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Abstract
Inspired by the demands of real-time time-series
forecasting, we develop and analyze optimistic
online learning algorithms under delayed feed-
back. We present a novel “delay as optimism”
analysis that reduces online learning under delay
to optimistic online learning. This reduction en-
ables optimal regret bounds for delayed online
learning and exposes how side-information or op-
timistic “hints” can be used to combat the effects
of delay. We use these theoretical tools to develop
the first optimistic online learning algorithms that
require no parameter tuning and have optimal re-
gret guarantees under delay. These algorithms —
DORM, DORM+, and AdaHedgeD— are robust
and practical choices for real-world time-series
forecasting. We conclude by benchmarking our
algorithms on four subseasonal climate forecast-
ing tasks, demonstrating low regret relative to
state-of-the-art forecasting models.

1. Introduction
Online learning is a classical sequential decision-making
paradigm in which a learner is pitted against a potentially
adversarial environment (Orabona, 2019; Shalev-Shwartz,
2007). At time t, the learner must select a play wt from
some set of possible plays W. The environment then re-
veals the loss function `t and the learner pays the cost
`t(wt). The learner uses information collected in previous
rounds to improve its plays in subsequent rounds. Optimistic
online learners additionally make use of side-information
or “hints” about expected future losses to improve their
plays. Over a period of length T , the objective of the
learner is to minimize regret, an objective that quantifies
the performance gap between the learner and the best pos-
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sible constant play in retrospect in some competitor set U:
Regret

T
= supu2U

P
T

t=1 `t(wt) � `t(u). Adversarial on-
line learning algorithms can provide robust performance in
many complex real-world online prediction problems such
as climate or financial forecasting.

In traditional online learning paradigms, the loss for round
t is revealed to the learner immediately at the end of round
t. However, many real-world applications produce delayed
feedback, i.e., the loss for round t is not available until round
t+D for some delay period D. Several delayed algorithms
are known to achieve optimal worst-case regret rates against
adversarial loss sequences (Weinberger & Ordentlich, 2002;
Joulani et al., 2013; McMahan & Streeter, 2014; Joulani
et al., 2017), but each has its drawbacks when deployed for
real applications with short horizons T . Some use only a
small fraction of the data to train each learner (Weinberger
& Ordentlich, 2002; Joulani et al., 2013); others rely on
uniform upper bounds on future loss gradients to set their
tuning parameters (McMahan & Streeter, 2014; Joulani
et al., 2017). None leverage optimistic hints to improve per-
formance when the delayed losses are partially predictable.
The concurrent work of Hsieh et al. (2020) analyzes opti-
mistic gradient descent under delay but relies on uniform
bounds on future gradients that are often challenging to
obtain and overly conservative in applications.

In this work, we aim to develop robust and practical algo-
rithms for real-world delayed online learning. To this end,
we introduce three novel algorithms — DORM, DORM+,
and AdaHedgeD— that use every observation to train the
learner, have no parameters to tune, exhibit optimal worst-
case regret rates under delay, and enjoy improved perfor-
mance when accurate hints for unobserved past and future
losses are available. We begin by viewing delayed online
learning as a special case of optimistic online learning and
use this “delay as optimism” perspective to develop:

1. A formal reduction of delayed online learning to opti-
mistic online learning (Lems. 1 and 2).

2. The first optimistic tuning-free and self-tuning algo-
rithms with optimal regret guarantees under delay
(DORM, DORM+, and AdaHedgeD).

3. A tightening of standard optimistic online learning re-
gret bounds that reveals the robustness of optimistic al-
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gorithms to inaccurate hints (Thms. 3 and 4 of App. B).
4. The first general analysis of follow-the-regularized

leader algorithms under delay (Thm. 5 of App. B and
Thm. 18 of App. I).

5. The first analysis of delayed online mirror descent
algorithms with optimistic hints (Thm. 6 of App. B).

We validate our algorithms on the problem of subseasonal
forecasting in Sec. 5. Subseasonal forecasting — predicting
precipitation and temperature 2-6 weeks in advance — is a
crucial task for allocating water resources, managing wild-
fires, and preparing for other weather extremes (White et al.,
2017). Several challenges emerge when applying existing
online learning methods to subseasonal forecasting that our
algorithms are equipped to manage. First, real-time subsea-
sonal forecasting suffers from delayed feedback: multiple
forecasts are issued before receiving feedback on the first.
Second, the regret horizons are short: a common evaluation
period for semimonthly forecasting is one year, resulting
in 26 total forecasts. Third, self-tuned or tuning-free algo-
rithms are essential for real-time, practical deployment. We
demonstrate that our algorithms DORM, DORM+, and Ada-
HedgeD all produce strong performance and that DORM+
particularly achieves consistently low regret compared to
the best forecasting models.

Open-source Python code implementing DORM, DORM+
and AdaHedgeD and recreating our subseasonal forecasting
experiments is available at redacted.

Notation For integers a, b, we use the shorthand ga:b ,P
b

i=a
gi. We say a function f is proper if it is some-

where finite and never �1. We let @f(w) = {g 2

Rd : f(u) � f(w) + hg,u � wi, 8u 2 Rd
} denote

the set of subgradients of f at w 2 Rd and say f is µ-
strongly convex over a convex set W ✓ int dom f with
respect to k·k if 8w,u 2 W and g 2 @f(w), we have
f(u) � f(w) + hg,u � wi + µ

2 kw � uk
2. For differen-

tiable  , we define the Bregman divergence B (w,u) ,
 (w)� (u)� hr (u),w � ui. We define diam(W) =
infw,w02W kw � w0

k and (r)+ , max(r, 0).

2. Online Learning with Optimism and Delay
Standard online learning algorithms, such as follow the reg-
ularized leader (FTRL) and online mirror descent (OMD)
achieve optimal worst-case regret against adversarial loss
sequences (Orabona, 2019). However, many loss sequences
encountered in applications are not truly adversarial. Opti-
mistic online learning algorithms aim to achieve improved
performance when loss sequences are partially predictable,
while maintaining robustness to adversarial sequences (see,
e.g., Rakhlin & Sridharan, 2013b; Steinhardt & Liang, 2014;
Kamalaruban, 2016; Chiang et al., 2012). In many formula-
tions of optimistic online learning, the learner is provided

with a pseudo-loss ˜̀
t at the start of round t that represents

a guess for the true, unknown loss at time t. The online
learner can incorporate this hint into its learning process
before making play wt. When loss feedback is delayed by
D time steps, the learner observes the losses {`s}

t�D�1
s=1

and the optimistic pseudolosses {˜̀s}ts=1 before playing wt.

In the remainder of the text, we use the following no-
tation for the subdifferential of the online learning loss
and optimistic pseudoloss respectively: gt 2 @`t(wt),
g̃t 2 @ ˜̀t(wt�1).

In the delayed and optimistic setting, we propose counter-
parts of standard FTRL and OMD online learning algo-
rithms, which we call optimistic delayed FTRL (ODFTRL)
and delayed optimistic online mirror descent (DOOMD) re-
spectively. These algorithms produce iterates wt satisfying,

wt+1 = argmin
w2W

hg1:t�D + ht+1,wi + � (w)

(ODFTRL)

wt+1 = argmin
w2W

hgt�D + ht+1 � ht,wi + B� (w,wt)

with h0 , 0 and arbitrary w0. (DOOMD)

for constant delay period D, regularization parameter �, and
optimistic hint vector ht =

P
t

s=t�D
g̃s, representing our

best guess of the summed gradients of missing delayed and
future losses.

2.1. Delay as Optimism

A first key insight of this paper is that, for ODFTRL and
DOOMD,

Learning with delay is a special case of learning
with optimism.

In particular, ODFTRL and DOOMD are instances of op-
timistic FTRL (OFTRL) and single-step optimistic OMD
(SOOMD) respectively with a particularly “bad” choice of
optimistic hint g̃t+1 that deletes the unobserved loss subgra-
dients gt�D+1:t.
Lemma 1 (ODFTRL is OFTRL with a bad hint). ODFTRL
is OFTRL with g̃t+1 = ht+1 �

P
t

s=t�D+1 gs.
Lemma 2 (DOOMD is SOOMD with a bad hint). DOOMD
is SOOMD with g̃t+1 = g̃t + gt�D � gt + ht+1 � ht =
ht+1 �

P
t

s=t�D+1 gs.

In App. B, we demonstrate that, as an immediate conse-
quence of our delay-as-optimism perspective, we can pro-
vide new regret bounds for ODFTRL and DOOMD. The
form of these delayed regret bounds reveals the heightened
value of optimism in the presence of delay: in addition to
providing an effective guess of a subgradient gt, an opti-
mistic hint can approximate the missing delayed feedback
(
P

t�1
s=t�D

gs) and thereby significantly reduce the penalty
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of delay. If, on the other hand, the hints are a poor proxy for
the missing loss subgradients, we still only pay the minimax
optimal

p
D + 1 penalty for delayed feedback. It remains

to choose the regularization parameter � to achieve this
minimax optimal regret rate.

3. Tuning-free Learning
with Optimism and Delay

As an application of our ODFTRL and DOOMD analysis,
we introduce and analyze delayed and optimistic versions of
two popular tuning-free online learning algorithms: regret
matching (RM) (Blackwell, 1956; Hart & Mas-Colell, 2000)
and regret matching+ (RM+) (Tammelin et al., 2015). RM
was developed to find correlated equilibria in two-player
games and is commonly used to minimize regret over the
simplex. RM+ is a modification of RM designed to accel-
erate convergence and used to solve the game of Heads-up
Limit Texas Hold’em poker (Bowling et al., 2015).

Our generalizations, delayed optimistic regret matching
(DORM)

wt+1 = w̃t+1/h1, w̃t+1i for (DORM)

w̃t+1 , max(0, (r1:t�D + ht+1)/�)q�1 and

rt�D , 1hgt�D,wt�Di � gt�D

and delayed optimistic regret matching+ (DORM+)

wt+1 = w̃t+1/h1, w̃t+1i for (DORM+)

w̃t+1 , max
�
0, w̃p�1

t
+ (rt�D + ht+1 � ht)/�

�q�1
,

rt�D , 1hgt�D,wt�Di � gt�D, h0 , 0, w̃0 , 0,

allow for delay D, regularization parameter �, optimistic
hints ht, and a parameter q � 2 and its conjugate exponent
p = q/(q � 1). We refer to rt as the instantaneous regret of
each expert with respect to the play wt and the linearized
loss vector gt, and note that DORM and DORM+ recover
the standard RM and RM+ algorithms when D = 0, � = 1,
q = 2, and ht = 0, 8t.

While these updates may look unfamiliar, we show in App. E
that they are special cases of the ODFTRL and DOOMD
algorithms. Specifically, we connect DORM to ODFTRL
and DORM+ to DOOMD, which enables us to extend pre-
vious regret bounds to DORM and DORM+. Additionally,
under mild conditions detailed in App. E, we highlight a
remarkable property:

The normalized DORM and DORM+ iterates wt

are independent of the choice of regularization
parameter �.

This result, shown in App. E, implies that DORM and
DORM+ are automatically optimally tuned with respect
to �, even when run with a default value of � = 1.

4. Self-tuned Learning with Optimism
and Delay

We now analyze an adaptive version of ODFTRL with time-
varying regularization �t and develop strategies for auto-
matically tuning �t in the presence of optimism and delay.
Our objective is to achieve the minimax optimal regret rate
and to find a setting of �t that performs well in pratical
applications. As noted by Erven et al. (2011); de Rooij et al.
(2014); Orabona (2019), the effectiveness of an adaptive
regularization setting �t that uses an upper bound on regret
relies heavily on the tightness of that bound. Our next result
introduces analyzes a new tuning strategy inspired by the
popular AdaHedge algorithm (Erven et al., 2011) and based
on a new tighter bound on ODFTRL regret:

Fix ↵ > 0, and consider the delayed AdaHedge-style (Ada-
HedgeD) regularizer sequence within an ODFTRL update:

�t+1 = 1
↵

P
t�D

s=1 �t for (AdaHedgeD)

�t , min
�
Ft+1(wt,�t) � Ft+1(w̄t,�t), hgt,wt � w̄ti

�
+

with w̄t = argminw2W Ft+1(w,�t) (1)

and Ft+1(w,�t) , �t (w) + hg1:t,wi.

Remarkably, as we show in App. I, this setting of adaptive
regularization yields a minimax optimal O(

p
(D + 1)T +

D) dependence on the delay parameter and nearly matches
the regret of the optimal constant � tuning in hindsight.

5. Experiments
We apply the online learning techniques developed in this
paper to the problem of adaptive ensembling for subseasonal
forecasting. Our experiments are based on the public subsea-
sonal forecasting codebase of Flaspohler et al. (2021) that
uses d = 6 physics-based numerical models and machine
learning models (CFSv2++, Climatology++, LocalBoost-
ing , MultiLLR , Persistence++, and Salient++) to predict
temperature and precipitation 2-6 weeks ahead. In this mid-
range climate forecasting task, forecast feedback is delayed;
the models make D = 2 or 3 forecasts depending on the
forecast horizon before receiving feedback. We use delayed,
optimistic online learning to play a time-varying convex
combination of the d input models, such that wt 2 4d�1.
Our objective is to compete with the best input model over
a year-long prediction period (T = 26 semimonthly dates).
The loss function for each forecast date is the geographic
root-mean squared error (RMSE) across 514 locations in
the Western United States.

We consider four subseasonal prediction tasks – predicting
temperature and precipitation at two horizons, weeks 3-4
and weeks 5-6 – and evaluate yearly regret and mean RMSE
for each year from 2011-2020. Unless otherwise specified,
all online learning algorithms use the previous gradient
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Table 1: Average RMSE of the 2011-2020 semimonthly forecasts: The average RMSE for online learning algorithms (left) and
individual models (right) over a 10-year evaluation period. The top performing model for each task is bolded and shown in green.

AdaHedgeD DORM DORM+ CFSV2++ CLIM.++ LOCALBOOSTING MULTILLR PERSIST.++ SALIENT++

PRECIP. 34W 21.837 21.737 21.675 21.978 21.986 22.357 22.431 21.973 23.344
PRECIP. 56W 21.987 21.957 21.838 22.004 21.993 22.383 22.570 22.030 23.257
TEMP. 34W 2.287 2.259 2.247 2.277 2.319 2.394 2.352 2.253 2.508
TEMP. 56 2.321 2.318 2.304 2.278 2.317 2.440 2.368 2.284 2.569

11-22 08-11
0.0

0.2

0.4

0.6

0.8

1.0
DORM+ weights wt

CFSv2++

Climatology++

LocalBoosting

MultiLLR

Persistence++

Salient++

11-22 08-11

DORM weights wt

11-22 08-11

AdaHedgeD weights wt

Figure 1: Impact of regularization: The plays wt of online learning algorithms used to combine the input models for the Temp. 34w
task in the 2020 evaluation year. DORM and AdaHedgeD are both FTRL-based algorithms and have similar plays; AdaHedgeD appears
to be less regularized. DORM+, on the other hand, is an OMD-based algorithm and was designed to handle applications where the “best”
expert model changes frequently. DORM+ is the top learning algorithm for this subseasonal forecasting task, indicating the importance of
this adaptivity property.

optimism strategy ht = (D + 1)gt�D�1. See App. M for
full experimental details and App. N for algorithmic details.

5.1. Competing with the best input model

Our primary objective in online learning is to achieve zero
average regret, i.e., to perform as well as the best input
model in the competitor set U. To evaluate model regret, we
run our three delayed online learning algorithms — DORM,
DORM+, and AdaHedgeD— on all four subseasonal pre-
diction tasks and measure their average RMSE loss.

The average yearly RMSE for the three online learning al-
gorithms and the six input models is shown in Table 1. The
DORM+ algorithm outperforms the best input model for
all tasks except Temp. 56w. All online learning algorithms
achieve negative regret for both precipitation tasks. Fig. 1
shows an example of the weights played by the three al-
gorithms. Fig. 2 shows the yearly cumulative regret (in
terms of the RMSE loss) of the online learning algorithms
over the 10-year evaluation period. There are several years
(e.g., 2012, 2014, 2020) in which all online learning algo-
rithms achieve negative regret, outperforming the best input
forecasting model. The consistently low regret year-to-year
of DORM+ makes it a promising candidate for real-world
delayed subseasonal forecasting.

6. Conclusion
In this work, we overcame the challenges of delayed feed-
back and short regret horizons in online learning with op-
timism. We developed three practical non-replicated, self-
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Figure 2: Overall performance: Yearly cumulative regret under
RMSE loss for the three delayed online learning algorithms pre-
sented, over the 10-year evaluation period for the Precip. 34w task.
The zero line corresponds to the performance of the best input
model in a given year. Negative values indicate that the online
learner outperformed the best input model in a given year.

tuned and tuning-free algorithms with optimal regret guar-
antees — DORM, DORM+, and AdaHedgeD. Our “delay
as optimism” reduction and refined analysis of optimistic
learning produced novel regret bounds for both optimistic
and delayed online learning and elucidated the connections
between these two problems. Within the subseasonal fore-
casting domain, we demonstrated that delayed online learn-
ing methods can produce state-of-the art forecasting ensem-
bles robustly from year-to-year. Our results highlighted
DORM+ as a particularly promising candidate for subsea-
sonal forecasting due to its tuning-free nature and adaptivity
when the best input model changes frequently. Through
theoretical and experimental validation, we have presented
DORM, DORM+, and AdaHedgeD as practical and robust
algorithms for delayed time-series forecasting that can be
applied in a variety of application domains to improve the
quality of sequential decision-making.
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