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Abstract
Modeling dynamic relations between recording
channels and the long-term dependencies are
critical in multivariate time series. Recent ap-
proaches leverage graph neural networks to cap-
ture the direct first-order relationship between
channels. While this is useful to capture co-
occurrence patterns, they do not reveal indi-
rect higher-order relationships governed by la-
tent processes. To this end, we propose a dual
message-passing recurrent neural system that
disentangles the observed recording processes
from the unobserved governing processes. The
messages are passed in both the bottom-up and
top-down manners: The bottom-up signals are
aggregated to capture governing patterns, while
the top-down messages augment the dynamics of
low-level processes. Each process maintains its
own memory of historical data, allowing process-
specific long-term patterns to form. Throughout
extensive experiments on real-world time-series
forecasting datasets, we prove the robustness and
efficiency of our approach across different sce-
narios.

1. Introduction
Time series are recordings of underlying dynamic pro-
cesses. These are found in all empirical fields, from brain
recording (Roy et al., 2019), human action recognition
(Zhu et al., 2016), to energy monitoring (Li et al., 2019;
Truong et al., 2013) and weather forecast (Poornima &
Pushpalatha, 2019). Multivariate time series are those co-
recorded in the same context, hence they share certain but
often unobserved governing mechanisms. Electricity con-
sumption at consumer ends, for example, exhibits corre-
lated fluctuations throughout the day, and these are driven
by latent temporal factors such as daily working activi-
ties and the weather, which themselves observe long-range
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patterns. Thus modeling multivariate time series poses
great challenges to capture the (a) long-term dependencies
within each recording channel in time, and between chan-
nels both in time and space; and (b) the underlying genera-
tive mechanisms.

While variable graphs are useful to capture co-occurrences,
they are limited to direct first-order patterns between ob-
served variables, but do not readily reveal indirect higher-
order relationships governed by latent processes. Address-
ing this limitation, we propose a new kind of graph that
models latent variables.

Throughout extensive experiments on real-world multivari-
ate time-series forecasting datasets, we prove the robust-
ness and efficiency of our approach across different scenar-
ios. In summary, our contribution is two-fold:

• We design HigherTimes, a novel channel-wise hierar-
chical recurrent model which imposes a high-order re-
lation structure of multivariate time series, aiming to
capture the global spatial structure and temporal dy-
namics from data.

• We verify the effectiveness of our model on different
scenarios using two real-world datasets, with the focus
on the time series forecasting task.

2. Related works
Multivariate time-series forecasting is a common appli-
cation in the time series modeling literature. Classical
methods such as vector auto-regression (VAR) (Zivot &
Wang, 2006) modeled the relationship between variables
over time and uses the learned relationship for future pre-
dictions. However, VAR cannot capture complex nonlin-
ear correlations. With higher expressiveness, recent deep
learning-based approaches utilized sequential models such
as Long Short-Term Memory (LSTM) or Gated Recurrent
Unit (GRU) to learn those correlations automatically (Lim
& Zohren, 2020). While these approaches serve as strong
baselines for overall comparison, they do not explicitly
model the correlation among variables.

Our model is designed to capture the global patterns in the
data, which govern changes in the observations. Inspiring
by the hierarchical structure of data, (Che et al., 2018) pro-
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posed a multi-rate hierarchical generative model for health-
care data generation. The model uses multiple sequential
layers, each has a different update rate to cover all possi-
ble update rates of the input data. The model is evaluated
on the forecasting and interpolation task using healthcare
and climate datasets. However, the input data is assumed
to have discrete sampling rates and such conditions do not
apply in other datasets. Another work (Ying et al., 2018)
proposed a differentiable pooling method to extract the hi-
erarchical structure of the real-world graph. This method,
however, takes static graphs as input, while we focus on
sequential input as the first citizen.

3. Method
We present our main contribution, a model for High-order
representation of multivariate Time series (HigherTimes).
We consider the setting of D parallel channels, each of
which is responsible for the recording of a time series. Let
xik represent the numerical values of channel i at time tk.
The set

{
x1
k, x

2
k, ..., x

D
k

}
fully specifies the observations at

tk.

3.1. Disentangling governing states from channel
recordings

A HigherTimes system unrolled over time is illustrated in
Fig. 1. The system is a recurrent complex whose state and
transition are factorized into multiple concurrent RNNs,
organized into two layers: The lower layer represents D
recording processes; and the upper layer representsM gov-
erning processes. Typically we choose M � D, assum-
ing that the number of recording types D can be large and
overlapping, but there are only a handful of M underly-
ing processes generating data. Each lower RNN is asso-
ciated with a recording type to cater for type-specific dy-
namics (e.g., heart rates are vastly different from glucose
readings). The coupling between RNNs across layers is
implemented via message passing: The bottom-up commu-
nication passes the “reports” from the recording states to
the governing channels, and the top-down passes the “con-
trols” information to the recording channels. The upper
RNNs on the other hand interact with each other directly,
and this captures the notion of self-coherence in a system
(e.g., a living body), and governing processes are distinct
but highly coupled (e.g., those control the nerves, skeleton,
muscles, digestion and circulation).

3.2. Dynamics of recording processes

Similar to LSTMs, a recording channel i maintains mem-
ory cih,k and state hik at time tk. When a recording xik is
made at time tk, the channel updates its memory, consid-
ering the retention rate ci,∗h,k−1, the new recording c̃ih,k and

the controlling information c̄ih,k from parent processes as
follows:

ci,∗h,k−1 = cih,k−1 � σ
(
Wfhx

i
k + Ufhh

i
k−1 + bfh

)
(1)

γih,k = σ
(
Wihx

i
k + Uihh

i
k−1 + bi

)
(2)

c̃ih,k = γih,k � tanh
(
Wicx

i
k + Uich

i
k−1 + bic

)
(3)

µj→ih,k = tanh
(
Wgx

i
k + Ugg

j
k−1 + bg

)
(4)

βj→ih,k = softmaxj

(
1
√
nh
xikW

Q
(
gjk−1W

K
)>)

(5)

c̄ih,k =

M∑
j=1

βj→ih,k µ
j→i
h,k (6)

where W∗, U∗ and b∗ are trainable parameters, gjk−1 is the
previous state of the upper process j, nh is the dimension-
ality of βj→ih,k , � and σ (.) denotes the point-wise multipli-
cation and the sigmoid function, respectively.

Combining Eq. (1), Eq. (3), and Eq. (6), the memory of
the recording channel is then updated as follows: cih,k ←
ci,∗h,k−1 + c̃ih,k + c̄ih,k. Finally, the recording state is com-
puted similarly to that in LSTM as: hik = tanh

(
cihk

)
�

σ
(
Wox

i
k + Uoh

i
k−1 + bo

)
.

3.3. Dynamics of governing processes with skipping

A governing process j maintains memory cig,k and state gik
at time tk. The process has access to two sources of infor-
mation: one from the lower recording processes, and the
other from the previous memories of its own and its intra-
layer siblings. At each time-step, triggered by the state up-
dates

{
hik
}D
i=1

from the recording processes, the governing
process j refreshes its memory considering the collective
memory retention and the reports from lower channels. The
updates are formulated as follows:

h̄k = Uh
[
h1
k|h2

k| . . . |hDk
]

c̃jg,k−1 = cjg,k−1 � σ
(
Wfgh̄k + Ufgg

j
k−1 + bfg

)
(7)

cj,∗g,k−1 = αg,k c̃
j
g,k−1 + (1− αg,k)

∑
j′ 6=j c̃

j′

g,k−1

M − 1
(8)

µi→jg,k = tanh
(
Whh

i
k + Uhg

j
k−1 + bc

)
(9)

βi→jg,k = softmaxi

(
1
√
ng
gjk−1W

Q
(
hikW

K
)>)

(10)

c̄jg,k =

D∑
i=1

βi→jg,k µ
i→j
g,k (11)

where W∗, U∗ and b∗ are trainable parameters, αg,k =

σ
(
Wαg

j
k−1 + bα

)
is the relative importance of the k-th

governing process’s memory compared to the intra-layer
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Figure 1: HigherTimes unrolled over time. xk specifies an observation, hik denotes the state of the recording process i, gjk
denotes the state of the governing process j. Blue and green lines denote the update for governing and recording processes,
respectively. The decoder takes the last governing processes combined with each recording process to predict the future
observation x̂iN+1:N+T for each channel i.

sibling processes, ng is the dimensionality of βi→jg,k , and
σ (.) denotes the sigmoid function. The governing mem-
ory is updated as: cjg,k ← cj,∗g,k−1 + c̄jg,k. Finally, the
governing state is computed similarly to that in LSTM as:
gjk = tanh

(
cjg,k

)
� σ

(
Woh̄k + Uog

j
k−1 + bo

)
.

Skipping: At any time tk, we have a choice to update
the state of any governing channel, or simply skip it (e.g.,
by copying the state and memory forward). Ideally, the
decision to skip is made depending on the data available
at tk. However, we can simply maintain a regular update
at every L-th event, as demonstrated recently in (Le et al.,
2018).

3.4. Decoding

At each time-step tk, we have a set of recording states
Hk =

{
h1
k, h

2
k, ..., h

D
k

}
, and a set of governing states

Gk =
{
g1
k, g

2
k, ..., g

M
k

}
. Depending on the nature of the

task, the decoder may choose a relevant neural network
that takes the set {Hk, Gk} as input and emits an output,
or simply does nothing.

3.4.1. MULTIVARIATE TIME SERIES FORECASTING

Forecasting is a specific kind of decoding, where we pre-
dict the observations ∆ steps ahead, only at the end of the
sequence of length N . We use an MLP decoder as it is
fast and does not accumulate error across steps, compared
to a sequential decoder: yi = MLPθi

([
ḡN , h

i
K

])
, where

yi ∈ R∆ and ḡN =
∑M
j=1 w

i
jg
j
N is a simple weighted sum

of the governing states,
{
θi, wij

}
are the channel-specific

parameters of the MLP.

3.4.2. TRAINING OBJECTIVE

Similar to (Bai et al., 2020), we employ L1 loss as our train-
ing objective and optimize the loss for multi-step predic-

tion. The loss function of HigherTimes is formulated as:
L (θ) =

∑k=N+T
k=N+1

∑D
i=1

∣∣xik − x̂ik∣∣, where θ represents all
the learnable parameters in the network, xik is the ground-
truth and x̂ik is the prediction for channel i at step k.

4. Experiments
4.1. Implementation details

All deep learning-based models are implemented in Py-
Torch and run on a machine with one NVIDIA GPU. We
optimize all the models using Adam optimizer (Kingma &
Ba, 2014) with learning rate 0.001 and run for a maximum
of 100 epochs. We employ early stopping strategy with the
patience of 20.

4.2. Datasets

To validate the performance of our proposed method on
time-series forecasting task, we conduct experiments on
two public real-world time series datasets: PeMSD4 and
PeMSD8 (Bai et al., 2020).

Data preprocessing: We split each dataset into the train,
validation and test set according to the chronological or-
der. The train/validation/test ratio for all datasets is
60%/20%/20%, respectively. We normalize every dataset
to zero mean and unit standard deviation. We use two set-
tings in our experiment:

• Short forecasting horizon: we use one-hour historical
window (N = 12 steps) to predict future values in the
next hour (T = 12), similar to (Bai et al., 2020).

• Long forecasting horizon: we use the window length
N = 48 and the horizon length T = 48.
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Setting TCN LSTM DCRNN STGCN GWN AGCRN Ours

Short-horizon PeMSD4 26.31 (7) 23.68 (4) 21.22 (3) 26.98 (8) 25.28 (6) 20.79 (2) 20.33 (1)
PeMSD8 20.04 (7) 19.84 (6) 16.82 (3) 23.75 (8) 19.47 (5) 16.69 (2) 16.63 (1)

Long-horizon PeMSD4 37.68 (5) 69.64 (7) 28.14 (4) 37.72 (6) 25.89 (3) 23.69 (2) 23.43 (1)
PeMSD8 32.15 (5) 50.57 (6) 25.66 (4) 32.30 (5) 19.36 (1) 20.02 (3) 19.82 (2)

Table 1: Performance comparison on two traffic forecasting datasets: PeMSD4 and PeMSD8. (R) denotes the rank. The
smaller the metric, the better.

4.3. Settings

4.3.1. BASELINE METHODS

We compare our method with multiple time-series fore-
casting baselines, including (i) traditional methods and (ii)
deep learning-based methods. Details of the baselines are
as follows:

.Long Short-Term Memory (LSTM): A standard recurrent
model for time-series forecasting. .TCN (Bai et al., 2018):
A sequential model using temporal convolutions as the
main operation. .DCRNN (Li et al., 2018): A method
which formulates the graph convolution with the diffusion
process and combines GCN with recurrent models in an
encoder-decoder framework. .ST-GCN (Yu et al., 2018)
and Graph WaveNet (GWN) (Wu et al., 2019): Methods
which combine graph convolutional network and temporal
convolutions to handle spatial and temporal correlations,
respectively. .AGCRN (Bai et al., 2020): A model which
learns to generate a static graph from data and combines
graph convolutions with recurrent neural networks.

4.3.2. PERFORMANCE METRICS

Previous work (Bai et al., 2020) reported both Mean Abso-
lute Error (MAE) and Root Mean Squared Error (RMSE).
However, due to space limit, we only report the MAE in
our main results.

4.4. Results

We have totally 4 sets of experiments corresponding to 2
datasets and 2 forecasting horizons for each. For each ex-
periment set we run the models (LSTM, Graph WaveNet,
ARGCN and HigherTimes) and record the relative rank-
ing in accuracy of the models. Fig. 2 shows the mean
and standard deviation of the ranking over all experi-
ments, sorted by the MAE metric. In numbers, the av-
eraged ranks are: TCN (4.5±0.5), LSTM (4.25±0.83),
Graph-WaveNet (2.75±1.09), AGCRN (2.25±0.43), and
HigherTimes (1.25±0.43). In other words, our model is
the best on average and is the most consistent.

Table. 1 shows results on PeMSD4 and PeMSD8 datasets.
Our model ranks first or second in all four settings. No-
tice that both PeMSD4 and PeMSD8 datasets provide
ground-truth adjacency matrices of the recording channels.

TCN LSTM Graph WaveNet AGCRN HigherTimes
Method

0

1

2

3

4

5

Ra
nk

Figure 2: Average ranking over all horizons. The lower the
position, the better.

DCRNN and STGCN make use of these matrices, while
some others (Graph WaveNet, AGCRN) infer the matrices
from data.

5. Discussion
We have proposed HigherTimes, a new recurrent relational
system to model indirect, dynamic high-order relations be-
tween variables in multivariate time series. HigherTimes
disentangles the two dynamics: the recording processes
of the observed time series; and the governing processes,
which are latent and assumed to generate the readings. Pro-
cesses communicate through a bidirectional message pass-
ing mechanism. Each process maintains its own memory
that retains process-specific long-term patterns, but allows
cross-process access at the governing layer. HigherTimes
is trained and validated on the task of long- and short-
horizon forecasting over well-studied multivariate time se-
ries datasets, demonstrating its efficacy.
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