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Traditional anomaly detection on social media mostly focuses on individual point anomalies while anoma-
lous phenomena usually occur in groups. Therefore it is valuable to study the collective behavior of indi-
viduals and detect group anomalies. Existing group anomaly detection approaches rely on the assumption
that the groups are known, which can hardly be true in real world social media applications. In this paper,
we take a generative approach by proposing a hierarchical Bayes model: Group Latent Anomaly Detection
(GLAD) model. GLAD takes both pair-wise and point-wise data as input, automatically infers the groups and
detects group anomalies simultaneously. To account for the dynamic properties of the social media data, we
further generalize GLAD to its dynamic extension d-GLAD. We conduct extensive experiments to evaluate
our models on both synthetic and real world datasets. The empirical results demonstrate that our approach
is effective and robust in discovering latent groups and detecting group anomalies.
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1. INTRODUCTION
Social media provide convenient platforms for people to share, communicate, and col-
laborate. While people enjoy the openness and convenience of social media, many ma-
licious behaviors, such as bullying, terrorist attack planning, and fraud information
dissemination, can happen. Therefore, it is extremely important that we can detect
these abnormal activities as accurately and early as possible to prevent disasters and
attacks.

By definition, anomaly detection aims to find “an observation that deviates so much
from other observations as to arouse suspicion that it was generated by a different
mechanism” [Hawkins 1980]. Several algorithms have been developed specifically for
social media anomaly detection such as power-law models [Akoglu et al. 2009], spectral
decomposition [Von Luxburg 2007], scan statistics [Priebe et al. 2005], and random
walk [Pan et al. 2004; Tong et al. 2008]. However, these algorithms only detect the
individual point anomaly. For example, [Akoglu et al. 2009] proposes an “OddBall”
algorithm to spot anomalous nodes in a graph. The algorithm extracts features from
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the egonet of the node and declares anomaly node whose features deviate from the
power-law pattern.

In reality, anomaly may not only appear as an individual point, but also as a group.
For instance, a group of people collude to create false product reviews or threat cam-
paign in social media platforms; in large organizations, malfunctioning teams or in-
sider groups closely coordinate with each other to achieve a malicious goal. Those
appear as examples for another type of anomaly: group anomaly, which has not been
thoroughly examined in social media analysis. In this work, we focus on group anomaly
detection. We are interested in finding the groups which exhibit a pattern that does
not conform to the majority of other groups. This problem has found its applications in
galaxy identification [Xiong et al. 2011b], high energy particle physics [Muandet and
Schölkopf 2013], anomalous image detection and turbulence vorticity modeling [Xiong
et al. 2011a].

We identify three major challenges in group anomaly detection: (i) Two forms of data
coexist in social media: one is the point-wise data, which characterize the features of an
individual person. The other is pair-wise relational data, which describe the properties
of social ties. In social science, a fundamental axiom of social media analysis is the con-
cept that structure matters. For example, teams with the same composition of member
skills can perform very differently depending on the patterns of relationships among
the members [Borgatti et al. 2009]. Therefore, it is important to take into account both
point-wise and pair-wise data during anomaly detection. (ii) Group anomaly is usu-
ally more subtle than individual anomaly. At the individual level, the activities might
appear to be normal [Chandola et al. 2009]. Therefore, existing anomaly detection al-
gorithms usually fail when the anomaly is related to a group rather than individuals.
(iii) Empirical studies in social media analysis suggest the dynamic nature of individ-
ual network positions [Kossinets 2006]. People’s activities and communications change
constantly over time and we can hardly know the groups beforehand. Thus develop-
ing a method that can be easily generalized to dynamic setting is critical to anomaly
detection in evolving social media data.

In this paper, we take a graphical model approach to address those challenges. We
propose a hierarchical model, i.e, Group Latent Anomaly Detection (GLAD) model, to
connect two forms of data. To handle the dynamic characteristics of the social media
data, we further develop a dynamic extension of GLAD: the d-GLAD model. We show
that GLAD outperforms existing approaches in terms of group anomaly detection ac-
curacy and robustness. When dealing with dynamic social networks, the dynamic ex-
tension of GLAD achieves lower false positive rate and better data fitting. The major
contributions of this paper can be summarized as follows:

(1) We formulate the problem of group anomaly detection in the context of social me-
dia analysis for both static and dynamic settings and articulate the three major
challenges associated with the task.

(2) We develop a graphical model called GLAD. GLAD can successfully discover the
group structure of social media and detect group anomalies. We also generalize
GLAD to its dynamic extension and provide tractable model inference algorithms.

(3) We conduct thorough experiments on both synthetic and real world datasets using
anomaly injections. We also construct a meaningful dataset from ACM publication
dataset for rigorous evaluation. The dataset is accessible at http://www-bcf.usc.
edu/∼liu32/data.html.

This paper is an extended version of one of our earlier paper [Yu et al. 2014]. We
present almost all the contents from [Yu et al. 2014] and an alternative design of the
GLAD model, which we call GLAD0. GLAD and GLAD0 share the same design phi-
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losophy while GLAD enjoys significant computational efficiency. The extended version
includes the GLAD0 model description and its inference in Section 4, as well as a syn-
thetic data experiment in Section 7.

2. RELATED WORK
We review the related models on group anomaly detection and illustrate the motivation
behind our approach.

The Multinomial Genre Model (MGM) proposed in [Xiong et al. 2011b] first inves-
tigates the problem following the paradigm of Latent Dirichlet Allocation (LDA) [Blei
et al. 2003]. As a text processing tool, LDA assumes that each word is associated with
a topic and a document is a mixture of topics. Similarly, MGM models a group as a mix-
ture of Gaussian distributed topics with certain mixture rate and assumes there exists
“best” mixture rates, corresponding to the mixture rates of normal groups. Then it con-
ducts group anomaly detection by scoring the mixture rate likelihood of each group.
One drawback of MGM is that the set of candidate mixture rates is shared globally by
groups. It might leads to poor performance when groups have different sets of mixture
rates. [Xiong et al. 2011a] further extends MGM to Flexible Genre Model (FGM) with
more flexibility in the generation of topics. Specifically, the model considers the set of
topic mixture rates as random variables rather than model hyper-parameters, which
would adapt to diverse “genres” in groups, each of which is a typical distribution of
topic mixture rates.

Another line of work takes a discriminative approach. [Muandet and Schölkopf 2013]
uses the same definition of group anomaly from [Xiong et al. 2011b]. It considers ker-
nel embedding of the probabilistic distributions and generalizes one-class support vec-
tor machine from point anomaly detection to group anomaly detection. The proposed
support measure machine (SMM) algorithm maps the distributions to a probability
measure space with kernel methods, which can handle the aggregate behavior of data
points.

However, existing approaches separate the group anomaly detection task into two
stages: group discovery and anomaly detection. They require the group information
to be given before applying the anomaly detection algorithms. For example, in [Xiong
et al. 2011b], the Sloan Digital Sky Survey (SDSS) dataset needs to be pre-processed
before feeding into MGM. The authors first construct a neighborhood graph and then
treat the connected components in the graph as groups. For the application on turbu-
lence data, the FGM model [Xiong et al. 2011a] considers the vertices in a local cubic
region as a group. In SMM [Muandet and Schölkopf 2013], the authors treat the high
energy particles generated from the same collision event as a group.

The two-stage approaches identify the groups from the pair-wise data and infer the
anomalies based on the point-wise data. This strategy assumes that the point-wise
and pair-wise data are marginally independent. However, such independence assump-
tion might underestimate the mutual influence between the group structure and the
feature attributes. The detected group anomalies can hardly reveal the joint effect of
these two forms of data. These motivate us to build an alla prima that can account for
both forms of data and accomplish the tasks of group discovery and anomaly detection
all at once.

Additionally, existing work can only deal with static network and fixed size groups.
This is not feasible for the time-evolving nature of social media data. For example, in
corporate networks, employees may switch teams from one to the other. The organiza-
tion structure of a team may also change. As the dynamic setting needs to take into
account the flexible group size and the changing mixture rates, we further adapt our
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model to the dynamic setting and formulate the problem as a change point detection
task.

Group anomaly detection in social media analysis may shed light on a wide range
of real world problems such as corporate restructuring, team job-hopping and political
inclination shift to which our approach can apply. In section 3, we provide a formal
definition of group anomaly in social media analysis. We first develop GLAD0 as well
as its learning and inference algorithm in section 4. Then we present a computationally
more efficient model design: GLAD in section 5. In section 6, we describe the dynamic
GLAD model: d-GLAD, which can handle the dynamic social networks. Section 7 shows
the empirical evaluation results of GLAD and d-GLAD on synthetic and real world
datasets compared with existing baseline models.

3. DEFINITION OF GROUP ANOMALY
The core of our group anomaly definition lies in the collective behavior of individu-
als. For example, a document is a mixture of various topics and a team is a mixture
of different roles. Therefore, we model the node features of each group as a mixture
of components. Each component could be an article topic, a social role or a job title.
Specifically, we can describe a component as either a discrete variable such as multi-
nomial distribution or a continues variable like Gaussian distribution, depending on
the data type of features. Here we use the term role as a general notion for the com-
ponent. We assume that there are a fixed number of roles and each of which denotes
a particular distribution of node features. All groups share the same set of roles but
possibly with different role mixture rates. Normal groups follow the same pattern with
respect to their role mixture rates, but the anomalous group has a role mixture rate
that deviates from the normal pattern.

For the static GLAD model, we are interested in the distribution of the role mix-
ture rates across the groups. According to our assumption, the mixture rates of normal
groups are more likely to appear. For groups with very rare role mixture rates, we treat
them as group anomalies. One example of this type of group anomaly comes from par-
ticle physics. It is widely accepted that the dynamics of known particles are governed
by the Standard Model, which corresponds to the normal pattern. Unknown particles
would contaminate the distribution of the Standard Model. Detecting those anomalies
could potentially lead to the discovery of new physical phenomenon. In social media
such as LinkedIn, users in a group can be clustered into different roles. The role distri-
bution of spam campaign groups would be different from that of normal professional
groups. In practice, we first identify the normal mixture rates. Then for each learned
group, we evaluate the likelihood of its observations being generated with the normal
mixture rates. The lower the likelihood value is, the more anomalous the group would
be.

For the dynamic d-GLAD model, we emphasize on the temporal aspect of the data
and detect the change of the role mixture rate within the groups. For instance, in
scientific area, it is valuable to study the evolution of research topics and detect the
bursty time periods. In the dynamic setting, since the structure of groups change as
well as their role mixture rates, detecting groups with rare mixture rate no long ap-
plies. Therefore, we think of the task as a change point detection problem and aim
to detect the groups whose mixture rates change drastically from the previous time
stamps. Compared with GLAD, we not only need to decide whether a group is anomaly
or not, but also need to specify when the group appears anomalous.

Even though we use slightly different definitions of group anomaly for the GLAD
model and the d-GLAD model, the key ideas behind our definitions are the same. Both
definitions build upon the notion of role mixture rate, which essentially requires a

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.



GLAD: Group Anomaly Detection in Social Media Analysis 39:5

precise inference of both the group membership and role identity for each individual
in the group.

4. GLAD0

Suppose that we are given a social network with N people. Each person p has total
of Ap activities. The point-wise activities data is X = {X1,X2,. . . ,XN}. The pair-wise
communication data is Y = {Y1,1,Y1,2, . . . , YN,N}. Xp ∈ RV×Ap . For a particular activ-
ity a, Xpa consists of V entries, denoting a feature vector of V dimensions. Yp,q ∈ {0, 1}
is a binary valued variable, indicating the pair-wise relationship of nodes. These two
forms of data are our inputs. Our goal is to analyze these data jointly and declare the
group that has irregular role mixture rate as anomaly. In the following sections, we
first describe the motivation for our hierarchical Bayes model and provide its genera-
tive process and the plate notation. Then we derive the inference algorithm using the
variational Bayesian approach.

4.1. Model Specification

π p Gpaα Rpa Xpa

zp→q zp←q

Ypq

θm

βk

N ×N

M

ApN

K

B

Symbol Description
α Dirichlet prior parameter
πp group membership distribution of person p
Ypq pair-wise communication between p and q
zp→q communication membership from p to q
zp←q communication membership from q to p
B global block probability among groups
Gpa group identity of p for activity a
Rpa role identity of p for activity a
θ1:M role mixture rate for M groups
Xpa activity a of p
β1:K activity distribution for K roles

Fig. 1. Plate representation for the Group Latent Anomaly Detection (GLAD0) model and the notation de-
scriptions. Shaded circles are observations, blank circles are latent variables and the variables without a
circle are model parameters. The blue rectangular resembles MMSB. The red polygon integrates the gener-
ating process of LDA.
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We model a social network with N individuals. From the point-wise data aspect, as-
sume that each activity of the person p is associated with a group identity Gpa and a
role identity Rpa. Group identity finds the natural cluster of a person influenced by
the pair-wise observations. Role identify captures the cluster of activities within the
group. The two identities assumption is motivated by the controversial viewpoints of
what is the right metric for a community. In community detection literature [Fortunato
2009], some argue that a community is the one that has dense communications within
clusters while others suggest that people in the same community should share com-
mon activity features. We get around the controversy by recognizing the arguments of
both sides. Mathematically, since we model activities as a mixture model, “role” is the
mixture component that categorizes the feature values of each activity. From the pair-
wise data perspective, assume that each communication from person p to q has a group
membership zp→q. The group membership of person p, zp→, depends on the recipient
of the communication while his group identity Gp is undirected. For simplification, we
fix the number of groups as M and the number of roles as K.

For each person p, he joins a group according to the membership probability dis-
tribution πp. We impose a Dirichlet prior on the membership distribution. It is well
known that the Dirichlet distribution is conjugate to the multinomial distribution. As
we will show later, when dealing with latent variables, the Dirichlet prior facilitates
the learning and inference of the model. We assume the pair-wise link Yp,q between
person p and person q depends on the group identities of both p and q with the pa-
rameter B. Furthermore, we model the dependency between the group and the role
using a multinomial distribution parameterized by a set of role mixture rate {θ1:M}.
The role mixture rate characterizes the constitution of the group: the proportion of the
population that plays the same role in the group. Finally, we model the activity feature
vector of the individual Xpa as the dependent variable of his role with parameter set
{β1:K}. Without loss of generality, we assume that the activity data has discrete value
and follows the multinomial distribution of single trial,i.e, the categorical distribution.
But we can easily adapt Xpa to other form of activities.

Figure 1 shows the plate representation of the proposed model and summarizes the
notations therein. Our model unifies the ideas from both the Mixture Membership
Stochastic Block (MMSB) model [Airoldi et al. 2008] and the Latent Dirichlet Allo-
cation (LDA) model [Blei et al. 2003]. The blue dashed rectangular on the left side
resembles MMSB which models the formation of groups using link information. The
red dashed polygon integrates the generating process of LDA which is often used for
topic extraction from documents. We denote the current model design as GLAD0 and
specify the generative process of GLAD0 in Algorithm 1. Next, we describe the varia-
tional Bayes inference for the GLAD 0 model.

4.2. Model Inference
We develop an approximate inference technique based on variational Bayesian meth-
ods [Jordan et al. 1999] and an EM algorithm for model inference. Specially, we approx-
imate analytically to the posterior probability of the hiddent variables by minimizing
the Kullback - Leibler divergence (KL-divergence) of the variational distribution and
the actual posterior. Then we perform the EM procedure to learn the model parame-
ters.

Denote the set of model parameters as Θ = {α,B, θ1:M , β1:K}, the set of visi-
ble variables as v = {X1:N , Y1:N,1:N}, and the set of the hidden variables as h =
{π1;N ,Z1:N,1:N ,G1:N ,R1:N}. Our aim is to estimate the posterior distribution p(h,Θ|v).
We can first write out the complete joint likelihood of observed and latent variables as
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Algorithm 1 Generative process of the GLAD0 model
for individual p = 1→ N do

Draw group membership distribution πp ∼ Dir(α)
for individual q = 1→ N do

Draw group membership zp→q ∼Multinomial(πp)
Draw group membership zp←q ∼Multinomial(πq)
Sample communication Yp,q ∼ Bernoulli (zTp→qBzp←q)

end for
for activity a = 1→ Ap do

Draw group identity Gpa ∼Multinomial(πp)
Draw role identity Rpa ∼Multinomial(Rpa|θ1:M , Gpa)
Sample activity Xpa ∼Multinomial(Xpa|β1:K , Rpa)

end for
end for

Algorithm 2 Variational Inference for the alternative GLAD
randomly initialize B, θ, β
normalize θ, β
repeat

initialize φp→q,g := 1/M
initialize φp←q,h := 1/M
initialize γp,g := 1/M
initialize µpa,r := 1/K
initialize λpa,g := 1/M
repeat

for p = 1→ N do
update γp,g = αg +

∑N
q=1 [φp→q,g + φp←q,g] +

∑Ap
a=1 λpa,g

for q = 1→ N , g = 1→M , h = 1→M do
update φp→q,g ∝ eEq(πp)[log πp,g] ·

∏M
h=1

[
B
Ypq
gh (1−Bgh)1−Ypq

]φp←q,h
update φp←q,h ∝ eEq(πp)[log πp,h] ·

∏M
g=1

[
B
Ypq
gh (1−Bgh)1−Ypq

]φp→q,g
end for
for a = 1→ Ap, g = 1→M , r = 1→ K do

update λpa,g ∝ eψ(γp,g) ·
∏K
r=1 θ

µga,r
gr

update µpa,r ∝
∏M
g=1 θ

λpa,g
gr ·

∏D
d=1 β

xpa,d
rd

end for
end for

until convergence
update Bgh =

∑
p,q Ypqφp→q,gφp←q,h

(1−ρ)·
∑
p,q φp→q,gφp←q,h

update βrd ∝
∑
p

∑
a xpa,d · µpa,r

update θgr ∝
∑
p

∑
a λpa,gµpa,r

until convergence

follows:
p(v, h|Θ) =

∏
p,a

p(Xpa|Rpa, β)p(Rpa|Gpa, θ)p(Gpa|π)

×
∏
pq

p(Ypq|zp→q, zp←q)p(zp→q|πp)p(zp←q|πp)
∏
p

p(πp|α).
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The marginal likelihood of the data p(v|Θ) =
∫
h
p(v, h|Θ)dh requires to integrate over

all the latent variables in the equation above, which is intractable [Airoldi et al. 2008].
Therefore, we choose a variational distribution q(h) to approximate the actual pos-
terior distribution, so that the Kullback-Leibler divergence (KL-divergence) between
the actual posterior p(h|Θ, v) and its approximation q(h) is minimized. Rewriting the
marginal log likelihood and plugging in the variational distribution, we have

log p(v|Θ) = DKL(p||q) + Eq[log p(v, h|Θ)]− Eq[log q(h)],

where Eq[f ] represents the expectation of the function f with respect to the distri-
bution q. Since the marginal likelihood log p(v|Θ) is invariant to the choice of q, min-
imizing the KL-divergence DKL(p||q) is equivalent to maximizing the last two terms
Eq[log p(v, h|Θ)]−Eq[log q(h)]. In practice, we choose q(h) to be factorized over the latent
variables with free parameters ∆ = {γ1:N , φ1:N,1:N , µ1:N , λ1:N} as follows:

q(h|∆) =

[∏
p

q(πp|γp)

][∏
p,q

q(zp→q|φp→q)q(zp←q|φp←q)

][∏
p

∏
a

q(Gpa|λpa)q(Rpa|µpa)

]
.

Finding the optimal set of the variational parameters is equivalent to solving the
following optimization problem subject to probability constraints:

∆? = argmax
∆

Eq[log p(v, h|Θ)]− Eq[log q(h|∆)]

= argmax
∆

L(v, h,Θ,∆).

We follow an EM procedure to solve the problem above. We iteratively update the free
parameters by taking the derivative of the Lagrange function of the objective L over
one parameter at a time given the value of others from the last iteration. The details
of the derivation is provided in Appendix A. Since {Yp,q} is symmetric, the objective
function will result in a quadratic term with respect to λp. Taking the derivative over
the variational parameter would not have a closed form solution. A simple workaround
is by assuming constant probability for the generation of {Yp,p}. We omit the tedious
derivations and only present the final update formulas of each of the free parameters,
as shown in Algorithm 4. For convenience, we denote f(Yp,q, Bm,n) = Yp,q logBm,n +
(1− Yp,q) log(1−Bm,n).

For the parameter estimation, we apply the empirical Bayes method on the vari-
ational likelihood. We maximize the Lagrange function of L(v, h,Θ,∆) over model
parameters Θ = {α,B, θ1:M , β1:K}. Due to the fact that the derivative of the objec-
tive function with respect to α depends on α, there is no closed form solution for
the maximizer w.r.t α. We apply the Newton-Raphson method to reach a numeri-
cal solution. Similar to the GLAD model, we score the group anomalousness using
−
∑
p∈G Ep[log p(Rp|Θ)]. The most anomalous group will have the highest anomaly

score. We approximate the true log likelihood with the variational log likelihood to
get −

∑
p∈G Eq[log p(Rp|Θ)].

GLAD0 jointly models the point-wise and pair-wise data. It allows mixture of groups
and roles by associating each activity with a group identity and a role identity, which
implies that each person can have multiple roles and can belong to multiple groups.
The GLAD0 model loosely connects the two components of MMSB and LDA via a
shared group distribution πp. It distinguishes between the communication group mem-
bership z and the activity membership G. However, the number of latent variables in
GLAD0 scales linearly with number of activities for each person, thus GLAD0 suffers
from high computational cost. The complexity of the model and the difficulty of in-
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𝜋𝑝 𝑅𝑝𝐺𝑝𝛼

𝜃
𝑀

𝑌𝑝,𝑞𝐵 𝑋𝑝 𝛽
𝐾𝑁𝑁2

𝑁

Fig. 2. Plate notation for the GLAD model. Shaded circles are observations, blank circles are latent vari-
ables and the variables without a circle are model parameters.

ference increase significantly when we further consider generalizing to the dynamic
setting. Additionally, the loose connection with the shared group membership πp may
be restrictive in capturing the inter-dependencies of point-wise and pair-wise data.
Therefore, we consider a more computationally efficient model design that addresses
the above issues.

5. GLAD
GLAD models a social network of activities X = {X1,X2,. . . , XN} and communications
Y = {Y1,1,Y1,2, . . . , YN,N}, where Xp is the aggregation of the activities for each person.
Xp ∈ RV consists of V entries, denoting a feature vector of V dimensions. Each person p
joins a group according to the membership probability distribution πp. He is associated
with a group identity Gp and a role identity Rp. We draw the pair-wise observations of
person p {Yp,:} directly from the group identity Gp as Bernoulli random variables. And
we further assume that the activities Xp follows a multinomial distribution with Ap
trials. GLAD incorporates MMSB and LDA in a more compact way. It not only allows
the shared group membership distribution between the two components, but also the
group membership identity to emphasize the inter-dependencies between point-wise
and pair-wise data. Figure 2 depicts the plate representation of the GLAD model and
Algorithm 3 describes its corresponding generative process.

Algorithm 3 Generative process of the GLAD model
for individual p = 1→ N do

Draw membership distribution πp ∼ Dir(α)
Draw Gp ∼Multinomial(πp)
for individual q = 1→ N do

Sample Yp,q ∼ Bernoulli (GTpBGq)
end for
Draw Rp ∼Multinomial(Rp|θ1:M , Gp)
Draw Xp ∼Multinomial(Xp|β1:K , Rp)

end for

5.1. Inference and Learning
Inference requires us to compute the posterior distributions of the latent variables
given the data. The normalizing term of the posterior distribution involves the cal-
culation of the marginal likelihood of the data for which we resort to variational EM
algorithms [Jordan et al. 1999].
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Denote the set of model parameters as Θ = {α,B, θ1:M , β1:K}, the set of ob-
served variables as v = {X1:N , Y1:N}, and the set of the hidden variables as h =
{π1;N ,G1:N ,R1:N}. Our aim is to estimate the posterior distribution p(h,Θ|v). We can
first write out the complete joint likelihood of observed and latent variables as follows:

p(v, h|Θ) =
∏
p

p(πp|α)×
∏
p,q

p(Yp,q|Gp, Gq, B)

×
∏
p

p(Xp|Rp, β1:K)p(Rp|Gp, θ1:M )p(Gp|πp).

Computing the maximizer for the marginal likelihood of the data p(v|Θ) =∫
h
p(v, h|Θ)dh requires the integration over all the latent variables in the equation

above, which is intractable [Airoldi et al. 2008]. Therefore, we apply the variational
Bayesian approach [Jordan et al. 1999] to perform the inference approximately. The
essence of the variational Bayesian approach is to choose a variational distribution
q(h) to approximate the actual posterior distribution, so that the Kullback-Leibler di-
vergence (KL-divergence) between p(h,Θ|v) and its approximation q(h) is minimized.

Rewriting the marginal log likelihood and plugging in the variational distribution,
we have

log p(v|Θ) = DKL(p||q) + Eq[log p(v, h|Θ)]− Eq log q(h)],

similarly, we use Ep[f ] to represent the expectation of the function f with respect to
the distribution p. Since the marginal likelihood log p(v|Θ) is invariant to the choice of
q, minimizing the KL-divergence DKL(p||q) is equivalent to maximizing the last two
terms Eq[log p(v, h|Θ)]−Eq[log q(h)]. In practice, we choose q(h) to be factorized over the
latent variables with free parameters ∆ = {γ1:N , µ1:N , λ1:N} as follows:

q(h|∆) =
∏
p

q(πp|γp)q(Rp|µp)q(Gp|λp).

Our goal is to find the optimal set of free parameters that provides a variational dis-
tribution closest to the actual posterior. Then our problem is to maximize the objective
function formulated as follows subject to probability constraints:

∆? = argmax
∆

Eq[log p(v, h|Θ)]− Eq[log q(h|∆)]

= argmax
∆

L(v, h,Θ,∆).

The objective function L, by plugging in the joint likelihood and the variational dis-
tribution and taking expectations, is given by

L(v, h,Θ,∆) =
∑
p

Eq[log p(Xp|Rp, β1:K)] +
∑
p

Eq[log p(Rp|Gp, θ1:M )] +
∑
p

Eq[log p(Gp|πp)]

+
∑
p,q

Eq[log p(Yp,q|Gp, Gq, B)] +
∑
p

Eq[log p(πp|α)]

−
∑
p

Eq[log q(πp|γp)]−
∑
p

Eq[log q(Rp|µp)]−
∑
p

Eq[log q(Gp|λp)].

We follow a variational EM procedure in order to maximize L(v, h,Θ,∆) over ∆.
Basically we iteratively update the free parameters by taking the derivative of the
Lagrange function of the objective L over one parameter at a time given the value
of others from the last iteration. Since {Yp,q} is symmetric, the objective function will
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Notation Description
α Dirichlet parameter
πp membership distribution
G

(t)
p group of p at time t

Y
(t)
p,q pair-wise communication at time t
B global block probability
R

(t)
p role of p at time t

β1:K activity mixture rate
X

(t)
p activity of p at time t
θ0 initial Gaussian mean
θ
(t)
1:M role mixture rates at time t

Fig. 3. Plate notation for the d-GLAD model and the meaning of notations. The subscript p denotes each
person in the social network. The superscript t denotes the network snapshot at time stamp t.

result in a quadratic term with respect to λp. Taking the derivative over the variational
parameter would not have a closed form solution. A simple workaround is by assuming
constant probability for the generation of {Yp,p}. We omit the tedious derivations and
only present the final update formulas of each of the free parameters, as shown in
Algorithm 4. For convenience, we denote f(Yp,q, Bm,n) = Yp,q logBm,n+(1−Yp,q) log(1−
Bm,n).

Algorithm 4 Variational Inference for GLAD
initialize γp,m := 1/M
initialize µp,k := 1/K
initialize λp,m := 1/M
repeat

for p = 1→ N , m = 1→M k = 1→ K do
γp,m = αm + λp,m
λp,m = exp{

∑
k log θm,kµp,k+ψ(γp,m)−ψ(

∑
n γp,n)+

∑
q 6=p

∑
n λq,n·f(Yp,q, Bm,n)}

µp,k = exp{
∑
v log βv,kXp,v +

∑
m log θm,kλp,m}

end for
until convergence

For the parameter estimation, we apply the empirical Bayes method on the varia-
tional likelihood. We maximize the Lagrange function of L(v, h,Θ,∆) over model pa-
rameters Θ = {α,B, θ1:M , β1:K}. We apply the Newton-Raphson method to reach a nu-
merical solution for the maximizer w.r.t α. The resulting parameter updating functions
for α and B are the same as those of MMSB [Airoldi et al. 2008] and the parameters β
and θ can be estimated as follows:

βv,k =

∑
pXp,vµp,k∑
v,pXp,vµp,k

θm,k =

∑
p µp,kλp,m∑
k,p µp,kλp,m

.

We score the group anomalousness using −
∑
p∈G Ep[log p(Rp|Θ)] according to our

definition of group anomaly in section 3. The most anomalous group will have the
highest anomaly score. We approximate the true log likelihood with the variational log
likelihood to get −

∑
p∈G Eq[log p(Rp|Θ)].

A limitation of GLAD is that it only models the static network. This might be re-
strictive if we want to further consider dynamic networks. Besides the anomaly group
whose mixture rate deviates significantly from other groups, we are also interested to
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study how the mixture rate evolves over time. Fortunately, GLAD can be easily ex-
tended to account for this dynamics. This leads to the dynamic extension of the GLAD
model, which will be discussed in the next section.

6. DYNAMIC GLAD
We now generalize the GLAD model to take into account the dynamics in the social
media. We refer the dynamic extension of GLAD as the d-GLAD model. To be consis-
tent with our description for GLAD in section 5, we start with the model specification
and then provide the model inference algorithm using both the variational Bayesian
method and the Monte Carlo sampling technique.

6.1. Model Specification
Generalization of GLAD to d-GLAD stems from the template models [Koller and Fried-
man 2009], which use the model for a particular time stamp as a template, duplicate
it over time and connect temporal components sequentially. Similarly, we can adapt
GLAD to the dynamic setting by making a copy of GLAD for each time point. To sim-
plify the model, we assume that the latent factors including role Rp, group Gp and
mixture rate {θ1:M} change over time but the membership distribution {πp} and model
parameters are fixed.

We model the temporal evolution of the role mixture rate for each group with a series
of multivariate Gaussian distributions. At a particular time point, the Gaussian has its
mean as the value of the mixture rate. And the mixture rate of the next time point is a
normalized sample from this Gaussian distribution. Since we require the mixture rate
to be the parameters of a multivariate distribution over features, we apply a soft-max
function to normalize the sample drawn from the multivariate Gaussian. The soft-max
function is defined as S(θm) = exp θm∑

m
exp θm

. When the total time length T equals one, d-

GLAD reduces to the GLAD model. Figure 3 depicts the probabilistic graphical model
of d-GLAD and the meanings of notations used. We summarize the generative process
of d-GLAD in Algorithm 5.

In d-GLAD model, since the mixture rate of next time stamp is drawn from a mul-
tivariate Gaussian centering around the mixture rate of its previous time stamp, it
imposes smoothness on the mixture rates across time, preventing the mixture rate
from having drastic changes. The soft-max function maps the samples from the multi-
variate Gaussian to the parameters for the multinomial distribution. Similar idea can
be seen from the generalization of LDA to the dynamic topic model [Blei and Lafferty
2006]. While it is true that d-GLAD model shares the constraints of GLAD on fixed
group/role number and constant self-loop, it has certain intriguing advantages over
static models. (i) d-GLAD captures the dynamics of the latent variables Gp and Rp,
thus allows an individual to switch groups and roles over time.(ii) The smoothness of
the mixture rate over time models the behavior of normal groups, so detecting groups
whose mixture rates θtm undergo substantial change becomes easier.

6.2. Inference and Learning
The variational inference of d-GLAD is similar to the GLAD model except for the longi-
tudinal factor θ(1:T )

1:M . We add a variational distribution p(θ1:T
m |θ̂1:T ) to approximate the

original posterior where {θ̂1:T } are variational parameters. Then we apply the varia-
tional Kalman Filter technique [Blei and Lafferty 2006] to infer the sequential latent
variables and learn the model parameters. The transition for the mixture rate of each
group is Gaussian distributed:

θ(t)|θ(t−1) ∼ N (θ(t−1), σ2I).
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Algorithm 5 Generative Process of DGLAD
for t = 1→ T do

for m = 1→M do
Draw θ

(t)
m ∼ Gaussian(θ

(t−1)
m , σ)

end for
for individual p = 1→ N do

Draw membership distribution π
(t)
p ∼ Dir(α)

Draw G
(t)
p ∼Multinomial(πp)(t)

for individual q = 1→ p− 1 and q = p+ 1→ N do
Sample Y (t)

(p,q) ∼ Binomial ((G
(t)
p )TBG

(t)
q )

end for
Draw R

(t)
p ∼Multinomial(R(t)

p |S(θ
(t)

G
(t)
p

))

Draw X
(t)
p ∼Multinomial(X(t)

p |βR(t)
p

)

end for
end for

We can write the variational distribution for the transition as follows:

θ̂(t)|θ(t−1) ∼ N (θ(t−1), v̂2I).

Then we can apply similar variational EM procedure incorporating the transitions to
infer the variational parameters. Due to the numerical difficulty of variational Kalman
filter method, we also implement a version of the Monte Carlo sampling for d-GLAD
model, which is used in our empirical evaluations. The algorithm is elaborated in Algo-
rithm 7. The inference of the transitional part {θ1:T } is based on the Particle Filtering
method [Doucet and Johansen 2009]. Details of the MCMC of DGLAD is deferred to
Appendix B. The anomaly score of the d-GLAD model is measured by ‖θ(t)

m − θ(t−1)
m ‖.

Algorithm 6 Monte Carlo Sampling of DGLAD
Initialize α, θ0, β1:K , B
R1:T

1:N = 1/K, G1:T
1:N = 1/M , π1:N ∼ Dir(α)

repeat
for p = 1→ N do

for t = 1→ T do
Update R(t)

p ∼Mul(S(θ
(t−1)

G
(t−1)
p

))Mul(X(t)
p )

Update G(t)
p ∼Mul(π(t−1)

p )Mul(S(θ
(t−1)

G
(t−1)
p

))

end for
Update πp ∼ Dir(α)

end for
for t = 1→ T do

Update θ(t) using Particle Filtering
end for

until Convergence
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Table I. Two stage models in existing work.

Algorithm Stage-1 Stage-2
Heard 2010 [Heard et al. 2010] spectrum Poisson process

Xiong 2011-a [Xiong et al. 2011b] clustering Mixture Genre Model
Xiong 2011-b [Xiong et al. 2011a] clustering Flexible Genre Model

Muandet 2013 [Muandet and Schölkopf 2013] simulator One class SMM

7. EXPERIMENTS
To evaluate the effectiveness of our model, we conduct thorough experiments on syn-
thetic datasets and real world datasets. We study the applications of our approach by
analyzing scientific publications and senator voting records.

7.1. Baselines
To our knowledge, all existing algorithms are two-stages approaches: (i) identify
groups, (ii) detect group anomalies. We summarize these algorithms in Table I. We
use following approaches as baseline methods in comparison to GLAD and d-GLAD:

(1) MMSB-LDA:First use the MMSB model to learn a group membership distribu-
tion for each individual node, then assign the node to the group with the highest
probability. Finally, for each group, train an LDA model and infer the role identity.

(2) MMSB-MGM: Group is learned using the same method as MMSB-LDA. For the
role inference, train an multi-modal MGM instead of LDA.

(3) Graph-LDA: Run an off-the-shelf graph clustering algorithm Min-Cut to get group
membership and then train a LDA model for each group.

(4) Graph-MGM: Get group membership with the graph clustering algorithm Min-
Cut and then train a MGM model for each group.

7.2. Synthetic Dataset
We experiment on two type of synthetic datasets. One is a synthetic dataset with in-
jected group anomalies. The other is a benchmark dataset generated by a simulator
with individual anomaly labels.

7.2.1. Synthetic Data with Anomaly Injection. To justify our approach and evaluate the
anomaly detection performance, we generate a network with 500 nodes using GLAD
in Algorithm 1. We set the mixture rates of anomalous groups as [0.9, 0.1] and nor-
mal groups as [0.1, 0.9]. We vary the number of groups from 5 to 50 and inject 20%
anomalous groups. The rest 80% groups are normal. Since we know the normal and
anomalous mixture rates, we calculate the anomaly score of each group by directly
computing the differences between the inferred mixture rate and the ground truth
normal mixture rate. During the testing procedure, we rank the groups with respect to
their anomaly score and retrieve top 20% groups. For all methods, we set the number
of groups and number of roles the same as the ground truth.

We compare the learned groups of three grouping approaches with the ground truth:
GLAD, MMSB and Graph, for the case of 5 groups. The inferred group memberships
are shown as adjacent matrices in Figure 4. For better visualization, we intentionally
put the nodes that belong to the same group together. Ideally, we should observe dense
links within groups and sparse links between groups. Therefore, the dark pixels in the
plot would aggregate along the principal diagonal of the matrix. We use blue color to
highlight the groups learned. The group discovery result of GLAD is the closest to the
ground truth. The high connectivity in the graph and the lack of point-wise information
could be the reasons for the poor performance of Graph and MMSB.

Figure 5(a) and Figure 5(b) shows the anomaly detection performance with different
number of groups for GLAD and four other baselines. GLAD achieves the highest de-
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(a) Original (b) GLAD

(c) MMSB (d) Graph

Fig. 4. The 50 × 50 adjacent matrix re-arranged by the group membership discovered by three grouping
approaches on a subset of synthetic data of 5 groups. Dark pixels denote links and white pixels denote no
links. Blue block highlights the learned group membership.

tection accuracy. It is also more robust over 10 random runs. Note that the differences
for the first stage of baselines are more obvious than the second stage. This is because
the Bernoulli distribution limits the number of samples in the pair-wise data, making
the first stage more difficult to learn.

We justify the simplification of GLAD by evaluating the anomaly detection perfor-
mance of the GLAD0 model. We adopt similar experiment set-up for GLAD0 in order to
test whether GLAD0 can successfully detect the injected group anomalies. As shown in
Figure 5(c), for most of the cases (expect for group number 8 and 9), GLAD0 achieves
the highest detection accuracy, while the other two-stage approaches are relatively
unstable. Given the complexity of the model and the limited observations we feed in,
the gain from GLAD0 is less than that from the GLAD model. The performance dete-
rioration with respect to the number of groups is due to the sparsity of the data. As
we increase the group number of a fix size network, each group has fewer number of
people, thus learning the role mixture for the group becomes more difficult.

We also report the simulation results on group anomaly detection for d-GLAD. The
data is generated according to Algorithm 5 with 5 time stamps. We manipulate the
mixture rate of 50% of the groups at time point 4 as injected anomalies. Then we
raise alarms if the group’s mixture rate deviates from the previous time by a certain
threshold. In Figure 5(d), we display the false positive rate with different threshold
values. For comparison, we train MMSB-MGM and GLAD at each time independently
as baselines. It can be seen that d-GLAD achieves the lowest false positive rate, which
demonstrates the gain of d-GLAD over static models on the dynamic dataset.

7.2.2. Benchmark Data with Anomaly Labels. The benchmark data set is generated by a
simulator from a federal funded program. It contains email communication records
and working activities from 258 company employees. Each employee is featured by 6
types of activities. The labeled dataset contains 39 individual anomalies and 5 of them
cannot be detected by any existing algorithms. We set the number of groups as 20 as
the optimal setting obtained from cross validation and calculate the anomaly score of
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Fig. 5. Anomaly detection performance of GLAD and baseline methods on synthetic dataset of 500 samples,
with 20% anomalous groups. (a): Anomaly detection accuracy of GLAD and four baselines with respect
to number of groups (small) over 10 random runs. (b): Mean anomaly detection accuracy with respect to
number of groups (large), averaged over 10 random runs. (c): Anomaly detection accuracy of GLAD0 and
four baselines with respect to number of groups (small). (d):False positive rate over different thresholds for
d-GLAD, MMSB-MGM and GLAD for synthetic data. 10% group anomalies are injected.

each group by MCMC sampling. We treat all members in the most anomalous group as
individual anomalies and compare them with the anomaly labels. Though the anomaly
labels are point anomalies rather than group anomalies, the anomaly detection result
reflects the potential of our approach to tackle other type of difficult anomaly detection
problems. The precision, recall and F1 score over 20 runs on the benchmark dataset is
shown in Figure 6.

We can see that the GLAD model achieves comparable precision and recall with low
variances. In contrast, the detection performances of the two-stage models fluctuates
significantly. In terms of the F1 scores in Figure 6(c), both GLAD and MMSB-MGM
beat the other algorithms while GLAD has a lower variance than MMSB-MGM. One
possible explanation is that the point-wise features prevent the size of the group to
become either too large or too small, thus leading to more robust performance.

7.3. Real World Datasets
7.3.1. Scientific Publications. Researchers study the topics of papers seeking for con-

cise representations of scientific publications, which contain both pair-wise data like
co-authorship and point-wise data such as bag of words features. Detecting anoma-
lous topic distributions in scientific publications can sharpen our understanding of the
structure of research communities and possibly reveal unusual research trends. In or-
der to quantify our method, we resort to anomaly injection and construct a dataset
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Fig. 6. (a): Precision (b): Recall (c): F1 score on the benchmark dataset of GLAD and four baseline methods
over 20 runs. All members in the anomalous groups are treated as individual anomalies and compared with
39 true anomalies.

Table II. Group Anomaly Accuracy of GLAD and four baselines on DBLP publications. With KDD
papers treated as normal groups and other conferences are treated as group anomalies respectively.

Methods GLAD Graph-LDA Graph-MGM MMSB-LDA MMSB-MGM
DBLP:KDD/CVPR 0.4167 0.3333 0.3333 0.2500 0.2500
DBLP:KDD/ICML 0.2500 0.0833 0.0833 0.1667 0.1667

DBLP:KDD/SIGMOD 0.2875 0.0750 0.0500 0.1625 0.1625
DBLP:KDD/CIKM 0.4500 0.4000 0.3625 0.2625 0.2625
DBLP:KDD/EDBT 0.2625 0.0500 0.0875 0.2000 0.2000

with group anomaly labels. One way to construct group anomalies is the scenario that
a conference paper corpus is contaminated by group of papers from conferences in
other domains.

We create a dataset from a pre-processed Digital Bibliography and Library Project
(DBLP) dataset from [Deng et al. 2011]. The dataset consists of conference papers
from 20 conferences of four major area: database (DB), data mining (DM), information
retrieval (IR) and artificial intelligence (AI). Each paper has a bag-of words feature
vector with a vocabulary size of 11,771 and associated 28,702 authors information.
The detailed statistics of the dataset are shown in the top half of Table III. We set up
the group anomaly detection scenario as follows: we randomly sample groups of papers
from KDD and treat them as normal groups. Then we sample groups of papers from
the other conferences (e.g, CVPR, ICML , SIGMOD) and inject them into KDD papers
as group anomalies. If the two papers have at least one common author, we add a link
between them.

Accordingly, all conferences share four topics. But different conferences might have
difference point of emphasis, resulting in different mixture rates of topics. Our goal
is to pick out the “anomalous” papers from the corpus. We sample 50 groups of pa-
pers and inject 20% group anomalies. We apply different models with 50 groups and
4 roles to the data for inference of the membership and role distributions. Then we
rank 50 groups with respect to their anomaly scores. We treat the top 20% groups as
the detected anomalies. Table II shows the anomaly detection accuracy by GLAD and
four other baselines. GLAD is superior to all four baselines models for different com-
bination of normal/abnormal settings. We also display the topics learned by the GLAD
model. In Table IV, we show the top ten most representative words for the four topics,
which well reproduce the topic results reported in [Deng et al. 2011].

Since the DBLP dataset does not contain time-specific information which is not suit-
able for the d-GLAD model, we process another ACM dataset downloaded from Arnet-
Miner [Tang et al. 2008]. The dataset contains the publications from year 2000 to 2009
by 4,474 authors, mainly from the data mining community. In order to study the topic
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Table III. Key statistics of the DBLP and ACM publication
datasets.

DBLP
# of docs 28,569 # of authors 28,702
# of conf 20 # of words 11,771
# of links 104,962 # of area 4

ACM
# of docs 31,574 # of authors 4,474
# of year 10 # of words 8,024

Table IV. The most representative words learned by GLAD on
DBLP dataset of four topics: database, data mining, information
retrieval and artificial intelligence.

DB DM IR AI
databases data web query

object mining information system
access efficient learning management

database query search processing
oriented algorithm retrieval web
security queries clustering efficient
based clustering query performance

indexing databases text infomation
systems algorithms model distributed
privacy large classification optimization

Table V. Prediction negative log likelihood for GLAD and d-GLAD on ACM dataset over 9 years.

Year 2001 2002 2003 2004 2005 2006 2007 2008 2009
GLAD 28421.63 28023.68 30184.66 32039.92 28317.67 30539.66 26105.21 34340.53 25967.75
DGLAD 34411.28 33411.14 29935.87 31958.92 30082.65 29696.12 30042.77 34395.68 31683.49

evolution for academic scholars, we extract the abstracts of all publications and group
them by authors and publishing years. For each author, we construct a bag of words
feature vector out of all the papers he/she has written in one year. And the communi-
cation networks we generate are based on the co-authorship of the papers. Whenever
two authors have collaborations in a certain year, we create a link between them for
the network snapshot in that year.

Due to the lack of labels, it is difficult to directly evaluate our model on anomaly
detection task. As an alternative, we design a prediction task to compare the modeling
performance of GLAD and d-GLAD on ACM publications. Specifically, we separate the
papers into training and testing sets and measure the predictive model log-likelihood
on the testing data. For d-GLAD, we train our model using a series of publications
from previous years, and test on the year immediately after. For the GLAD model,
as it is a static model, time independence assumption applies. We train the model
using previous year and test on the next year. The model fitting results are shown in
Table V. Out of 9 training-testing experiments, d-GLAD model achieves higher log-
likelihood than GLAD model for 6 times, indicating d-GLAD as a better fit for the
evolving publication modeling.

7.3.2. US Senate Voting. We collect the voting records from the government website
of United States 109th Congress 1 using the New York Time Congress API 2. The
records of 109th Congress contain 100 senators’ voting spanning two sessions from
Jan 1st 2005 to Dec 31st 2006. We divide the 24 months records into 8 time slots,
where each slot denotes a 3-month interval. Then we apply the method of [Kolar

1http://www.senate.gov/
2http://developer.nytimes.com/docs/read/congress api
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Fig. 7. Common votes graph with party labels inferred by GLAD for 100 senators on the aggregated net-
work. Compared with ground truth, two outliers are highlighted due to their anomalous voting behavior.

et al. 2010] to construct a network from original yay/nay votes. For the nodes fea-
tures, we collect the statistics of votes in six dimensions, namely House Joint Reso-
lution(hjres), House of Representatives(hr), Presidential Nomination(pn), Simple Res-
olution(s), sconres(Senate Concurrent Resolution) and Senate Joint Resolution(sjres).
We evaluate GLAD on single aggregated network and d-GLAD on the 8 time slots
time-varying data.

We set the number of groups as 2 and number of roles as 3 as the Senate consists
of two major parties and maintains three types of committees. Figure 7 shows the
groups inferred by GLAD. The blue nodes denote Democratic party members and the
red ones are Republican. Compared with known facts, the model correctly reveals the
party affiliation except for two outliers: Ben Nelson (Democratic) and James Jeffords
(Independent). The underlying reason is that the votes of these two senators are often
at odds with the leadership of his party, leading to false grouping. We conduct an
anecdotal investigation and find that the congressional vote rating from the National
Journal placed Ben Nelson to the right of five Senate Republicans in 2006. For James
Jeffords, he served as a Republican until 2001, when he left the party to become an
Independent and began caucusing with the Democrats.

Since there are merely two groups, it is impetuous to say one party is more anoma-
lous than the other. Instead, we use d-GLAD to detect time points when the role mix-
ture rates change dramatically. In fact, d-GLAD raises an alarm at the 7th time-step
for Democratic. A well known political event happened during this time is that Demo-
cratic senator Joseph Lieberman lost the Democratic Party primary election and be-
came an independent Democratic in September 2006. Though it may be over-optimistic
to draw the conclusion that this event causes the sudden change of role mixture rates,
it serves as an evidence that the dynamics of the voting behavior is closely related to
the party affiliation of members.

8. CONCLUSION
In this paper, we perform a follow-up study of the Group Latent Anomaly Detec-
tion (GLAD) model by analyzing an alternative construction of the unified model. We
loosely connect the MMSB model and the LDA model assuming the shared group mem-
bership distribution for both point-wise and pair-wise data. We also provide the vari-
ational Bayesian inference algorithm for model inference. We conduct a simulation
experiment to verify the benefit of the joint model in comparison with the two-stage
approaches.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:20 R. Yu et al.

9. ACKNOWLEDGMENTS
The research was sponsored by the U.S. Defense Advanced Research Projects Agency
(DARPA) under the Anomaly Detection at Multiple Scales (ADAMS) program, Agree-
ment Number W911NF-11-C-0200 and NSF research grants IIS-1134990. The views
and conclusions are those of the authors and should not be interpreted as representing
the official policies of the funding agency, or the U.S. Government.

A. VARIATIONAL EM INFERENCE OF GLAD0

The posterior distribution is:

p(v, h|Θ) =
∏
p,a

p(Xpa|Rpa, β)p(Rpa|Gpa, θ)p(Gpa|π)

×
∏
pq

p(Ypq|zp→q, zp←q)p(zp→q|πp)p(zp←q|πp)
∏
p

p(πp|α).

The variational distribution takes the following form:

q(h) =

[∏
p

q(πp|γp)

][∏
p,q

q(zp→q|φp→q)q(zp←q|φp←q)

][∏
p

∏
a

q(Gpa|ηpa)q(Rpa|ξpa)

]
We assume that the number of groups is M , number of roles is K and number of
activities is D. Thus, θ, the group role distribution is a M -by-K matrix; β, the role
activity distribution is a K-by-D matrix.

A.1. Posterior Inference
Finding the optimal set of the variational parameters ∆? is equivalent to solving the
optimization problem subject to probability constraints:

∆? = argmax
∆

Eq[log p(v, h|Θ)]− Eq[log q(h|∆)]

s.t.
∑
g

φp→q,g = 1,
∑
h

φp←q,h = 1,
∑
g

ηpa,g = 1,
∑
r

ξpa,r = 1.

Construct Lagrangian for the problem above and set the derivative to zero for each
variable separately, we have:

Update of φp→q and φp←q.

φp→q,g ∝ eEq(πp)[log πp,g ] ·
M∏
h=1

[
B
Ypq
gh (1−Bgh)1−Ypq

]φp←q,h

φp←q,h ∝ eEq(πp)[log πp,h] ·
M∏
g=1

[
B
Ypq
gh (1−Bgh)1−Ypq

]φp→q,g
where we have Eq(πp)[log πp,g] = ψ(γp,g)−

∑M
j=1 ψ(γp,j), with ψ(·) as the digamma func-

tion.

Update for ηpa.

ηpa,g ∝ eψ(γp,g) ·
K∏
r=1

θξga,rgr
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Update for ξpa.

ξpa,r ∝
M∏
g=1

θηpa,ggr ·
D∏
d=1

β
xpa,d
rd

Update for γp.

rp,g = αg +

N∑
q=1

[φp→q,g + φp←q,g] +

Ap∑
a=1

ηpa,g

A.2. Parameter Estimation
Estimation of B. This part is exactly the same to MMSB, where we have

B̂gh =

∑
p,q Ypqφp→q,gφp←q,h

(1− ρ) ·
∑
p,q φp→q,gφp←q,h

Here ρ is for modeling sparsity. More specifically, ρ captures the portion zeros that
should not be explained by the block B (see section 2.1 of MMSB paper for more detail).

ρ̂ =

∑
p,q(1− Ypq)(

∑
g,h φp→q,gφp←q,h)∑

p,q

∑
g,h φp→q,gφp←q,h

Estimation of θ.

θgr ∝
∑
p

∑
a

ηpa,gξpa,r

Estimation of β.

βrd ∝
∑
p

∑
a

xpa,d · ξpa,r

B. MCMC OF D-GLAD

Algorithm 7 Monte Carlo Sampling of DGLAD
Initialize α, θ0, β1:K , B
R1:T

1:N = 1/K, G1:T
1:N = 1/M , π1:N ∼ Dir(α)

repeat
for p = 1→ N do

for t = 1→ T do
Update R(t)

p ∼Mul(S(θ
(t−1)

G
(t−1)
p

))Mul(X(t)
p )

Update G(t)
p ∼Mul(π(t−1)

p )Mul(S(θ
(t−1)

G
(t−1)
p

))

end for
Update πp ∼ Dir(α)

end for
for t = 1→ T do

Update θ(t) using Particle Filtering
end for

until Convergence
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B.1. Initialization
Initialize α = (1/M, 1/M, · · · , 1/M). For fast convergence, initialize B =
diag(0.5, 0.5, · · · , 0.5). Randomly initialize θ0 and β1:K .

B.2. Gibbs Sampling
The posterior is as follows:

p(v, h) =
∏
t

∏
p

p(π(t)
p |α)×

∏
p,q

p(Y (t)
p,q |G(t)

p , G(t)
q , B)

×
∏
p

p(X(t)
p |R(t)

p , β1:K)p(R(t)
p |G(t)

p , θ
(t)
1:M )p(G(t)

p |π(t)
p )× p(θ(1:T )

1:M )

Sample π(t)
p , G

(t)
p , R

(t)
p using Gibbs sampler, which is to sample from posterior by fix-

ing all the other variables as the values from the last iteration.

B.3. Particle Filtering

{θ(t)
m } are sampled using particle filtering, a sequential importance sampling tech-

nique. For each θ
(1:T )
m , drop the subscript m for convenience.

At t = 1. :
Sample the ith particle θ(1)

i ∼ Gaussian(θ0, σI).
Compute the weights wq(θ

(1)
i ) = MulPDF(θ

(1)
i ,S(N

G
(1)
p

)) and normalize to 1, where

N
G

(1)
p

is the empirical role distribution for group G(1)
p .

Resample (w
(1)
i , θ

(1)
i ) to obtain N new equally-weighted particles ( 1

N , θ̄
(1)
i ).

At t ≥ 2. :
Sample the ith particle θ(t)

i ∼ Gaussian(θ̄
(t−1)
i , σI) and set θ(1:t)

i ← (θ̄
(1:t−1)
i , θ

(t)
i ).

Compute the weights wq(θ
(t)
i ) = MulPDF(θ

(1)
i ,S(N

G
(t)
p

)) and normalize to 1, where

N
G

(t)
p

is the empirical role distribution for group G(t)
p .

Resample (w
(t)
i , θ

(1:t)
i ) to obtain N new equally-weighted particles ( 1

N , θ̄
(1:t)
i ).
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