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Abstract
Realistic synthetic time series data of sufficient
length enables practical applications in time se-
ries modeling tasks, such as forecasting, but re-
mains a challenge. In this paper we present PSA-
GAN, a generative adversarial network (GAN)
that generates long time series samples of high
quality using progressive growing of GANs and
self-attention. We show that PSA-GAN can be
used to reduce the error in two downstream fore-
casting tasks over baselines that only use real data.
We also introduce a Frechet-Inception Distance-
like score, Context-FID, assessing the quality of
synthetic time series samples. In our downstream
tasks, we find that the lowest scoring models cor-
respond to the best-performing ones. Therefore,
Context-FID could be a useful tool to develop
time series GAN models.

1. Introduction
In the past years, methods such as [29, 9, 15, 5, 23, 25, 4, 34]
have consistently showcased their effectiveness of deep
learning in time series analysis tasks. Although these deep
learning based methods are effective when sufficient clean
data is available, this assumption is not always met in prac-
tice. For example, sensor outages can cause gaps in IoT data,
which might render the data unusable for machine learning
applications [39]. An additional problem is that time series
panels often have insufficient size for forecasting tasks, lead-
ing to research in meta-learning for forecasting [24]. Thus,
designing flexible and task-independent models that gen-
erate synthetic, but realistic time series for arbitrary tasks
poses an important challenge. Generative adversarial net-
work (GAN) is a flexible model family that has had success
in other domains. However, for their success to carry over
to time series, synthetic time series data must be of real-
istic length, which current state-of-the-art synthetic time
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series models struggle to generate because they often rely
on recurrent networks to capture temporal dynamics [8, 37].

In this work, we make three contributions: i) We propose
PSA-GAN, a progressively growing, convolutional time se-
ries GAN model augmented with self-attention [13, 33].
PSA-GAN can be scaled to long time series because the
progressive growing architecture starts modeling the coarse-
grained time series features and moves towards modeling
fine-grained details during training. The self-attention mech-
anism captures long-range dependencies in the data [38].
ii) We show empirically that PSA-GAN samples are of
sufficient quality and length to boost downstream fore-
casting tasks via data augmentation and data imputation
in far-forecasting experiments. iii) Finally, we propose a
Frechet Inception distance (FID)-like score [27], Context-
FID, leveraging unsupervised time series embeddings [9].
We show that the lowest scoring models correspond to the
best-performing models in our downstream tasks and there-
fore could be a useful general-purpose tool to select GAN
models for downstream applications.

Related Work. GANs [11] are an active area of re-
search [14, 37, 7, 18, 8] that have recently been applied
to the time series domain [8, 37] to synthesize data [31, 8],
and to forecasting tasks [35]. Many time series GAN ar-
chitectures use recurrent networks to model temporal dy-
namics [22, 8, 37]. Modeling long-range dependencies and
scaling recurrent networks to higher lengths is inherently dif-
ficult and limits the application of time series GANs to short
sequence lengths (less than 100 time steps) [37, 8]. One
way to achieve longer realistic synthetic time series is by
employing convolutional [32, 3, 10] and self-attention archi-
tectures [33]. Convolutional architectures are able to learn
relevant features from the raw time series data [32, 3, 10],
but are ultimately limited to local receptive fields and can
only capture long-range dependencies via many stacks of
convolutional layers. Self-attention can bridge this gap and
allow for modeling long-range decencies from convolutional
feature maps, which has been a successful approach in the
image [38] and time series forecasting domain [17]. An-
other technique to achieve long sample sizes is progressive
growing, which successively increases the resolution by
adding layers to generator and discriminator during train-
ing [13]. Our proposal, PSA-GAN, synthesizes progressive
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growing with convolutions and self-attention into a novel
architecture particularly geared towards time series.

Another challenge is the evaluation of synthetic data. While
the computer vision domain uses standard scores like
the Inception Score and the Frechet Inception Distance
(FID) [27, 12], such universally accepted scores do not exist
in the time series field. Thus, researchers rely on a Train on
Synthetic–Test on Real setup and assess the quality of the
synthetic time series in a downstream classification and/or
prediction task [8, 37]. In this work, we build on this idea
and assess the GAN models through downstream forecast-
ing tasks. Additionally, we suggest a Frechet Inception
Distance-like score that is based on unsupervised time se-
ries embeddings [10]. Critically, we want to be able to score
the fit of our fixed length synthetic samples into their context
of (often much longer) true time series, which is taken into
account by the contrastive training procedure in [10]. As
we will later show, the lowest scoring models correspond to
the best performing models in downstream tasks.

2. Model
Problem formulation We denote the values of a time se-
ries dataset by zi,t ∈ R (or N), where i ∈ {1, 2, . . . , N} is
the index of the individual time series and t ∈ {1, 2, . . . , T}
is the time index. Additionally, we consider an associ-
ated matrix of time feature vectors X1:T = (x1, . . . ,xT )
in RD×T , where D is the number of time features. Our
goal is to model a time series of fixed length τ , Ẑi,t,τ =
(ẑi,t, . . . , ẑi,t+τ ), from this dataset using a conditional gen-
erator function G and a fixed time point t. Thus, we aim
to model Ẑi,t,τ = G(n, φ(i),Xt:t+τ ), where n is a noise
vector drawn from a standard Gaussian and φ is an embed-
ding function that maps the index of a time series to a vector
representation.

Spectral Normalised Residual Self Attention with Con-
volution The generator and discriminator use a main func-
tion m that is a composition of convolution, self attention
and spectral normalisation.

m :Rnf×l → Rn
′
f×l

x 7→ γ SA(f(x)) + f(x)
(1)

f(x) = SN(LR(c(x))) (2)

where c is the one dimensional convolution operator, LR the
LeakyReLU operator [36], SN the Spectral Normalisation
operator [21] and SA the Self Attention module. The vari-
able nf is the number of in-features, n′f is the number of
out-features and l is the length of the sequence. Following
the work of [38], the parameter γ is learnable. This is ini-
tialized to zero to allow the network to learn local features
directly from the building block f , and is later enriched with

distant features as the absolute value of gamma increases,
hereby more heavily factoring the self-attention term SA◦f .

Downscaling and Upscaling The following sections men-
tion upscaling (UP) and downscaling (DOWN) operators
that double and halve, respectively, the length of the time
series. In this work, the upscaling operator is a linear in-
terpolation and the downscaling operator is the average
pooling.

PSA-GAN PSA-GAN is a progressively growing GAN[13];
thus, trainable modules are added during training. Hereby,
we model the generator and discriminator as a composition
of functions: G = gL+1 ◦ ... ◦ g1 and D = d1 ◦ ... ◦ dL+1

where each function gi and di for i ∈ [1, L+1] corresponds
to a module of the generator and discriminator.

Generator As a preprocessing step, we first map the in-
put features from a sequence of length τ to a sequence of
length 8, denoted by Z̃0, using average pooling. Then, the
first layer of the generator g1 applies the main function m:

g1 : Rn
′
f×2

3

→ Rnf×23

Z̃0 7→ Z̃1 = m(Z̃0)
(3)

For i ∈ [2, L], gi maps an input sequence Z̃i−1 to an output
sequence Z̃i by applying an upscaling of the input sequence
and the function m:

gi : Rnf×2i+2

→ Rnf×2i+3

Z̃i−1 7→ Z̃i = m(UP(Z̃i−1))
(4)

Lastly the final layer of the generator gL+1 reshapes the
multivariate sequence Z̃L to a univariate time series Ẑi,t,τ
of length τ = 2L+3 using a one dimensional convolution.

Discriminator The architecture of the discriminator mir-
rors the architecture of the generator. It maps the generator’s
output Ẑi,t,τ and the time features Xt:t+τ to a score d. The
first module of the discriminator dL+1 uses a one dimen-
sional convolution c1 and a LeakyReLU activation function:

dL+1 : R1+D,τ → Rnf ,τ

(Z̃L+1,Xt:t+τ ) 7→ Z̃L = LR(c1(Z̃L+1,Xt:t+τ )
(5)

For i ∈ [L, 2], the module di applies a downscale operator
and the main function m:

di : Rnf×2i+3

→ Rnf×2i+2

Yi 7→ Yi−1 = DOWN(m(Yi))
(6)

The last module d1 turns its input sequence into a score:

d1 : Rnf×23 → R
Y1 7→ Y0 = SN(FC(LR(SN(c(Y1)))))

(7)

where FC is a fully connected layer.
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2.1. Loss functions

PSA-GAN can be trained both via a Wasserstein loss [2]
and via least squares [20]. We use an auxiliary moment loss
to the generator to match the first and second order moment
between a batch of synthetic samples and real samples.

2.2. Training procedures

GANs are notoriously difficult to training, have hard-to-
interpret learning curves, and are susceptible to mode col-
lapse. PSA-GAN uses spectral normalization and progres-
sive fade-in of new layers to stabilize training. We provide
implementation details in the Supplement.

3. Experiments
3.1. Context-FID Score on Time Series Embeddings

The Frechet Inception Distance [12] assesses the perfor-
mance of a GAN by measuring the similarity between the
synthetic samples and the real samples. Here, we replace
InceptionV3 [30] with the encoder E of Franceschi et al.
[9], trained separately for each dataset.
Our proposed Context-FID score is computed as follows:
we first select a time range [t, t + τ ]. We then sample a
batch of synthetic time series Ẑt,τ = [Ẑ1,t,τ , ..., ẐN,t,τ ]
and a batch of real time series Zt,τ = [Z1,t,τ , ..., ZN,t,τ ]

that we encode with E into Ẑet,τ and Ze
t,τ respectively.

Finally, we compute the FID score of the embeddings.

3.2. Datasets and Baselines

We use the following public, standard benchmark datasets
in the time series domain: M4, hourly time series competi-
tion data (414 time series) [19]; Solar, hourly solar energy
collection data in Alabama State (137 stations) [16]; Elec-
tricity, hourly electricity consumption data (370 customers)
[6]; Traffic: hourly occupancy rate of lanes in San Francisco
(963 lanes) [6].

We split all data into a training/test set with a fixed date
and use all data before that date for training. For testing,
we use a rolling window evaluation with a window size
of 32 and seven windows. We minmax scale each dataset
to be within [0, 1] for all experiments in this paper (we
scale the data back before evaluating the forecasting experi-
ments). We compare PSA-GAN with different GAN models
from the literature (TIMEGAN [37] and EBGAN [40]). In
what follows PSA-GAN and PSA-GANW denote our pro-
posed PSA-GAN with least squares and Wasserstein loss,
respectively. In the data augmentation and far-forecasting
experiments, we use the GluonTS [1] implementation of
DeepAR which is a well-performing forecasting model and
established baseline [28].

3.3. Evaluation Results

Direct Evaluation with Context-FID Scores: Table 1
shows the Context-FID scores for PSA-GAN, baselines,
and ablations. For all sequence length, we find that
PSA-GAN consistently produces the lowest Context-FID
scores. PSA-GAN also scores lower Context-FID scores
than its ablation models without moment loss and self-
attention (see Table 1, last two columns) For a sequence
length of 256 time steps, TIMEGAN is the second best per-
forming model for all datasets, except for Electricity. We
show example plots of the samples generated by all models
in the Supplement. We find that low Context-FID scores
correlate well with samples that qualitatively look realistic.
As we show later, low Context-FID score models also cor-
respond to the best-performing models in our downstream
tasks. In the next two paragraphs, we will show the perfor-
mance of PSA-GAN on downstream tasks: data augmenta-
tion and far-forecasting.

Data Augmentation: In this experiment, we train
DeepAR by randomly sampling time windows of length
256 from the dataset. We average the real data and GAN
samples to augment the data during training. 1 During infer-
ence, DeepAR is conditioned on real data only to generate
forecasts. We evaluate the forecasts with the normalized
root mean squared error (NRMSE), normalized by the ab-
solute mean of the target in the forecasting window. We
give more details on the forecasting setup in the Supple-
ment. Using PSA-GAN for data augmentation results into
the lowest NRMSE for three out of four datasets (M4, Solar,
Traffic) (see Table 2). Although using synthetic samples
from PSA-GAN improves over using real data only, we no-
tice that our improvements are small and more research is
required to explore the use of synthetic data for forecasting
via data augmentation.

Far-forecasting: In this experiment, we forecast far into
the future by assuming that the data points between the
training end time and the rolling evaluation window are
not observed (in other words, we are increasing the lead
time). For example, the last evaluation window would have
32 ∗ 6 unobserved values between the training end time
and the forecast start date. Because DeepAR conditions on
this data during inference, we need to impute these missing
observations. We use the GAN models during inference
to fill the missing observations with synthetic data. As a
baseline, we use DeepAR and impute the missing observa-
tions with a moving average during inference. Here, we find
that using the synthetic data from GAN models drastically

1We also tried using only the GAN generated data for training
and experimented with ratios of mixing synthetic and real sam-
ples, similar to the work in [26], but we were not able to obtain
consistent improvements in this way.
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Models PSA-GAN Ablation study

Dataset Length EBGAN TIMEGAN PSA-GANW PSA-GAN without SA with SA
(ours) without ML without ML

Electricity 64 2.07± 0.30 0.77± 0.12 0.95± 0.07 0.03± 0.01 0.11± 0.02 0.24± 0.03
128 1.93± 0.28 1.03± 0.13 4.08± 0.24 0.04± 0.01 1.65± 0.12 0.16± 0.03
256 3.02± 0.25 1.58± 0.08 1.10± 0.10 0.08± 0.03 0.44± 0.05 0.08± 0.03

M4 64 0.93± 0.15 0.93± 0.10 0.80± 0.08 0.14± 0.05 0.14± 0.05 0.09± 0.03
128 2.53± 0.27 0.60± 0.07 1.15± 0.10 0.45± 0.09 0.59± 0.19 0.28± 0.09
256 2.08± 0.13 0.89± 0.13 1.97± 0.64 0.52± 0.07 1.46± 0.22 1.12± 0.13

Solar-Energy 64 0.48± 0.11 0.13± 0.02 1.89± 0.40 0.03± 0.01 0.17± 0.05 0.17± 0.04
128 1.87± 0.43 0.22± 0.05 0.15± 0.04 0.02± 0.01 0.05± 0.01 0.60± 0.08
256 2.38± 0.43 0.09± 0.02 2.62± 0.24 0.06± 0.01 1.46± 0.22 1.12± 0.13

Traffic 64 2.65± 0.15 0.59± 0.06 0.92± 0.08 0.23± 0.04 0.16± 0.03 0.38± 0.04
128 2.09± 0.26 2.13± 0.12 2.08± 0.10 0.42± 0.08 0.55± 0.06 0.51± 0.04
256 1.86± 0.14 1.82± 0.12 2.76± 0.20 0.56± 0.10 1.74± 0.06 1.21± 0.08

Table 1. Context FID-scores (lower is better) of PSA-GAN, baselines, and ablations. We score 1600 randomly selected windows and
report the mean and standard deviation. The first four result columns correspond to the different models that we tested. The last two
columns are ablations of PSA-GAN without self-attention and moment loss.

NRMSE

Dataset Electricity M4 Solar Traffic
Model

DeepAR 0.49±0.03 0.26±0.02 1.07±0.01 0.45±0.01

EBGAN 0.64±0.05 0.32±0.09 1.18±0.03 0.50±0.03

TIMEGAN 0.56±0.05 0.28±0.02 1.06±0.02 0.47±0.004

PSA-GANW 0.50±0.01 0.26±0.07 1.08±0.03 0.64±0.13

PSA-GAN 0.53±0.07 0.23±0.03 1.04±0.01 0.43±0.003

Table 2. NRMSE accuracy comparison of data augmentation ex-
periments (lower is better, best method in bold). Mean and 95%
confidence intervals are obtained by re-running each method five
times. DeepAR is only run on the real time series data. The other
models correspond to DeepAR and one of the GAN models for
data augmentation.

NRMSE

Dataset Electricity M4 Solar Traffic
Model

DeepAR 4.01±0.18 1.0±0.14 1.64±0.01 0.95±0.03

EBGAN 3.3±0.43 1.44±0.12 2.5±0.05 0.88±0.03

TIMEGAN 2.1±0.18 1.67±0.03 1.15±0.02 0.85±0.04

PSA-GANW 2.17±0.05 1.13±0.05 1.49±0.04 1.0±0.07

PSA-GAN 1.72±0.05 0.47±0.03 1.19±0.02 0.56±0.00

Table 3. NRMSE accuracy comparison of far-forecasting exper-
iments (lower is better, best method in bold). Mean and 95%
confidence intervals are obtained by re-running each method five
times. DeepAR is only run on the real time series data. The other
models correspond to DeepAR and one of the GAN models for
filling missing observations.

improve over the DeepAR baseline and using samples from
PSA-GAN results into the lowest NRMSE for three out of
four datasets (see Table 3).

Low Context-FID Score Models Correspond to Best-
performing Forecasting Models: One other observation
is that the lowest Context-FID score models correspond to
the best models in the data augmentation and far-forecasting
experiments. For each experiment, the model with low-
est Context-FID is also the model that produces the lowest
NRMSE in three out of four cases, for both the data augmen-
tation and far-forecasting experiment. At least one of the
models with the lowest two Context-FID scores performs
best in the forecasting experiments. This suggests that the
Context-FID score could be a useful score to develop time
series GAN models for downstream use.

4. Conclusion
In this paper, we have presented PSA-GAN, a progressive
growing time series GAN, augmented with self-attention,
that produces long realistic time series and improves down-
stream forecasting tasks. Furthermore, we introduced the
Context-FID score to assess the quality of synthetic time
series samples produced by GAN models. We found that the
lowest Context-FID scoring models correspond to the best-
performing models in downstream tasks. We believe that
time series GANs that scale to long sequences combined
with a reliable metric to assess their performance might lead
to their routine use in time series modeling.
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[5] de Bézenac, E., Rangapuram, S. S., Benidis, K.,
Bohlke-Schneider, M., Kurle, R., Stella, L., Hasson,
H., Gallinari, P., and Januschowski, T. Normalizing
kalman filters for multivariate time series analysis. Ad-
vances in Neural Information Processing Systems, 33,
2020.

[6] Dheeru, D. and Karra Taniskidou, E. UCI machine
learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

[7] Engel, J., Agrawal, K. K., Chen, S., Gulrajani, I., Don-
ahue, C., and Roberts, A. GANSynth: Adversarial
neural audio synthesis. In International Conference
on Learning Representations, 2019.

[8] Esteban, C., Hyland, S. L., and Rätsch, G. Real-valued
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A. Time Series Features
We use time series features to represent the time dimen-
sion for the GAN models and also for DeepAR. For
our hourly datasets, we use HourOfDay, DayOfWeek,
DayOfMonth and DayOfYear features. Each feature is
encoded using a single index number (for example, between
[0, 365[ for DayOfYear) and normalized to be within
[−0.5, 0.5]. We also use an age feature to represent the
age of the time series to be log(2.0 + t) where t is the time
index.

B. Compute details
PSA-GAN (and its variants) has been trained on
ml.p2.xlarge Amazon instances. The table 1 summarizes
the training time for each variant and each length of time
series:

PSA-GAN(-W)
PSA-GAN(-W)
w/o self attention

16 2h 2h
32 4h 3h
64 5h 3h
128 7h 4h
256 9h 6h

Table 1. Training time for PSA-GAN and PSA-GAN-W with and
without self attention

C. Model Details
C.1. Loss Function

PSA-GAN can be trained both via a Wasserstein loss [2]
and via least squares [5].

We also introduce a auxiliary moment loss to the generator
to match the first and second order moment between a batch

1AWS AI Labs, Germany. Correspondence to: Paul
Jeha <pauljeha@amazon.de>, Michael Bohlke-Schneider
<bohlkem@amazon.de>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

of synthetic samples and a batch of real samples denoted
Ẑτ and Zτ respectively:

ML(Ẑτ ,Zτ ) = |σ(Ẑτ )− σ(Zτ )|+ |µ(Ẑτ )− µ(,Zτ )|

where µ is the mean and σ the standard deviation operator.

C.2. Training Procedures

GANs’ training is notoriously difficult. They are prone
to unstable training, do not necessarily have meaningful
learning curves and can exibit mode collapse. PSA-GAN
addresses these issues as follows:

Spectral Normalisation Both the generator and the dis-
criminator benefit from using spectral normalisation layers.
In the discriminator, Spectral Normalisation stabilizes train-
ing [6]. It also constrains the Lipschitz constant of the
discriminator to be bounded by one, thus respecting the
condition of the Wasserstein GAN optimisation problem. In
the generator, according to [8] the spectral normalisation
stabilises the training and avoids escalation of the gradient
magnitude.

Progressive fade in of new layers As training progresses,
new layers are added to double the length of time series.
However, simply adding new untrained layers drastically
changes the number of parameters and the loss landscape,
which destabilizes training. To mitigate this effect, we up-
dated the model to progressively fade in new layers gi for
i ∈ [2, L] [3], as follows:

gi :Rnf×2i+2

→ Rnf×2i+3

Z̃i−1 7→ Z̃i = αm(UP(Z̃i−1)) + (1− α)UP(Z̃i−1)
(1)

where α is a scalar initialized to be zero and grows linearly
to one over the given number of epochs.

The same procedure is also applied to di for i ∈ [2, L]:
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di :Rnf×2i+3

→ Rnf×2i+2

Yi 7→ Yi−1 = αDOWN(m(Yi)) + (1− α)DOWN(Yi)
(2)

D. Training details
Both the generator and the discriminator has been trained
using the ADAM optimizer [4] with a learning of 0.0005
and betas of (0.9, 0.999).
A new module is added to the discriminator and generator
for each 1000 epochs passed. Each module is faded in over
200 epochs.

Epoch number Batch size
Number of batches
per epoch

16 2500 128 100
32 3500 128 100
64 4500 128 100
128 5500 128 100
256 6500 128 100

Table 2. Number of epochs used to train PSA-GAN(-W) and batch
size.

E. Architecture details
The number of features nf in the generator and discrimina-
tor equals 32. The kernel size of the convolutional layer c
equals 3 and the kernel size of the convolutional layer c1
equals 1.

F. Forecasting Experiment Details
We use the DeepAR [7] implementation in GluonTS [1]
for the forecasting experiments. We used the default
hyperparameters of DeepAR with the following exceptions:
epochs=100, num batches per epoch=100,
dropout rate=0.01, scaling=False,
prediction length=32, context length=64,
use feat static cat=True. We use the Adam
optimizer with a learning rate of 1e− 3 and weight decay
of 1e − 8 . Additionally, we clip the gradient to 10.0
and reduce the learning rate by a factor of 2 for every
10 consecutive updates without improvement, up to a
minimum learning rate of 5e−5. DeepAR also uses lagged
values from previous time steps that are used as input
to the LSTM at each time step t. We set the time series
window size that DeepAR samples to 256 and truncate the
default hourly lags to fit the context window, the prediction
window, and the longest lag into the window size 256. We
use the following lags: [1, 2, 3, 4, 5, 6, 7, 23, 24, 25, 47, 48,
49, 71, 72, 73, 95, 96, 97, 119, 120, 121, 143, 144, 145].

For the far-forecasting experiment, we additionally impute
the missing observations during inference with a moving
average. For the moving average, we tried short and long
window sizes (3 and 24) but they essentially resulted into
the same performance.

G. Plots of time series
Below we plot time series generated by all the models pre-
sented in the paper.
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Figure 1. Time Series - Solar-Energy: On the left we plot four synthetic time series at the same time range. On the right we plot between
two vertical red line a real time series at the same time range. On the left and right of the red lines is the context of the real time series, 30
time points before and after. We aslo show the FID score for each model.
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Figure 2. Time Series - M4 Hourly: On the left we plot four synthetic time series at the same time range. On the right we plot between
two vertical red line a real time series at the same time range. On the left and right of the red lines is the context of the real time series, 30
time points before and after. We aslo show the FID score for each model.
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Figure 3. Time Series - Traffic: On the left we plot four synthetic time series at the same time range. On the right we plot between two
vertical red line a real time series at the same time range. On the left and right of the red lines is the context of the real time series, 30 time
points before and after. We aslo show the FID score for each model.
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Figure 4. Time Series - Electricity: On the left we plot four synthetic time series at the same time range. On the right we plot between two
vertical red line a real time series at the same time range. On the left and right of the red lines is the context of the real time series, 30 time
points before and after. We aslo show the FID score for each model.


