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ABSTRACT
Discovering latent structures in spatial data is of critical
importance to understanding the user behavior of location-
based services. In this paper, we study the problem of geo-
graphic segmentation of spatial data, which involves dividing
a collection of observations into distinct geo-spatial regions
and uncovering abstract correlation structures in the data.
We introduce a novel, Latent Poisson Factor (LPF) model
to describe spatial count data. The model describes the spa-
tial counts as a Poisson distribution with a mean that factors
over a joint item-location latent space. The latent factors
are constrained with weak labels to help uncover interesting
spatial dependencies. We study the LPF model on a mobile
app usage data set and a news article readership data set.
We empirically demonstrate its effectiveness on a variety of
prediction tasks on these two data sets.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

Keywords
geographic segmentation, spatial data, mobile app usage

1. INTRODUCTION
The proliferation of in-vehicle navigation systems and GPS-

equipped mobile devices over the last decade has resulted in
a dramatic increase in the collection of spatial data. Un-
derstanding latent structures in such data is crucial to user
behavior modeling and other prediction tasks including tar-
geted advertising, personalization and location-based recom-
mender system. Due to privacy concerns or limitations in
the spatial resolution of the collection devices, spatial data
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are often available in an aggregated form, where spatial ob-
servations from distinct users are combined into counts oc-
curring at coarse spatial locations.

This paper deals with the geographic segmentation of spa-
tial count data. Geographic segmentation refers to the task
of dividing observations into distinct geographical regions
and identifying abstract structures in these observations [9].
Spatial clustering, e.g. [3, 16] is a common approach to
tackle the problem. However, it usually relies on the spa-
tial auto-correlation of actual geography of locations. Our
interest in geographic segmentation is motivated primarily
by our desire to understand how mobile app usage behav-
ior for different categories of mobile users varies spatially.
Our goal in this case is to describe a joint distribution of
the number of uses of an app at a particular spatial loca-
tion using data aggregated from many devices. By doing
so we hope to answer some important questions of interest
to mobile app developers, marketing researchers and many
others. For instance, do people tend to use one app or one
type of app when at a particular location? Which locations
are likely to result in the use of a particular type of app?

In our setting, geographic segmentation is challenging be-
cause our observations have no correlation with the actual
geography of the location, but the type of the location. For
example, the fact that someone is interested in running a
Yelp app, is not because she is at a specific geo-coordinate
but because she is nearby a restaurant. Therefore, we need
to capture the implicit relationship between a specific geo-
graphical area and the type of interest in that area, which is
data dependent. Second, the density of the user population
varies drastically across different locations. For instance, the
number of observed uses of an app in San Francisco will be
much larger than the number of uses of that app in Sunny-
vale. As a result, aggregate spatial counts data would easily
violate the spatial stationarity assumptions of many stan-
dard statistical methods. Finally, while aggregate statistics
can mitigate the variability in individual usage data, it can
also result in the accumulation of additive noise. This re-
quires the model to take into account the intrinsic uncer-
tainties in the data and automatically learn the underlying
correlation.

To collectively address all these challenges, we develop a
novel hierarchical Bayesian model, called the Labeled Pois-
son Model (LPF), to describe spatial count data. As the
name suggests, the model describes the counts at a spatial
location as a Poisson distribution with a mean that factors
over a joint item-location latent space. The LPF model is



also semi-supervised and uses weak labels on the geographic
observations to help uncover underlying spatial dependen-
cies. We study this model on two different data sets. One is
a data set of mobile app usage collected by Yahoo Aviate,
an intelligent launcher for Android devices; the other is a
data set of the Yahoo news articles that were clicked on in
different regions of the US. We use the LPF model to predict
the number of uses of an app or clicks of a news article at a
particular location and evaluate its efficacy by holding out
the observed item counts at a set of locations (the test set)
and observing how well the model can recover these held out
values.

We observe that the semantics of a location, rather than
its spatial coordinates (e.g. longitude, latitude), play a key
role in the task of geographic segmentation. For mobile app
usage, the types of business venues near a location influence
the distribution of app activation at that location. For news
data, demographic information such as the population, me-
dian age and income are important factors in determining
the number of clicks in a location. Our proposed LPF model
is able to utilize such information to infer the underlying spa-
tial correlations and more accurately estimate the counts at
a location. Moreover, our model is privacy preserving as it
exploits the aggregate statistics rather than individual data.
Our work provides some insight into the design of a general-
purpose geographic segmentation strategy.

2. RELATED WORK
The use of aggregate statistics for behavior profiling is a

fairly common practice in the data mining community. The
early work of [18, 15] discovered web usage patterns by clus-
tering page views and navigation paths across all users to a
particular site. More recently, the authors in [10] use an ag-
gregated set of page views and user transactions to generate
a set of overlapping usage profiles. These usage profiles are
then employed in a “personalization engine” to tailor the set
of pages shown to a user when they first visit a site. The
authors in [12] studied the reliability of crowd-sourced infor-
mation, where the information (e.g. an entry in Wikipedia)
from one source can be influenced by other sources. They
propose a probabilistic model to tease out the dependency
between sources and uncover the true information.

Geographic segmentation is of particular interest in mar-
keting research, where the goal is to divide a market into
distinct geographical regions (e.g. countries, cities or neigh-
borhoods), so that a company or organization can use the
market segmentation to, for example, decide how to market
or promote a product in a region (see e.g., [9] for an overview
of the geographic segmentation problem). Geographic seg-
mentation has also seen successful applications in detecting
crime hot spots [9] and geographical annotations[23]. Spa-
tial clustering is a common approach in geographic segmen-
tation. Many methods for finding clusters in spatial data
exist (see e.g., [11]), and density-based methods that divide
the spatial observations into distinct groups are particularly
popular. DBSCAN [3] is one such density-based algorithm
that works by first clustering points that lie in close spatial
proximity to each other, and then removing outliers whose
nearest neighbor is farther than some pre-specified thresh-
old.

To our knowledge, geographic segmentation of mobile app
usage has not yet been studied. Existing work [1, 8] has
shown that time of day, location (e.g., whether at home,
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Figure 1: Heatmap of the number of open events for
the Dialer, Yelp, Flappy Bird and Snapchat apps.
Opens are aggregated for 100 active devices over a
7 month period in the San Francisco Bay area. Red
denotes a higher frequency of open events.

work, or out at a restaurant), activity (e.g., whether walk-
ing, running, or driving), and even social setting drive app
usage behavior. However, this work did not consider loca-
tion in a systematic way, instead mapping location to a small
set of categories (e.g., at home, at work, or other). Location
semantics has been studied in geographic topic modeling lit-
erature [21, 5, 22]. However, location semantics for mobile
app usage stays under-explored. Yet other work [20, 6] has
focused on location-based recommendation, which is some-
what different from our problem. In there, the goal is to find
a set of spatially relevant items (e.g. nearby restaurants, lo-
cal events or even mobile apps) for a particular user.

3. EXPLORATORY ANALYSIS
We conduct an exploratory analysis of spatial counts for

two different application areas - namely, mobile app usage
and news article click data. After introducing each of these
data sets, we study the distribution of their spatial counts
and check for the existence of spatial correlation. We also
identify important characteristics of the geographic distri-
bution in these settings.

3.1 App Usage Data
We collected app usage data from 14,836 mobile devices

on which Yahoo Aviate 1 was installed. As mentioned, Ya-
hoo Aviate is a mobile launcher for Android devices. The
Android operating systems reports every time a user opens
an app or brings an app to the foreground. For each such app
open event, Yahoo Aviate records the name of the app that
was opened, the time at which it was opened and the ap-
proximate location (latitude, longitude) of the device when

1https://play.google.com/store/apps/details?id=com.tul.aviate



Figure 2: Heatmap of the number of articles read in
different locations in the United States.

the app was opened 2. App open events were recorded over
a 7-month period for devices in the San Francisco Bay area.

Figure 1 is a heat map visualizing the number of opens of
four popular apps - namely, Dialer, Yelp, Flappy Bird and
Snapchat. The numbers of opens of each app are aggregated
across the 100 devices with the most total open events. Ar-
eas where an app was frequently opened are shown in red
and areas of infrequent app opens are uncolored. Interest-
ingly, from this figure it appears that how frequently an app
is opened at a location can be explained (at least in part)
by looking at both the type of venues near that location and
the intended functionality of the app. For example, Dialer,
which is a communication app, is frequently used by the San
Francisco Pier 39, a popular tourist destination. Yelp, which
is a travel & local recommendations app is popular in San-
tana Row, an area with many shops, restaurants and bars.
Flappy Bird, which is an arcade game, has a similar distri-
bution to Yelp, which suggests that games may be popular
in areas of commerce as well. Finally, Snapchat, a commu-
nication and social networking app, is highly concentrated
near Stanford, a university area.

The results in Figure 1 suggest that mobile app usage
at a location may be influenced by the types of business
nearby. In order to understand how the frequency of all app
opens varies spatially, we next aggregate the open events of
the active users across the 100 most popular apps. Figure 3
displays the counts after this additional level of aggregation.
Note that while the app opens are spread over the entire bay
area, apps are opened with the highest frequency near the
bay area’s three major airports - SFO in Millbrae, SJC in
San Jose and OAK in Oakland. One possible explanation
for the phenomena is that people tend to open apps with
increased frequency while waiting for flights.

3.2 Yahoo News Data
We also collected data from the interaction of 182,355

users with the news stream on the Yahoo homepage. The
Yahoo stream shows a personalized list of news articles to
each user visiting the page. Every article in the stream that

2Note that an open event does not necessarily correspond
to actual usage. Some apps, such as music players, run in
the background. Nonetheless, we use the number of opens
as a proxy for app usage.

Figure 3: Heatmap of the number of open events for
the 100 most popular apps. Opens are aggregated
for 100 active devices over a 7 month period and red
denotes a higher frequency of opens.

a user clicks on is recorded. For each such article, we also
record a set of categorical labels describing what that article
is about, as well as the zip code from which the user’s click
originated. The categorical labels are topical in nature, such
as ‘Sports’, ‘Art’, and ‘Education’, and an article can be la-
beled with multiple categories. The categories associated
with an article are obtained by classifying the news article
via a multi-labeled topical classifier.

We collect the click records per article and map each
postal code to a longitude and latitude point 3. Figure 2
is a heat map showing the counts of clicks in each postal
area. For ease of plotting, we uniformly sampled 1,000 loca-
tions. Unlike the app usage data, the article click data are
spread across the entire US. Big cities like San Francisco,
Los Angeles and New York, which have large populations
experience the largest number of clicks, while clicks are far
more sparse in less densely populated areas. In addition, the
spatial resolution for the article click records is at the postal
code level. Since a zip code is likely to contain many types
of businesses, using business categories to provide semantics
for a location (as we did for the app usage data) will be of
little help. For this reason, we choose postal code level pop-
ulation and demographic information to provide semantics
for a location.

3.3 Distribution of Spatial Events
We analyze the distribution of app open and article click

counts across all locations. Figure 4 is a log-log plot that
tabulates the number of location cells at which a given event
occurred. For Aviate app usage data, we use a 103×103 grid.
For article click data, we use a 102 × 102 grid. The results
of Aviate app usage data are shown in the top row and the
news article results are shown on the bottom row. The left

3This was done using the Geocoding library: https:
//developers.google.com/maps-engine/documentation/
geocode



Figure 4: Plot of the number of locations at which
a given event count occurred for Aviate app open
events ( upper row ) and Yahoo! news article click
events ( bottom row ). Left column is the raw prob-
abilistic mass function. The right column shows the
fit of the power-law and exponential distributions to
this count data.

column contains plots of the empirical distributions of each
data set. Interestingly, we see that while the count data are
generally sparse, they closely follow the power law distri-
butions. The right column shows the fit of the power law
distribution to these empirical distributions. For compari-
son, we also fit the exponential distribution. For both data
sets, we observe a good fit for the power law distribution,
which is aligned with the findings in [19] on spatial event
frequency over distances. The fact that aggregated spatial
count data is power-law distributed suggests that we need
a heavy-tailed distribution to model frequency counts. This
finding motivates our choice of the Poisson distribution in
the LPF model.

3.4 Study of Spatial Variation
The analysis in the previous two subsections show the ex-

istence of spatial auto-correlations in the aggregate counts
of mobile app usage and news article click records. How-
ever, the counts do not seem to vary smoothly over space,
meaning that the counts in one location do not seem simi-
lar to the counts in nearby locations. Local smoothness can
be quantified by computing the correlation between the dif-
ferences in observed counts and geographical distance. We
evaluate the spatial smoothness of the app usage data by
drawing a grid over the bay area and binning the app open
events at different locations into each of the grid cells. We
compute the Pearson correlation coefficient between differ-
ences in app usage and the distance between cell centers.
Table 1 displays the correlation between app usage and in-
ter cell distance for several differently sized grids. Note that
spatial correlation can also be evaluated using variogram or
auto-variogram with different covariance functions, here we
use Euclidean distance as a simple example. We observe
that almost no-correlation exists between app usage and the
distance between location centers. As a result, we cannot
assume that people living in a neighborhood tend to use
similar mobile applications.

Table 1: Pearson correlation coefficient between the
difference in the distribution over opens of popular
apps in two cells i and j and the euclidean distance
between cells i and j.

Grid Size 100 400 900 1600 2500
Pearson -0.0406 -0.0327 -0.0158 -0.0221 -0.0167

The key insight we draw from the exploratory analysis
in this section is that a location’s semantics, either venue
categories or demography, affect the distribution of counts
in that location. In the app usage data set, the types of
venues near a location can provide a hint as to the users’
intent when opening an app. For example, when a user is
in an area with many bars and restaurants and they open a
restaurant review app, such as Yelp, their intent is probably
to eat. Or, if they are in a university or high school area
and they open SnapChat, their intent is probably to com-
municate with their friends. For the news article click data,
we have noticed that zip code level demographic informa-
tion, such as the median household income, median age and
even total population can affect the types of articles clicked.
These observations suggest that the semantics provided by
categorical labels of a location, rather than simply the spa-
tial coordinates, are needed when describing correlations in
the observed spatial count data.

In the next section, we propose a model that uses the cor-
relation between different location semantics and item types
to model the intensity of aggregate spatial events. Often
times, an app may be opened (or an article may be clicked
on) for different reasons and the semantics associated with
a location may also be uncertain. For instance, the num-
ber of opens of the Yelp app at a location can be explained
by the fact that Yelp is an app used to recommend local
restaurants, shops and services and also by the presence of
restaurants, shops and services near that location. There-
fore, we adopt a hierarchical Bayesian approach that mod-
els the uncertainty in the categorical labels assigned to each
location and each item. Our approach borrows from the La-
beled LDA model [13] and marries the multi-label supervi-
sion common in document classification with co-occurrence
preference indicators commonly used in collaborative filter-
ing models.

4. LABELED POISSON FACTOR MODEL
In this section, we formally introduce the Labeled Pois-

son Factor (LPF) model. The LPF model is a probabilistic
graphical model that describes a process for generating ag-
gregate spatial count data. Much like the probabilistic factor
model of [14], the frequency of events at a location are due to
the interaction of latent factors - in this case an item latent
factor and a location latent factor. However, we associate
labels to the dimensions of the latent space and use super-
vision to constrain the set of latent factors that can be used
to explain the count at a particular location. In the remain-
der of this section, we elaborate on the generative process
of our model and describe a collapsed Gibbs sampler used
for learning and inference. The tedious derivations of the
sampler are omitted for clarity of presentation.
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Figure 5: Graphical model of Labeled Poisson Factor
model. Shaded circles are observations, blank circles
are latent variables and the variables without a circle
are model parameters.

Table 2: Latent Poisson Factor Model Notation

Symbols Semantics
α Dirichlet prior for item category
β Dirichlet prior for location category
θ Item category distribution parameter
π Location category distribution parameter
Z Item category indicator
S Location category indicator
Y z Item category labels
Y s Location category labels
X Spatial activity frequencies
Λ Intensity distribution parameter
a, b Shape, scale for Gamma prior distribution

The LPF model can be represented by the graphical model
in Figure 5. Let X be an M by N data matrix describing the
aggregated counts for the M items at N different locations,
where Xij is the aggregated count of item i at location j.
In our setting, the item counts are either the number of
opens of an app or the number of clicks on a news article.
Y z is an M by K binary label matrix for each item, where
Y zik ∈ {0, 1} is 1 if item i has label k and there are a total
of K possible labels. Y s is an N by L binary label matrix
for the N different locations, where Y sjl ∈ {0, 1} is 1 if
location j has label l and there are a total of L possible
labels. In the app usage setting, the L different labels for a
location come from Foursquare, which describe the types of
business venues near that location. For example, a location
may be considered a ’Food’ and ’Nightlife’ area, but not
a ’Residential’ area. In the news article setting, labels are
derived from demographic data, such as median household
income and age.

Since our count data exhibits power-law properties, we
choose to model every count Xij in X using a Poisson dis-
tribution. Since we also observed a co-occurrence of certain
types of apps or news articles with specific types of locations,
we further assume that the Poisson distribution for item i

Algorithm 1 Generative Process of the LPF model

Input: hyper-parameter α, β, a, b
for i = 1 to M do

αi = SHRINK(α, Y zi)
Draw θi ∼ Dir(αi)
for j = 1 to N do

Draw Zij ∼ Categorical(θi)
end for

end for
for j = 1 to N do

βj = SHRINK(β, Y sj)
Draw πi ∼ Dir(βj)
for i = 1 to M do

Draw Sij ∼ Categorical(πi)
end for

end for
for k = 1 to K do

for l = 1 to L do
Draw Λkl ∼ Gamma(a, b)

end for
end for
for j = 1 to N do

for i = 1 to M do
Draw Xij ∼ Poisson(Λzij ,sij )

end for
end for
function Shrink(u, v)

u′ = u
Squeeze out entries in u′ where v = 0

return u′

end function

at location j has an intensity (mean) that factorizes over an
items latent factor and a locations latent factor. Each item
i is modeled as a multinomial mixture of item categories θi.
However, rather than being a multinomial with K outcomes,
the distribution of categories for item i, θi, is restricted so
that it is only defined over the categorical labels assigned to
item i in the matrix Y z. Each location j is also modeled
as multinomial mixture distribution of categories πj , that
is similarly restricted to the categorical labels for location j
given in matrix Y s. When no positive labels are observed
for item i or location j, we assume that θi and πj have all
K and L possible outcomes, respectively.

Most existing Poisson factorization approaches model the
Poisson intensity parameter for element Xij as the inner
product of two latent vectors: Xij ∼ Poisson(θTi πj). In
our setting, this would imply an independence of the loca-
tion factors and the item factors. We relax this assumption
by imposing a joint latent space, Λ, and allow each item
to pick a category based on location and vice versa. This
modification describes the spatial data more accurately and
introduces more flexibility into the model. The binary labels
in Y z and Y s can only provide weak guidance to the actual
categories contributing to an observed count because of the
mutual dependence of item and location categories in the
joint latent space. The binary labels nonetheless constrain
the priors on latent factors: the category of an item or a lo-
cation is constrained to belong to the categories indexed by
the non-zero entries of the labels in Y z and Y s, respectively.

Our model is a variation of the Bayesian Poisson factoriza-
tion model [24], which replaces the usual Gaussian likelihood



Algorithm 2 Collapsed Gibbs Sampler for the LPF model.

Input: data X,Y z, Y s, training mask I, Dirichlet hyper-
parameters α, β, Gamma shape, scale hyper-parameters
a, b
repeat

Randomly initialize Z, S,Λ.
Initialize category counts nZ, nS as zero matrices
for i = 1 to M do

αi = SHRINK(α, Y zi)
end for
for j = 1 to N do

βj = SHRINK(β, Y sj)
end for
for i = 1 to M do

for j = 1 to N do
nZZij ,i = nZZij ,i + Iij , nSSij ,j = nSSij ,j + Iij

end for
end for
for i = 1 to M do

for j = 1 to N do
if Iij then

Sample Zij ∼ Multi(1, [αi + nZ¬ij
:,i ] ◦ Y zi)

Sample Sij ∼ Multi(1, [βj + nS¬ij
:,j ] ◦ Y sj)

Update nZ, nS
end if

end for
end for
for k = 1 to K do

for l = 1 to L do
Count activity nIkl =

∑
ij:Zij=k,Sij=l Iij

a′ = a+
∑
i,j

Xij ◦ Iij , b′ = b/(1 + nIkl ∗ b)

Sample Λkl ∼ Gamma(a′, b′)
end for

end for
until Converge

and real-valued representations in probabilistic matrix fac-
torization with a Poisson likelihood and non-negative rep-
resentations. As pointed out by [4], Poisson factorization
is better at handling sparse data and enjoys more efficient
inference.

Algorithm 1 describes the generative process of the LPF
model in detail. For each item i, we sample a multinomial
distribution θi over item categories from a truncated Dirich-
let prior αi. The truncated Dirichlet prior αi is found by
using Y z to retain only the parameters in α corresponding
to positively labeled categories. In particular, αi is formed
from α by setting the concentration parameters for the unla-
beled categories to zero. For each location j, we then sample
an independent item factor indicator Zij from the categor-
ical distribution parameterized by θi. In a similar fashion,
we generate location factor indicators Sij by first sampling
πj from a Dirchlet prior βj constrained using the location
labels in the matrix Y s and then sampling Sij from πj for
each item i. Finally, we generate the aggregate spatial count
Xij according to Poisson distribution with intensity ΛZij ,Sij .
For convenience, we put a conjugate Gamma prior on the
joint latent space Λ. We use a Gibbs sampler for inference
and learning. For efficiency, we collapse the latent variables

of type {θi} and space {πi}. The update steps of the col-
lapsed Gibbs sampler are described in Algorithm 2.

5. EXPERIMENTS
We conduct several experiments to evaluate the capability

of the LPF model to accurately capture spatial correlations
and predict the number of spatial counts at a particular
location, or for a particular item.

5.1 Setup
Our overall experimental setup is shown in Figure 6. In

the first stage, we extract labels for each of the M items.
In the second stage, we identify the N locations and assign
labels to each. In the case of the app usage data, we dis-
cretize the geographical area into N equally sized cells; for
the news article data, the number of locations N is equal
to the number of distinct postal codes. Details on how the
labels are extracted follow below. In the final stage, we eval-
uate the LPF model by holding out the observed counts at
some of the locations and assess how well the model can
recover those values.

Table 3: Characteristics of the Aviate app usage and
Yahoo news article click data sets.

Aviate App Usage
Time Period # of Devices # of Records
7 month 14,836 51,765,517
# of AppOpen # of LocUpdate # of Apps
33,896,214 17,869,303 46,248

News Article Click
# number of users # number of records

182,355 1,034,615
# of articles # of locations

30,544 5,907
# of article category # of location category

21 40

We now describe how the categorical labels were identified
for app usage data. The Yahoo Aviate launcher provides a
mapping of each app to 24 named collection types, such as
‘Productivity’, ‘News’, ‘Restaurants’, etc. These collection
types provide a natural labeling for each app. We discretize
the San Francisco Bay Area into equally sized cells and use
the Foursquare API to identify the set of business venues
in each cell. Each business is associated with one of 10
categorical tags, such as ‘Restaurant’, ‘Nightlife Spot’, or
‘College or University’. We use these categorical tags to
label each cell.

For the Yahoo news article data, we gather demographic
information for each zip code area, including the median
income, age, number of households and the population den-
sity. We then compute the national percentile of each demo-
graphic feature and map them to values 0-9. For example,
’0’ in income indicates the median income at that locale
is in the bottom 10% nationally and 1 indicates the me-
dian income is in the 10-20% percentile nationally. The key
statistics of these two data sets are shown in Table 3.
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Figure 6: Set up of the LPF model experiments. (a): categorical labeling for items (b): categorical labeling
for locations (c): hold out assessment of the aggregated counts.

5.2 Baseline
We compare the LPF model with the following baselines.

• LPF-Loc: the LPF model using only location labels

• LPF-Item: the LPF model using only item labels

• BPF : Bayesian Poisson Factor Analysis [24]

• MFSI: Matrix Factorization with Side Information [7]

• NMF: Non-negative Matrix Factorization [2]

• PM: Poisson Mixture model

• Global Mean: Mean of all training data

• Loc Mean: Mean of each location

• Item Mean: Mean of each item

• All Zero: Always predict zero

We mainly compare the LPF model with other latent fac-
tor models. We include LPF-Loc, which is the LPF model
with supervision only on the labels of the locations, LPF-
Item, which is the LPF model with supervision only on
the labels of the items, and BPF to evaluate the benefits
of incorporating both item and location semantics for the
geographic segmentation task. We also include MFSI and
NMF as non-Bayesian factorization methods. The compar-
ison between latent factor models and other density-based
spatial clustering techniques such as DBSCAN is not within
the scope of the study in this paper. For NMF, we use
the source code in http://www.csie.ntu.edu.tw/˜cjlin/nmf/
others/nmf.py. For MFSI, we use the GraphLab Create.

5.3 Mobile App Usage
We evaluate the predictive performance of the LPF model

in three different settings: 1) A static setting; 2) A dynamic
setting; and 3) While varying grid size.

Static Setting.
In this section, we evaluate the LPF model in a static

setting by aggregating the app usage across all 7 months. We
select the 100 most popular apps and bin the San Francisco
Bay area into 100 equally sized grid cells. We aggregate the
number of opens of each app in each cell across all 14,836
devices. We normalize the counts by the total number of
devices and randomly remove 20% of the entries in the 100

by 100 data matrix X. These are the missing values that we
try to recover. We repeat the process 10 times and report
the average prediction RMSE with respect to the ground
truth frequencies.

Table 4: RMSE of the LPF model and several base-
line approaches on the Aviate app usage data. App
opens are aggregated across 14,836 devices at 100
locations. The results are averaged over 10 random
80% - 20% training-test splits.

Algorithm Mean Variance
Labeled Poisson Factor 1.1293 0.1569
LPF-Item 1.2200 0.1780
LPF-Loc 1.1484 0.1989
Bayesian Poisson Factor Analysis 1.1927 0.2508
MFSI 1.4111 0.0085
Poisson Mixture 1.3159 0.2270
Non-negative Matrix Factorization 1.2096 0.2513
Global Mean 1.2841 0.2238
Loc Mean 1.2670 0.1870
Item Mean 1.2347 0.2024
All Zero 1.4488 0.2210

Table 4 shows the RMSE comparison of the LPF model
and the baselines. Notice that the LPF model achieves the
lowest RMSE in this setting. By comparing LPF with LPF-
Item and LPF-Loc we can begin to understand the impor-
tance of the supervision provided by the item and location
labels. When aggregating across the devices, we see that
location semantics have a bigger impact on performance
(RMSE of 1.22 for LPF-Item vs RMSE of 1.14 for LPF-
Loc). On the other hand, LPF has relatively low variance
in terms of prediction. This is mainly due to the inherent
sparsity in the data, which is alleviated by Bayesian priors
and the supervision from labels.

Figure 7 shows the geographic segmentation for a set of
cells centered in Palo Alto with grid size 100. This plot is
generated by first estimating the location category distri-
bution, πj , at each location j and then assigning the most
probable category lj = arg maxπj to each location. We use
different colors to denote different categories. Three ma-



Figure 7: Color-coded segmentation of Palo Alto
area learned by LPF. The segment type are decided
by assigning the most probable category with re-
spect to the location category distribution π.

jor segments are identified in the plot. The brown color
highlights the ’school’ areas, including Stanford university
on the bottom left and Menlo-Atherton High School on the
top left. The yellow color represents shopping areas, includ-
ing Escondido Village, Stanford Shopping Center and Ikea
in the top middle. Finally, the orange color denotes hotels
that appear near the Palo Alto Golf Course and The Westin
Palo Alto. We note that these segments (learned by LPF)
are discriminated by their categories rather than their ac-
tual geographic coordinates. The results suggest that LPF
model can capture latent semantics in spatial count data.
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Figure 8: Hinton diagram of the joint latent space
intensity, Λ of the LPF model. The area occupied by
a square in this matrix is proportional to the magni-
tude of the intensity of that item-location category
pair. So for example, ’Social’ apps and ’Food’ loca-
tions have a very strong intensity, while ’Music’ apps
and ’Food’ locaitons have a much weaker intensity.

Figure 8 shows the Hinton diagram of the intensity of
co-occurrence of app and location labels from the matrix Λ
learned by LPF. We observe several interesting phenomenon
in this learned joint latent space that are supported by our
intutition. For example, night time apps are popular in food
locations. Shopping apps are popular in shopping and ser-

vices locations. Such results show that our model can cor-
rectly capture the underlying correlation between an app’s
category and a location’s semantics.

Dynamic Setting.
In the dynamic setting, we make a sequence of predictions.

Since the Aviate data set spans roughly 7 months, we split
the data into 7, one month chunks. We train all methods
using the data from month t and predict the number of opens
for all apps at all locations in month t+1. We normalize the
counts with respect to the total number of devices and the
number of days in each month. We repeat the training and
testing procedure 6 times and report the prediction RMSE
for all methods in Table 5 for all time stamps.

In the dynamic setting, the counts in a single time stamp
become quite sparse. As a result, the LPF model signifi-
cantly outperforms the other baseline methods in all 6 of the
evaluation periods. Notice that in the static setting, BPF
and PM perform pretty well, while in the dynamic setting,
the accuracy of both methods degrades. This demonstrates
how the joint latent space and the supervision of the LPF
can help alleviate the sparsity issue.

Varying Grid Size.
In our experimental setup, we discretize the San Francisco

Bay area into evenly sized cells and binned the opens of
each app into a cell. A major difficulty with binning in
this fashion is choosing the right size for each cell. The
size of a grid cell plays an important role as it not only
affects the number of observed opens in a cell, but also the
categorical labels associated with a cell. Small sized cells
would lead to sparse observations. However, when a cell
is too large, it will include business from a wide range of
categories, which will consequently reduce the effectiveness
of the location supervision.
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Figure 9: RMSE error bar for the LPF and baselines
with respect to grid size over 10 random runs. The
number of grid cells increases from 50 to 10,000.

In this subsection, we investigate the impact of differently
sized grids on prediction accuracy. Each method is run on
a grid ranging in size from 50 to 10,000 cells. For each grid
size setting, we make API calls to Foursquare to obtain a
finer-grained set of location categories. Figure 9 shows the
prediction RMSE error bar with respect to the number of



Table 5: RMSE comparison of the LPF model and several baseline approaches in the dynamic setting, where
the app opens in month t + 1 are predicted using the app open observations in month t. App opens were
aggregated over 14,856 devices and 100 locations.

Time stamp LPF BPF PM NMF Zero Global Loc-Mean Item -Mean MFSI
TS 1 0.2986 0.6128 0.5271 5.4878 0.6812 0.5265 0.3240 0.5120 1.2331
TS 2 0.2838 0.6103 0.5292 5.4912 0.6847 0.5292 0.3167 0.5118 1.2142
TS 3 0.3150 0.6461 0.5560 5.4767 0.7159 0.5555 0.3509 0.5363 1.2885
TS 4 0.3347 0.6359 0.5663 5.4643 0.7321 0.5661 0.3695 0.5462 1.2473
TS 5 0.3306 0.6297 0.5667 5.4715 0.7276 0.5667 0.3700 0.5474 1.2364
TS 6 0.3112 0.5139 0.4916 5.5575 0.6019 0.4911 0.3379 0.4730 1.3740

number of grid cells. LPF outperforms the other baselines4.
As expected, the mean RMSE goes down for all methods as
we increase the number of grid cells. This decrease is due
to two things: first, as we increase the number of cells in
a fixed area, we obtain finer-grained location information.
Therefore, the supervision from location tags becomes in-
creasingly sharp. Second, finer-grid binning results in more
sparse observed counts. Thus, the absolute values of the
frequency counts decreases.

5.4 News Article Clicks
To demonstrate the applicability of the LPF model to

other types of spatial count data, we also evaluate on the
Yahoo news articles data.

Table 6: RMSE comparison of the LPF model and
baseline approaches on the Yahoo news article data.
The results are averaged over 10 random split of the
dataset using 80% - 20% training-test split.

Algorithm Mean Variance
Labeled Poisson Factor 1.7956 0.04476
LPF-Item 1.8004 0.04607
LPF-Loc 1.7998 0.04014
Bayesian Poisson Factor Analysis 2.9659 0.04857
Poisson Mixture 2.4134 0.04829
Non-negative Matrix Factorization 3.7669 0.02345
Global Mean 2.3753 0.04453
Loc Mean 1.8049 0.04510
Item Mean 2.3001 0.04364
All Zero 3.3315 0.04639

We aggregate the article counts for 182,355 users and
30,544 articles. We randomly select 80% of the entries as
training data and repeat this procedure 10 times. Table 6
shows the mean and variance of the prediction RMSE of LPF
and the baselines. The LPF model achieves the lowest pre-
diction RMSE in this setting too. Note that the gain from
adding the supervision via location category labels is more
significant than article category labels. This suggests that
the density of news article clicks is more strongly related to
location demographics than the topic of an article.

We also visualize the joint latent space intensity, Λ, in
Figure 10. The size of a square represents the relative mag-
nitude of the intensity for an item category - location cate-
gory pair. Four different colors are used to differentiate the

4We omit the results for NMF and MFSI as their perfor-
mance was significantly worse than the other methods
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Figure 10: Hinton diagram of the joint latent space
intensity on Yahoo news article data learned by LPF
model. Colors correspond to different type of cate-
gory tags: income, households, age and population.

four types of demographic information. Though the model
assigns almost equal weights for all location categories, there
exists strong correlation of articles in Art & Entertainment,
Technology & Electronics with the top 10% populations.
The consumption of the news article category shows very
weak dependencies with income. However, Society & Cul-
ture and Art & Entertainment articles tend to appeal more
to zip codes with middle aged people.

6. CONCLUSIONS
In this paper, we studied the task of geographic segmen-

tation on spatial count data, with applications in mobile ap-
plication usage and news article readership. Through an ex-
ploratory analysis we found that the categories of locations,
rather than the geographic coordinates, are more important
in those applications. We developed a Bayesian hierarchical
model, the Latent Poisson Factor (LPF) model, to capitalize
on this observation and demonstrated the efficacy of LPF
model at capturing rich spatial correlation structures and
predicting aggregate counts on two data sets: Aviate app
usage and Yahoo! news article clicks. Experiment results
showed that our method can learn sensible spatial latent
semantics as well as produce more accurate predictions.
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