on two real-world
datasets for IASS-MTS classification tasks. The
results show that our model outperforms state-of-
the-art methods in terms of classification perfor-
mance. Moreover, we conduct the ablation study
to demonstrate the contribution made by different
mechanisms and modules in our model.

1. Introduction
We study the problem of classification of irregularly, asyn-
chronously and sparsely sampled sequences in this work.
As illustrated in Fig.1, IASS-MTS is a sequence of samples
characterized by 1) varying length time series records of
observations (see Fig.1-a); 2) asynchronously sampled fea-
tures within each time point (see Fig.1-b); 3) time sparsity
when the intervals between observation times are large (see
Fig.1-c). Such time series data arise in a number of scien-
tific and industrial domains, including climate science (Shi
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Figure 1. Irregularly asynchronously and sparsely sampled MTS.

et al., 2015), ecology (Clark & Bjørnstad, 2004), astronomy
(Vio et al., 2000), finance (Eng & Gustafsson, 2007) and
medicine (Che et al., 2018), where the observation process
is constrained to a degree that prohibits regular observa-
tion/sampling. For example, in air pollution forecasting, the
collected MTS data are usually 1) incomplete due to bro-
ken sensors, failed data transmissions or damaged storage;
2) asynchronous when the data is collected from channels
having different time scales. These characteristics of IASS-
MTS data pose multiple challenging threats to classical
machine learning models and algorithms that require data
to be defined in a coherent fixed-dimensional feature space
with constant intervals between consecutive time steps.

There has been some progress on this problem. For example,
(Neil et al., 2016) proposed Phased-LSTM to improve cur-
rent RNN models, which extends the LSTM unit by adding
a new time gate kt to deal with irregularly sampled time se-
ries. (Che et al., 2018) proposed the GRU-D to incorporate
irregular time intervals and handle asynchronously sampled
features problem from a missing data perspective. However,
it might fail to model very sparse samples because the model
is only updated by samples lying in the model’s active state
during training. (Shukla & Marlin, 2019) presented the
interpolation-prediction network (IPNet) framework. IP-
Net applies several semi-parametric interpolation schemes
to obtain a regularly sampled time series representation
by multiple interpolants. (Horn et al., 2020) employed a
set function-based approach for the task of classification
on irregularly sampled and unaligned time series observa-
tions. Besides, other efforts have also been dedicated to this
problem for dealing with such irregularity (Futoma et al.,
2017; Yoon et al., 2018; Li & Marlin, 2020; Tan et al., 2020;
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Shukla & Marlin, 2021; Bianchi et al., 2019; Fortuin et al.,
2020; Guo et al., 2019; Kidger et al., 2020; Xu et al., 2019;
Soleimani et al., 2017).

Despite the improvement that existing approaches have
achieved, some of the limitations still exist: 1) IASS-MTS
measurements are frequently correlated both within series
and across series. The current attention is mostly paid to
modeling the intra-series dependency, whereas the interac-
tions across series are not well studied. It has been noted
that different measurements are often intertwined and this
inter-series relationship is usually informative. For example,
the blood pressure of a patient at a given time not only could
be correlated with the blood pressure at other times, but it
also could have a relation with the heart rate at that or other
times; 2) most methods have other requirements which may
not be satisfied in real IASS-MTS data. For example, many
of them work on data with low missing rates, which suffers
the failure when the missing ratio raises up or consecutive
missing values occur (i.e., data is highly sparse).

To address the aforementioned limitations and challenges,
we propose a novel DAMA-Net architecture to deal with the
problem of asynchronous interactions, irregularity and spar-
sity of sampling intervals of IASS-MTS data. Specifically,

• We introduce a series-dependent intra-attention embed-
ding module associated with a learned time encoding.
It takes IASS-MTS data as the input and produces a
fixed-length latent representation over a set of interpolants
which encapsulate the intra-series interaction and circum-
vent asynchronously sampled features;

• Then, enhanced by modality indicator and position em-
bedder within series, we build an inter-series attention
module on the top of intra-attention embedding networks
to effectively handle the interactions among different se-
ries across distinct time steps;

• Finally, we employ the external memory module for
DAMA-Net to capture global temporal dynamics. The
memory here can be interpreted as a container of highly
summarized global structure information of sequence data.
The DAMA-Net utilizes the knowledge of temporal pat-
terns to construct global representations so as to mitigate
the sparsity inherent in real-world IASS-MTS data and
improve the prediction performance;

• We evaluate the proposed DAMA-Net model by conduct-
ing detailed comparative experiments and the ablation
study on real-world datasets, which demonstrates the good
performance of our proposed model.

To the best of our knowledge, this is the first work to propose
time-aware dual attention and memory networks that jointly
models the correlations of both within series and across
series as well as global temporal dynamics for simultane-
ously handling the sparsity, asynchronicity and irregularity
of sampling of multivariate time series.

2. Proposed Method
2.1. Problem Formulation

We let D = {(sn, yn) ∈ (S,Y) | n = 0, ..., N − 1}
represent N data cases. Each data case consists of a
D-dimensional irregularly, asynchronously and sparsely
sampled multivariate time series sn={sn,d |d=1, ..., D}
as well as its label yn. Each dimension of sn is a
univariate time series sn,d (a.k.a a variable). We denote
Tn,d as the number of records of the dth univariate time
series of the nth data case. Each univariate time series
can be represented as a list of observed tuples sn,d =
[(tn,d,1, xn,d,1), (tn,d,2, xn,d,2), ..., (tn,d,Tn,d

, xn,d,Tn,d
)],

where xn,d,Tn,d
is the observed value of the dth variable

at time step Tn,d for multivariate time series data case n
and tn,d,Tn,d

∈ R+
0 is the corresponding observed time.

We define tn,d = [tn,d,1, tn,d,2, ..., tn,d,Tn,d
] to be the list

of timestamps and xn,d = [xn,d,1, ..., xn,d,Tn,d
] to be the

list of observations for the dth univariate time series of
data case n. For IASS-MTS data, different variables of the
multivariate time series can have observations at different
times, as well as different numbers of observations, which
means tn,d 6= tn,d′ and Tn,d 6= Tn,d′ for d 6= d′ in general.
We aim at learning a function F : S → Y that can predict
the target yn given the multivariate time series sn.

2.2. Model Architecture

In this section, we elaborate on the proposed DAMA-Net
model. Figure 2 shows its detailed architecture.

2.2.1. TIME ENCODING

To incorporate temporal irregularity information and im-
prove the expressiveness of irregularly sampled time series
data, inspired by (Kazemi et al., 2019), we learn a meaning-
ful vector representation for continuous time τ. Specifically,
the time encoding module transforms the 1-d time axis to a
vector of size k + 1 by

ψ(τ)[i] =

{
ω0τ+ ϕ0, if i = 0

sin(ωiτ+ ϕi), if 1 ≤ i ≤ k
(1)

where ψ(τ)[i] is the ith dimension of embedding vector
ψ(τ), and {ωi, ϕi}ki=0 are learnable parameters. A sine
function term helps capture periodic patterns while the linear
term represents the progression of time and captures non-
periodic behaviors in the time series. We can implement the
time encoding component by employing a fully connected
layer followed by a sinusoidal activation function.

2.2.2. DIMENSION-DEPENDENT INTRA-ATTENTION

The goal of intra-series attention module is to utilize the
learned time embeddings to provide a collection of in-
terpolants, defined at the L reference time points τ =
[τ1, ..., τL], of each of the D univariate time series of ir-
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Figure 2. The overall architecture of the proposed DAMA-Net. DAMA-Net first learns continuous time point embeddings for preserving
the informative varying intervals. Then DAMA-Net uses an intra-attention mechanism to accommodate irregular time observations. Next,
the inter-series interactions across distinct time steps and modalities are captured by the proposed inter-attention module. In addition, an
external memory component is designed to capture global temporal dynamics and store common knowledge extracted from the entire
data, which will augment DAMA-Net architecture when time series are quite sparse. Finally, the outputs of the intra-attention module,
inter-attention module and external memory module are concatenated together as the input of the classifier.

regularly, asynchronously and sparsely sampled multivari-
ate time series. Our intra-series attention module sepa-
rately transforms each dimension of multivariate time series.
Each transformation is based on a time-attention mechanism
which takes a query reference time point τl, a set of observed
time point keys tn,d and observed values xn,d as input, and
outputs an embedding x̂n,d,τl

at time τl. Then, the interpo-
lated multivariate time series is given by ŝn = {ŝn,d | d =
1, ..., D}, where ŝn,d = [(τ1, x̂n,d,τ1

), ..., (τL, x̂n,d,τL
)].

x̂n,d,τl
=

Tn,d∑
j=1

γ(τl, tn,d,j)xn,d,j l = 1, ..., L (2)

γ(τl,tn,d,j)=
exp
(
ψ(τl)

T
QdK

T
d ψ(tn,d,j)/

√
dq
)∑Tn,d

j′=1exp
(
ψ(τl)

T
QdKT

d ψ(tn,d,j′)/
√
dq
) (3)

In Eq.2, the interpolation weight γ(τl, tn,d,j) for each ob-
servation value is the inner product of query and keys with a
softmax normalization, defined in Eq. 3. The dimension of
query matrix Qd and key matrix Kd are each of (k+1)×dq ,
and 1/

√
dq is the scaling factor. In summary, intra-series

attention embedding module naturally accommodates con-
tinuous time observations, encapsulates the intra-series in-
teraction and provides a fixed-length latent representation
for irregularly and asynchronously sampled MTS.

2.2.3. INDICATOR ENHANCED INTER-ATTENTION

The intra-attention module above ignores cross-series tem-
poral correlations. Thus we proposed the inter-series atten-
tion in this section. As shown in Figure 2, the inter-attention
module takes the chained sequence, [x̂n,1, ...., x̂n,D], of
all interpolated univariate time series as inputs to learn the
cross-series relationships. To distinguish multiple univariate
time series and incorporate the order information of inter-
polants, in this work, we 1) append a modality indicator d
(MI) as an extra factor and learn an embedding Ed for it;
2) construct a local position embedding (PEl

d), which indi-

cates the position (l) of the interpolant within each separate
univariate time series ŝn,d.

PEd(l, 2m) = sin(l/100002m/dp) d = 1, ..., D

PEd(l, 2m+1) = cos(l/100002m/dp) d = 1, ..., D
(4)

where l is the local position from 1 to L and m = 0, ..., bdp2 c.
Then the final input (zn) of attention module is calculated by
summarizing the interpolant, modality indicator embedding
and local positional embedding together as
zn = [zn,1, ...,zn,D], zn,d = [zn,d,τ1

, ..., zn,d,τL
]

zn,d,τl
= x̂n,d,τl

+ Ed + PEl
d

(5)

And the inter-series attention function (IAF) is presented as

IAF (zn,WQ,WK ,WV)=softmax
(zTnWQW

T
K zn√

dp

)
zTnWV (6)

Definitely, we can use the multi-head attention here. Based
on the inter-series attention block, we employ a position-
wise feed-forward network and residual connections to con-
struct a complete inter-series attention module. We de-
note un = [un,:,τ1

, ...,un,:,τL
] ∈ RD×L as the stacked

output of inter-series attention module, where un,:,τl
=

[un,1,τl
, ..., un,D,τl

]T . The main purpose of proposed mod-
ule is to capture relationships among different univariate
time series, thus boosting module’s representation ability.

2.2.4. EXTERNAL DYNAMIC MEMORY

The basic idea of the memory module is to learn a parameter-
ized memory matrix which caches global temporal knowl-
edge. We use the similar approach as in DNC (Graves
et al., 2016). Given the multivariate sequence un from the
inter-series attention module, at the current time step l, we
concatenate the vector un,:,l and a set of memory read vec-
tors {rn,1, ..., rn,l−1} from previous time steps as the input,
then feed it into a neural network controller to obtain the
interface vector ξn,l. The interface vector ξn,l is split into
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Table 1. Classification Performance.

MODEL PHYSIONET HUMAN ACTIVITY

PHASED-LSTM 0.836± 0.003 0.855± 0.005
GRU-IMPUTATION 0.764± 0.016 0.859± 0.004
GRU-δt 0.787± 0.014 0.857± 0.002
GRU-DECAY 0.807± 0.003 0.860± 0.005
GRU-D 0.818± 0.008 0.862± 0.005
IPNET 0.819± 0.006 0.869± 0.007
SEFT 0.795± 0.015 0.815± 0.002
MTAND 0.858± 0.004 0.907± 0.002
ODE-RNN 0.833± 0.009 0.885± 0.008
L-ODE-ODE ENC. 0.829± 0.004 0.870± 0.028
L-ODE-RNN ENC. 0.781± 0.018 0.838± 0.004
DAMA-NET 0.871± 0.007 0.915± 0.004

the interface parameters which are used to produce write
vector vn,l, write weighting wwn,l, erase vector en,l and read
weighting wrn,l for updating memory Ml by

Ml = Ml−1 ◦ (E − wwn,le
T
n,l) + wwn,lv

T
n,l (7)

and returning the lth read vector rn,l by

rn,l = MT
l w

r
n,l (8)

We let rn=[rn,1, ..., rn,L]∈RA×L represent the final con-
catenated L read vectors from all time steps. In summary,
we use an external memory module to capture desired global
temporal dynamics extracted from the whole dataset so as
to alleviate the high sparsity of sampling intervals.

2.2.5. PREDICTION NETWORK AND LEARNING

The intra-series attention embeddings x̂n, read vectors
rn and inter-series attention module outputs un are con-
catenated together as En = Concat(x̂n, rn,un) ∈
R(2D+A)×L, which are fed into the final classifier to make
the prediction ŷn = gθ(En). Our entire model is trained by
minimizing the following focal loss function L =

−
N∑
n=1

C∑
c=1

[αycn(1−ŷcn)βlog ŷcn+(1−α)(1−ycn)ŷcβn log(1−ŷcn)]

(9)
where C is the number of classes, true label ycn∈{0, 1} and
ŷcn is the estimated probability over the cth class. α is the
balancing weighting factor and β is the focusing parameter.

3. Experiments
We conduct experiments on two benchmark datasets (Shukla
& Marlin, 2020): PhysioNet challenge 2012 dataset and
Human Activity dataset. We compare our model with 11
representative baselines: Phased-LSTM (Neil et al., 2016),
GRU-Imputation, GRU-δt, GRU-Decay, GRU-D (Che et al.,
2018), L-ODE-RNN enc. (Chen et al., 2018), IPNet (Shukla
& Marlin, 2019), SeFT (Horn et al., 2020), mTAND (Shukla
& Marlin, 2021), ODE-RNN, L-ODE-ODE enc. (Rubanova
et al., 2019). The dataset description, experimental setup

Table 2. Ablation Study.

DAMA-NET PHYSIONET HUMAN ACTIVITY

W/O INTRA-ATTN 0.8557± 0.0080 0.9009± 0.0051
W/O INTER-ATTN 0.8673± 0.0029 0.9100± 0.0043
W/O EXT. MEM. 0.8691± 0.0063 0.9130± 0.0019
W/O LOCAL PE 0.8701± 0.0055 0.9129± 0.0028
W/O MI 0.8682± 0.0074 0.9145± 0.0025

and implementation details are given in the Appendix.

Results Table 1 summarizes the predictive results of all
the models on PhysioNet mortality and Human activity clas-
sification task. The results show that our DAMA-Net model
yields the best classification performance on both datasets
(AUC score for imbalanced PhysioNet and accuracy rate
for Human Activity), compared with various competitors.
Take results in PhysioNet for example, our DAMA-Net
model outperforms the RNN-Impute model by approxi-
mately 11% of AUC score, and improves the current best
result by 1.3%. Those competitive experiment results indi-
cate the effectiveness of our proposed model on irregularly
asynchronously sparsely sampled multivariate time series
classification tasks.

Ablation Study To further study the influence of the indi-
vidual components in DAMA-Net, we perform an ablation
study on our model by removing a specific module once at
a time. The results are shown in Table 2. It can be seen that:
1) all the three modules (intra-series attention, inter-series
attention and dynamic memory) in our model are necessary.
We design a dual-attention mechanism to model the tempo-
ral information and capture the complex interactions within
and across time series in the irregular and asynchronous
setting to learn good representations of IASS-MTS data.
Also, modeling global knowledge with an external mem-
ory module benefits the classification task; 2) In addition,
introducing other techniques such as local positional em-
bedding and modality embedding does indeed help improve
the model’s performance. This validates the importance of
position-wise information and modality indicator.

4. Conclusion
In this paper, we propose a novel DAMA-Net model for
classifying time series with asynchronous sampling, time
irregularity and sparsity. Specifically, we introduce an intra-
series attention interpolation module with a learned time
encoding for capturing temporal intra-series interactions and
dealing with asynchronism. A modality indicator enhanced
inter-series attention module is used to learn interactions
among different series across distinct time steps. Further, we
employ the external memory module to represent common
dynamics from the data for partially alleviating the data
sparsity problem. Our approach yields the best performance
on real-world datasets compared to various competitors.
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A. Appendix
A.1. Datasets and Competitors

PhysioNet The PhysioNet challenge 2012 data set1 con-
sists of multivariate clinical time series data with 36 tem-
poral variables (e.g. Albumin, Glucose, pH) and 6 general
patient descriptors (e.g. Age, RecordID, ICUType) extracted
from 12,000 intensive care unit (ICU) records. Set A com-
prised of four thousand records with outcome-related de-
scriptors are available to challenge participants. Each record
contains irregularly, asynchronously and sparsely sampled
multivariate time series during the first 48 hours after admis-
sion to the ICU. The missing rate is approximately 80.5%,
and the mortality labels are imbalanced at an approximate
ratio of 1 : 6 (pos : neg). We trained and evaluated our
method and competing methods on the binary mortality pre-
diction task of whether a patient will die during the hospital
stay. We evaluate model performance by using area under
the ROC curve (AUC score) for imbalanced classification
problems.

Human Activity Human Activity data set2 contains 3D
positions of the belt, chest and ankles (12 features in total)
collected from five individuals performing various activities:
walking, sitting, lying, standing, etc. We follow the data
preprocessing procedure in (Rubanova et al., 2019), and
construct a data set of 6,554 sequences with 12 channels
and 50 time points. Labels are provided for each observation
time point and denote the type of activity that the person is
performing, such as walking, sitting, lying, etc. (11 classes
in total). The task is to classify each time point by the type
of activity. We report multi-class classification accuracy for
evaluating the model performance.

Competitors The methods in our comparative evaluation
are listed as follows:

Phased-LSTM: extending the LSTM unit by adding a
new time gate kt to process inputs sampled at asyn-
chronous times (Neil et al., 2016).

GRU-Imputation: replacing each missing observation
with weighted average of the mean of the variable across
the training data and the last measurement within that
variable (Che et al., 2018).

GRU-δt: concatenating the measurement, masking vari-
able mt and time interval δt (indicating how long the
particular observation has been missing) as the input of
the model (Che et al., 2018).

GRU-Decay: decaying the previous hidden state ht-1
with a factor γh before using it to compute the new hidden
state ht (Che et al., 2018).

1https://physionet.org/content/challenge-2012/
2https://archive.ics.uci.edu/ml/datasets.php

GRU-D: using both input decay mechanism and RNN
hidden state decay mechanism (Che et al., 2018).

IPNet: employing a semi-parametric RBF interpolation
network followed by the application of a prediction net-
work (Shukla & Marlin, 2019).

ODE-RNN: using neural ordinary differential equations
to specify hidden state dynamics, and updating the hidden
state using a standard RNN (Rubanova et al., 2019).

L-ODE-ODE enc.: defining a latent ODE model using an
ODE-RNN as the encoder and neural ODE as the decoder
(Rubanova et al., 2019).

L-ODE-RNN enc.: proposing a latent-variable time se-
ries model using a variational autoencoder framework
(Chen et al., 2018).

SeFT: representing the irregularly sampled time series
data based on differentiable set function learning (Horn
et al., 2020).

mTAND: presenting a multi-time attention module fol-
lowed by a VAE-based encoder-decoder model for learn-
ing from sparse and irregularly sampled data (Shukla &
Marlin, 2021).

A.2. Experimental Setup

In our DAMA-Net model, for PhysioNet dataset, we use a
one-layer of 1D convolutional layer to process the concate-
nated sequence, and apply a fully connected network with
soft-max regressor on the top of convolution output to do
classification. For human activity dataset, we adopt a one-
layer GRU to model the concatenated sequence, and also use
a one-layer fully connected network with the soft-max re-
gressor on each hidden state to produce the classification at
each time-point. For a fair comparison, we use same experi-
mental protocols as (Shukla & Marlin, 2021) and compare
our experimental results with theirs. For each data set, 80%
instances are randomly selected as the training set, and the
remaining 20% are used for testing set. We use 20% of the
training data for validation. We repeat each experiment five
times and report their average performance by mean and
standard deviation.

A.3. Implementation Details

In our DAMA-Net model, the hyperparameters are tuned on
the validation set by grid search. The α and β of focal loss
are 0.25 and 2 respectively. We learn time embedding size of
k+1 = 128 and choose L = 128 reference time points. The
dimension of intra-series attention query matrix Q and key
matrix K are each 128 ∗ 128. The GRU hidden state size of
the classifier of Human activity prediction task is 512. The
1D convolution kernel size and 1D Max pooling operation
size of PhysioNet classifier are 3 and 2 respectively. The
size of dynamic external memory matrix is 5 ∗ 10 with 2



DAMA-Net

Algorithm 1 Training DAMA-Net on Human Activity
dataset

Input: dataD = {(sn, yn) ∈ (S,Y) | n = 0, ..., N−1},
α, β, lr, k, L, nItrs, nHiddens, nr cells, cell size,
read heads
Output: Accuracy Rate
procedure TRAINING()

Initialize ωi, ϕi, Q, K, WQ, WK , WV , M0

for itr = 1 to nItrs do
for (sn, yn) in training set do
{xn,d, tn,d}Dd=1← sn
{ψ(τl)}Ll=1← time encoding of τ = [τ1, ..., τM ]

{ψ(tn,d,j)}
D,Tn,d

d,j=1,1← time encoding of tn
{γ(τl, tn,d,j), x̂n,d,τl

}D,Ld,l=1,1← Eqns. 3 and 2
PEl

d← local positional embedding of x̂n,d,τl

Ed← modality indicator embedding of d
{zn,d,τl

}D,Ld,l=1,1← Eqn. 5
un← IAF (zn,WQ,WK ,WV )
ξn,l ← x̂n,:,τm

, {rn,1, ..., rn,l−1}
vn,l, wwn,l, en,l, w

r
n,l ← ξn,l

update memory Ml by Eqn. 7
yield read vector rn,l ← Eqn. 8
En ← Concat(x̂n, rn,un)
ŷn ← classifier gθ(En)
compute loss by Eqn. 9
update DAMA-Net model parameters using BP

end for
compute accuracy rate (Acc) on validation set

end for
select best model by argmaxmodel{Acc}

end procedure
procedure TESTING()

compute Acc on test set under selected best model
return Acc

end procedure

read heads. The model is trained using the Adam optimizer
with a learning rate of 0.0001. We implemented our model
in Pytorch.

A.4. Algorithms

The pseudo-code of our model on the Human Activity data
set is summarized as Algorithm 1.


