
A Proof of Lemma 1

Proof. The original problem has the following form:

Â = argmin
A:rank(A)=1

{
‖Y −AX‖2F

}
(12)

We can rewrite the optimization problem in Eq. (12) as estimation of α ∈ R, u ∈ Rq×1, ‖u‖2 = 1,
and v ∈ Rp×1, ‖v‖2 = 1 such that:

α̂, û, v̂ = argmin
α,u,v:‖u‖2=1,‖v‖2=1

{∥∥Y − αuv>X∥∥2

F

}
(13)

We will minimize the above objective function in three steps: First, minimization in terms of α
yields α̂ = 〈Y,uv>X〉/‖uv>X‖2F , where we have assumed that v>X 6= 0. Hence, we have:

û, v̂ = argmax
u,v:‖u‖2=1,‖v‖2=1

tr((uv>X)>Y )2

‖uv>X‖2F
(14)

The objective function can be rewritten tr
{

(uv>X)>Y
}

= tr
{
X>vu>Y

}
= tr

{
Y X>vu>

}
.

Some algebra work on the denominator yields ‖uv>X‖2F = tr
{

(uv>X)>(uv>X)
}

=

tr
{
X>vu>uv>X

}
= tr

{
X>vv>X

}
= v>XX>v. This implies that the denominator is in-

dependent of u and the optimal value of u in Eq. (14) is proportional to Y X>v. Hence, we need
to first find the optimal value of v and then compute u = (Y X>v)/‖Y X>v‖2. Substitution of the
optimal value of u yields:

v̂ = argmax
v:‖v‖2=1

v>XY >Y X>v

v>XX>v
(15)

Note that the objective function is bounded and invariant of ‖v‖2, hence the ‖v‖2 = 1 constraint
can be relaxed. Now, suppose the value of v>XX>v for optimal choice of vectors v is t. We can
rewrite the optimization in Eq. (15) as

v̂ = argmax
v

v>XY >Y X>v

s.t. v>XX>v = t (16)

Using the Lagrangian multipliers method, we can show that there is a value for λ such that the
solution v̂ for the dual problem is the optimal solution for Eq. (16). Hence, we need to solve the
following optimization problem for v:

v̂ = argmax
v:‖v‖2=1

{
v>XY >Y X>v − λv>XX>v

}
= argmax

v:‖v‖2=1

{
v>X(Y >Y − λI)X>v

}
(17)

Eq. (17) implies that v is the dominant eigenvector ofX(Y >Y −λI)X>. Hence, we are able to find
the optimal value of both u and v for the given value of λ. For simplicity of notation, let’s define
P , XX> and Q , XY >Y X>. Consider the equations obtained by solving the Lagrangian dual
of Eq. (16):

Qv = λPv (18)

‖v>X‖22 = t, (19)
λ ≥ 0. (20)

Eq. (18) describes a generalized positive definite eigenvalue problem. Hence, we can select λmax =
λ1(Q,P ) which maximizes the objective function in Eq. (15). The optimal value of u can be found
by substitution of optimal v in Eq. (14) and simple algebra yields the result in Lemma 1.
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B Proof of Theorem 2

Note that intuitively, since our greedy steps are optimal in the first mode, we can see that our bound
should be at least as tight as the bound of [21]. Here is the formal proof of Theorem 2.

Proof. Let’s denote the loss function at kth step by

L(Y,V,Wk) =

r∑
j=1

‖V(:,:,j) −W(:, :, j)Y(:,:,j)‖2F (21)

Lines 5–8 of Algorithm 1 imply:
L(Y,V,Wk)− L(Y,V,Wk+1) = L(Y,V,Wk)−min

m
inf

rank(B)=1
L(Y,V,W(m),k +B)

≥ L(Y,V,Wk)− inf
rank(B)=1

L(Y,V,W(1),k +B) (22)

Let’s define B = αC where α ∈ R, rank(C) = 1, and ‖C‖2 = 1. We expand the right hand side of
Eq. (22) and write:
L(Y,V,Wk)− L(Y,V,Wk+1) ≥ sup

α,C:rank(C)=1,‖C‖2=1

2α〈CY ,V −W(1),kY 〉 − α2‖CY ‖2F ,

where Y and V are used for denoting the matrix created by repeating Y(:,:,j) and V(:,:,j) on the
diagonal blocks of a block diagonal matrix, respectively. Since the algorithm finds the optimal B,
we can maximize it with respect to α which yields:

L(Y,V,Wk)− L(Y,V,Wk+1) ≥ sup
C:rank(C)=1,‖C‖2=1

〈CY ,V −W(1),kY 〉2

‖CY ‖2F

≥ sup
C:rank(C)=1,‖C‖2=1

1

σmax(Y )2
〈CY ,V −W(1),kY 〉2

= sup
C:rank(C)=1,‖C‖2=1

1

σmax(Y )2
〈C, (V −W(1),kY )Y >〉2

=
σmax

(
(V −W(1),kY )Y >

)2
σmax(V )

Define the residual Rk = L(Y,V,Wk) − L(Y,V,W∗). Note that −(V − W(1),kY )Y > is the
gradient of the residual function with respect to W(1),k. Since the operator norm and the nuclear
norms are dual of each other, using the properties of dual norms we can write for any two matrices
A and B

〈A,B〉 ≤ ‖A‖2‖B‖∗ (23)
Thus, using the convexity of the residual function, we can show that

Rk −Rk+1 ≥

(∥∥∇W(1),k
Rk
∥∥

2
‖W(1),k −W∗(1)‖∗

)2

σmax(Y )2‖W(1),k −W∗(1)‖2∗
(24)

≥ R2
k

σmax(Y )2‖W(1),k −W∗(1)‖2∗
(25)

≥ R2
k

σmax(Y )2‖W∗2(1)‖2∗
(26)

The sequence in Eq. (26) converges to zero according to the following rate [22, Lemma B.2]

Rk ≤
(σmax(Y )‖W∗(1)‖∗)

2

(k + 1)

The step in Eq. (25) is due to the fact that the parameter estimation error decreases as the algorithm
progresses. This can be seen by noting that the minimum eigenvalue assumption ensures strong
convexity of the loss function.
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C Convex relaxation with ADMM

A convex relaxation approach replaces the constraint rank(W(n)) with its convex hull ‖W(n)‖∗.
The mixture regularization in [23] assumes that the N -mode tensorW is a mixture of N auxiliary
tensors {Zn}, i.e.,W =

∑N
n=1Zn. It regularizes the nuclear norm of only the mode-n unfolding

for the n th tensor Zn, i.e,
∑N
n=1 ‖Zn(n)‖∗. The resulting convex relaxed optimization problem is as

follows:

Ŵ = argmin
W

{
L(W;Y,V) + λ

N∑
n

‖Zn(n)‖∗ s.t.

N∑
n

Zn =W

}
(27)

We adapt Alternating Direction Methods of Multiplier (ADMM) [10] for solving the above problem.
Due to the coupling of {Zn} in the summation, each Zn is not directly separable from other Zn′ .
Thus, we employ the coordinate descent algorithm to sequentially solve {Zn}. Given the augmented
Lagrangian of problem as follows, the ADMM-based algorithm is elaborated in Algo. 2.

F (W, {Zn}, C) = L(W;Y,V) + λ

N∑
n=1

‖Zn(n)‖∗ +
β

2

∑
n

‖W −
∑
n

Zn‖2F − 〈C,W −
N∑
n=1

Zn〉 (28)

Algorithm 2 ADMM for solving Eq. (6)
1: Input: transformed data Y,V of M variables, hyper-parameters λ, β.
2: Output: N mode tensorW
3: InitializeW, {Zn}, C to zero.
4: repeat
5: W ← argminW

{
L(W;Y,V) + β

2 ‖W −
∑N
n=1Zn − C‖2F

}
.

6: repeat
7: for variable n = 1 to N do
8: Zn(n) = shrinkλ

β

(
W(n) − 1

βC −
∑
n′ 6=nZn

′

(n′)

)
.

9: end for
10: until solution {Zn} converge

11: C ← C − β(W −
N∑
n=1
Zn).

12: until objective function converges

The sub-routine shrinkα(A) applies a soft-thresholding rule at level α to the singular values of
the input matrix A. The following lemma shows the convergence of ADMM-based solver for our
problem.
Lemma 3. [3] For the constrained problem min

x,y
f(x) + g(y), s.t x ∈ Cx, y ∈ Cy, Gx = y,

If either {Cx, Cy} are bounded or G′G is invertible, and the optimal solution set is nonempty. A
sequence of solutions {x, y} generated by ADMM is bounded and every limit point is an optimal
solution of the original problem.

D Derivation of the unified formulation

In this section, we demonstrate how we can use Eq. (6) to solve Eqs. (4) and (5). In the cokriging
problem, it is easy to see that with Y:,:,m = H and V:,:,m = XΩ,m for m = 1, . . . ,M the problems
are equivalent. In the forecasting problem, H is full rank and the mapping defined by W 7→ W̃ :
W̃:,:,m = HW:,:,m for m = 1, . . . ,M preserves the tensor rank, i.e., rank(W) = rank(W̃). This
suggests that we can solve Eq. (4) as follows: first solve Eq. (6) with Y:,:,m = XK+1:T,m and
V:,:,m = X:,:,m and obtain its solution as W̃; then computeW:,:,m = H−1W̃:,:,m.
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