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ABSTRACT
Real-time traffic prediction from high-fidelity spatiotemporal traf-
fic sensor datasets is an important problem for intelligent trans-
portation systems and sustainability. However, it is challenging
due to the complex topological dependencies and high dynamism
associated with changing road conditions. In this paper, we pro-
pose a Latent Space Model for Road Networks (LSM-RN) to ad-
dress these challenges holistically. In particular, given a series of
road network snapshots, we learn the attributes of vertices in latent
spaces which capture both topological and temporal properties. As
these latent attributes are time-dependent, they can estimate how
traffic patterns form and evolve. In addition, we present an incre-
mental online algorithm which sequentially and adaptively learns
the latent attributes from the temporal graph changes. Our frame-
work enables real-time traffic prediction by 1) exploiting real-time
sensor readings to adjust/update the existing latent spaces, and 2)
training as data arrives and making predictions on-the-fly. By con-
ducting extensive experiments with a large volume of real-world
traffic sensor data, we demonstrate the superiority of our frame-
work for real-time traffic prediction on large road networks over
competitors as well as baseline graph-based LSM’s.
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1. INTRODUCTION
Recent advances in traffic sensing technology have enabled the

acquisition of high-fidelity spatiotemporal traffic datasets. For ex-
ample, at our research center, for the past five years, we have been
collecting data from 15000 loop detectors installed on the high-
ways and arterial streets of Los Angeles County, covering 3420
miles cumulatively (see the case study in [13]). The collected data
include several main traffic parameters such as occupancy, volume,
and speed at the rate of 1 reading/sensor/min. These large scale data
streams enable accurate traffic prediction, which in turn improves
route navigation, traffic regulation, urban planning, etc.

The traffic prediction problem aims to predict the future travel
speed of each and every edge of a road network, given the his-
torical speed readings from the sensors on these edges. To solve
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the traffic prediction problem, the majority of existing techniques
utilize the historical information of an edge to predict its future
travel-speed using regression techniques such as Auto-regressive
Integrated Moving Average (ARIMA) [18], Support Vector Regres-
sion (SVR) [20] and Gaussian Process (GP) [31]. There are also
studies that leverage spatial/topological similarities to predict the
readings of an edge based on its neighbors in either the Euclidean
space [10] or the network space [14]. Even though there are few
notable exceptions such as Hidden Markov Model (HMM) [14,28]
that predict traffic of edges by collectively inferring temporal in-
formation, these approaches simply combine the local information
of neighbors with temporal information. Furthermore, existing ap-
proaches such as GP and HMM are computationally expensive and
require repeated offline trainings. Therefore, it is very difficult to
adapt the models to real-time traffic forecasting.

Motivated by these challenges, we propose Latent Space Model-
ing for Road Networks (LSM-RN), which enables more accurate
and scalable traffic prediction by utilizing both topology similarity
and temporal correlations. Specifically, with LSM-RN, vertices of
dynamic road network are embedded into a latent space, where two
vertices that are similar in terms of both time-series traffic behavior
and the road network topology are close to each other in the la-
tent space. Recently, Latent Space Modeling has been successfully
applied to several real-world problems such as community detec-
tion [24, 29], link prediction [17, 33] and sentiment analysis [32].
Among them, the work on social networks [17, 24, 33] (hereafter
called LSM-SN) is most related to ours because in both scenarios
data are represented as graphs and each vertex of these graphs has
different attributes. However, none of the approaches to LSM-SN
are suitable for both identifying the edge and/or sensor latent at-
tributes in road networks and exploiting them for real-time traffic
prediction due to the following reasons.

First, road networks show significant topological (e.g., travel-
speeds between two sensors on the same road segment are sim-
ilar), and temporal (e.g., travel-speeds measured every 1 minute
on a particular sensor are similar) correlations. These correlations
can be exploited to alleviate the missing data problem, which is
unique to road networks, due to the fact that some road segments
may contain no sensors and any sensor may occasionally fail to re-
port data. Second, unlike social networks, LSM-RN is fast evolving
due to the time-varying traffic conditions. On the contrary, social
networks evolve smoothly and frequent changes are very unlikely
(e.g., one user changes its political preferences twice a day). In-
stead, in road networks, traffic conditions on a particular road seg-
ment can change rapidly in a short time (i.e., time-dependent) be-
cause of rush/non-rush hours and traffic incidents. Third, LSM-RN
is highly dynamic where fresh data come in a streaming fashion,
whereas the connections (weights) between nodes in social net-
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works are mostly static. The dynamic nature requires frequent
model updates (e.g., per minute), which necessitates partial up-
dates of the model as opposed to the time-consuming full updates
in LSM-SN. Finally, with LSM-RN, the ground truth can be ob-
served shortly after making the prediction (by measuring the actual
speed later in future), which also provides an opportunity to im-
prove/adjust the model incrementally (i.e., online learning).

With our proposed LSM-RN, each dimension of the embedded
latent space represents a latent attribute. Thus the attribute distri-
bution of vertices and how the attributes interact with each other
jointly determine the underlying traffic pattern. To enforce the
topology of road network, LSM-RN adds a graph Laplacian con-
straint which not only enables global graph similarity, but also com-
pletes the missing data by a set of similar edges with non-zero read-
ings. Subsequently, we incorporate the temporal properties into our
LSM-RN model by considering time-dependent latent attributes
and a global transition process. With these time-dependent latent
attributes and the transition matrix, we are able to better model how
traffic patterns form and evolve.

To infer the time-dependent latent attributes of our LSM-RN
model, a typical method is to utilize multiplicative algorithms [16]
based on Non-negative Matrix Factorization, where we jointly infer
the whole latent attributes via iterative updates until they become
stable, termed as global learning. However, global learning is not
only slow but also not practical for real-time traffic prediction. This
is because, traffic data are of high-fidelity (i.e., updates are frequent
in every one minute) and the actual ground-truth of traffic speed be-
comes available shortly afterwards (e.g., after making a prediction
for the next five minutes, the ground truth data will be available
instantly after five minutes). We thus propose an incremental on-
line learning with which we sequentially and adaptively learn the
latent attributes from the temporal traffic changes. In particular,
each time when our algorithm makes a prediction with the latent
attributes learned from the previous snapshot, it receives feedback
from the next snapshot (i.e., the ground truth speed reading we al-
ready obtained) and subsequently modifies the latent attributes for
more accurate predictions. Unlike traditional online learning which
only performs one single update (e.g., update one vertex per predic-
tion) per round, our goal is to make predictions for the entire road
network, and thus the proposed online algorithm allows updating
latent attributes of many correlated vertices simultaneously.

Leveraging global and incremental learning algorithms our LSM-
RN model can strike a balance between accuracy and efficiency for
real-time forecasting. Specifically, we consider a setting with a pre-
defined time window where at each time window (e.g., 5 minutes),
we learn our traffic model with the proposed incremental inference
approach on-the-fly, and make predictions for the next time span.
Meanwhile, we batch the re-computation of our traffic model at the
end of one large time window (e.g., one hour). Under this setting,
our LSM-RN model enables the following two properties: (1) real-
time feedback information can be seamlessly incorporated into our
framework to adjust for existing latent spaces, thus allowing for
more accurate predictions, and (2) our algorithms perform training
and predictions on-the-fly with small amount of data rather than
requiring large training datasets.

We conducted extensive experiments on a large scale of real-
world traffic sensor dataset. We demonstrated that the LSM-RN
framework achieves better accuracy than that of both existing time
series methods (e.g. ARIMA and SVR) and the LSM-SN approaches.
Moreover, we show that our algorithm scales to large road net-
works. For example, it only takes 4 seconds to make a prediction
for a network with 19,986 edges. Finally, we show that our batch
window setting works perfectly for streaming data, alternating the

executions of our global and incremental algorithms, which strikes
a compromise between prediction accuracy and efficiency. For in-
stance, incremental learning is one order of magnitude faster than
global learning, and it requires less than 1 seconds to incorporate
real-time feedback information.

The remainder of this paper is organized as follows. We discuss
the related work in Section 2 and define our problem in Section 3.
and explain LSM-RN in Section 4. We present the global learning
and increment learning algorithms, and discuss how to adapt our al-
gorithms for real-time traffic forecasting in Section 5. In Section 6,
we report the experiment results and conclude the paper afterwards.

2. BACKGROUND AND RELATED WORKS
2.1 Traffic analysis

Many studies have been conducted to address the traffic predic-
tion problem, but no single study so far has tackled all the chal-
lenges in a holistic manner. Some focused on missing values [19]
or missing sensors [30], but not both. Some studies [18, 31] uti-
lize temporal data which models each sensor (or edge) indepen-
dently and makes predictions using time series approaches (e.g.,
ARIMA [18], SVR [20] and GP [31]). For instance, Pan et. al. [18]
learns an enhanced ARIMA model for each edge in advance, and
then performs traffic prediction on top of these models. Very few
studies [14, 28] utilize spatiotemporal model with correlated time
series based on Hidden Markov Model, but only for small num-
ber of time series and not always using the network space as the
spatial dimension (e.g., using Euclidean space [10]). In [27], Xu
et. al. consider using the newly arrived data as feedback to reward
one classifier vs. the other but not for dynamically updating the
model. Note that many existing studies [5,12,25,28] on traffic pre-
diction are based on GPS dataset, which is different with the sensor
dataset, where we have fine-grained and steady readings from road-
equipped sensors. We are not aware of any study that applies latent
space modeling (considering both time and network topology) to
real-time traffic prediction from incomplete (i.e., missing sensors
and values) sensor datasets.

2.2 Latent space model and NMF
Recently, many real data analytic problems such as community

detection [24,29], recommendation system [6], topic modeling [22],
image clustering [4], and sentiment analysis [32], have been formu-
lated as the problem of latent space learning. These studies assume
that, given a graph, each vertex resides in a latent space with at-
tributes, and vertices which are close to each other are more likely
to be in the same cluster (e.g., community or topic) and form a link.
In particular, the objective is to infer the latent matrix by minimiz-
ing the difference (e.g., squared loss [29,32] or KL-divergence [4])
between observed and estimated links. However, existing methods
are not designed for the highly correlated (topologically and tem-
porally) and dynamic road networks. Few studies [21] have con-
sidered the temporal relationships in SN with the assumption that
networks evolve over time. The temporal graph snapshots in [21]
are treated separately and thus newly observed data are not incorpo-
rated to improve the model. Compared with existing works, we ex-
plore the feasibility of modeling road networks with time-varying
latent space. The traffic speed of a road segment is determined
by their latent attributes and the interaction between corresponding
attributes. To tackle the sparsity of road network, we utilize the
graph topology by adding a graph Laplacian constraint to impute
the missing values. In addition, the latent position of each vertex,
varies over time and allows for sudden movement from one times-
tamp to the next timestamp via a transition matrix.

Different techniques have been proposed to learn the latent prop-
erties, where Non-negative Matrix Factorization (NMF) is one of



the most popular methods thanks to ease of interpretability and flex-
ibility. In this work, we explore the feasibility of applying dynamic
NMF to traffic prediction domain. We design a global algorithm
to infer the latent space based on the traditional multiplicative al-
gorithm [9, 16]. We further propose a topology-aware incremental
algorithm, which adaptively updates the latent space representation
for each node in the road network with topology constraints. The
proposed algorithms differ from traditional online NMF algorithms
such as [3], which independently perform the online update.

Notations Explanations
N , n road network, number of vertices of the road network
G the adjacency matrix of a graph
U latent space matrix
B attribute interaction matrix
A the transition matrix
k the number of dimensions of latent attributes
T the number of snapshots
span the gap between two continuous graph snapshots
h the prediction horizon
λ, γ regularization parameters for graph Laplacian and transition process

Table 1: Notations and explanations

3. PROBLEM DEFINITION
We denote a road network as a directed graph N = (V, E),

where V is the set of vertices and E ∈ V × V is the set of edges,
respectively. A vertex vi ∈ V models a road intersection or an
end of road. An edge e(vi, vj), which connects two vertices, repre-
sents a directed network segment. Each edge e(vi, vj) is associated
with a travel speed c(vi, vj) (e.g., 40 miles/hour). In addition, N
has a corresponding adjacency matrix representation, denoted as
G, whose (i, j)th entry represents the edge weight between the ith

and jth vertices.
The road network snapshots are constructed from a large-scale,

high resolution traffic sensor dataset (see detailed description of
sensor data in Section 6). Specifically, a sensor s (i.e., a loop detec-
tor) is located at one segment of road network N , which provides
a reading (e.g., 40 miles/hour) per sampling rate (e.g., 1 min). We
divide one day into different intervals, where span is the length
of each time interval. For example, when span = 5 minutes, we
have 288 time intervals per day. For each time interval t, we ag-
gregate (i.e., average) the readings of one sensor. Subsequently, for
each edge segment of network N , we average all sensor readings
located at that edge as its weight. Therefore, at each timestamp t,
we have a road network snapshot Gt from traffic sensors.
Example. Figure 1 (a) shows a simple road network with 7 vertices
and 10 edges at one timestamp. Three sensors (i.e., s1, s2, s3) are
located in edges (v1, v2), (v3, v4) and (v7, v6) respectively, and
each sensor provides an aggregated reading during the time inter-
val. Figure 1(b) shows the corresponding adjacent matrix after
mapping the sensor readings to the road segments. Note that the
sensor dataset is incomplete with both missing values (i.e., sensor
fails to report data) and missing sensors (i.e., edges without any
sensors). Here sensor s3 fails to provide reading, thus the edge
weight of c(v3, v4) is ? due to missing value. In addition, the edge
weight of c(v3, v2) is marked as × because of missing sensors.

v1 v2

v3 v4

v5 v6

v7

s2:40

s3:?

s1:28.6

v1

v2

v3

v4

v5

v6

v7

v1 v2 v3 v4 v5 v6 v7

0   28.6   0   0   0   0   0

0      0      0      0      0      0      0      

0      x 0      ? 0      0      0      

0      x 0      0      x 0      0      

0      x 0      0      0      0      0      

0      x 0      0      0      0      x

0      0      0      0      0      40 0      

(a) An abstract road network N (b) Adjacency matrix representation G

Figure 1: An example of road network
Given a small number of road network snapshots, or a dynamic

road network, our objective is to predict the future traffic condi-
tions. Specifically, a dynamic road network, is a sequence of snap-
shots (G1, G2, · · · , GT ) with edge weights denoting time-dependent
travel speed.

With a dynamic road network, we formally define the problem
of edge traffic prediction with missing data as follows:

Problem 1 Given a dynamic road network (G1, G2, · · · , GT ) with
missing data at each timestamp, we aim to achieve the following
two goals:

• complete the missing data (i.e., both missing value and sen-
sor) of Gi , where 1 ≤ i ≤ T ;

• predict the future readings of GT+h, where h is the predic-
tion horizon. For example, when h = 1, we predict the traffic
condition of GT+1 at the next timestamp.

For ease of presentation, Table 1 lists the notations we use through-
out this paper. Note that since each dimension of a latent space
represents a latent attribute, we thus use latent attributes and latent
positions interchangeably.

4. LATENT SPACE MODEL FOR ROAD NET-
WORKS (LSM-RN)

In this section, we describe our LSM-RN model in the context
of traffic prediction. We first introduce the basic latent space model
(Section 4.1) by considering the graph topology, and then incorpo-
rate both temporal and transition patterns (Section 4.2). Finally, we
describe the complete LSM-RN model to solve the traffic predic-
tion problem with missing data (Section 4.3).

4.1 Topology in LSM-RN
Our traffic model is built upon the latent space model of the ob-

served road network. Basically, each vertex of road network have
different attributes and each vertex has an overlapping representa-
tion of attributes. The attributes of vertices and how each attribute
interacts with others jointly determine the underlying traffic pat-
terns. Intuitively, if two highway vertices are connected, their cor-
responding interaction generates a higher travel speed than that of
two vertices located at arterial streets. In particular, given a snap-
shot of road network G, we aim to learn two matrices U and B,
where matrix U ∈ Rn×k

+ denotes the latent attributes of vertices,
and matrix B ∈ Rk×k

+ denotes the attribute interaction patterns.
The product of UBUT represents the traffic speed between any
two vertices, where we use to approximate G. Note that B is an
asymmetric matrix since the road network G is directed. There-
fore, the basic traffic model which considers the graph topology
can be determined by solving the following optimization problem:

argmin
U≥0,B≥0

J = ||G− UBUT ||2F (1)

U

B U
T

G
≈ ×

n × n

×

n × k

k × k k × n

28.6

c(v1, v2) U(v1) U
T
(v2)B

2×2

= × ×0.6 0.1
0.450

20

15

30 0.5

highway business

(a) Basic model (b) Travel time of c(v1, v2)

Figure 2: An example of our traffic model, where G represents a road
network, U denotes the attributes of vertices in the road network, n is
number of nodes, and k is number of attributes, and B denotes how
one type of attributes interacts with others.

Similar Non-negative Tri-factorization frameworks have been uti-
lized in clustering [9], community detection [29] and sentimental
analysis [32]. Figure 2 (a) illustrates the intuition of our static traf-
fic model. As shown in Figure 2 (b), suppose we know that each



vertex is associated with two attributes (e.g., highway and business
area), and the interaction pattern between two attributes is encoded
in matrix B, we can accurately estimate the travel speed between
vertex v1 and v2, using their latent attributes and the matrix B.
Overcome the sparsity of Road Network. In our road network,
G is very sparse (i.e., zero entries dominate the items in G) for
the following reasons: (1) the average degree of a road network
is small [26], and thus the edges of road network is far from fully
connected, (2) the distribution of sensors is non-uniform, and only
a small number of edges are equipped with sensors; and (3) there
exists missing values (for those edges equipped with sensors) due
to the failure and/or maintenance of sensors.

Therefore, we define our loss function only on edges with ob-
served readings, that is, the set of edges with travel cost c(vi, vj) >
0. In addition, we also propose an in-filling method to reduce the
gap between the input road network and the estimated road net-
work. We consider graph Laplacian dynamics, which is an effec-
tive smoothing approach for finding global structure similarity [15].
Specifically, we construct a graph Laplacian matrix L, defined as
L = D −W , where W is a graph proximity matrix that is con-
structed from the network topology, and D is a diagonal matrix
Dii =

∑
j(Wij). With these new constraints, our traffic model for

one snapshot of road network G is expressed as follows:

argmin
U,B

J = ||Y � (G− UBUT )||2F + λTr(UTLU), (2)

where Y is an indication matrix for all the non-zero entries in G,
i.e, Yij = 1 if and only if G(i, j) > 0; � is the Hadamard product
operator, i.e., (X � Z)ij = Xij × Zij ; and λ is the Laplacian
regularization parameter.

4.2 Time in LSM-RN
Next, we will incorporate the temporal information, including

time-dependent modeling of latent attributes and the temporal tran-
sition. With this model, each vertex is represented in a unified latent
space, where each dimension either represents a spatial or temporal
attribute.

4.2.1 Temporal effect of latent attributes
The behavior of the vertices of road networks may evolve quickly.

For instance, the behavior of a vertex that is similar to that of a high-
way vertex during normal traffic condition, may become similar to
that of an arterial street node during congestion hours. Because
the behavior of each vertex can change over time, we must employ
a time-dependent modeling for attributes of vertices for real-time
traffic prediction. Therefore, we add the time-dependent effect of
attributes into our traffic model. Specifically, for each t ≤ T , we
aim to learn a corresponding time-dependent latent attribute rep-
resentation Ut. Although the latent attribute matrix Ut is time-
dependent, we assume that the attribute interaction matrix B is an
inherent property, and thus we opt to fix B for all timestamps. By
incorporating this temporal effect, we obtain our model based on
the following optimization problem:

argmin
Ut,B

J =
T∑

t=1

||Yt � (Gt − UtBUT
t )||2F +

T∑
t=1

λTr(UtLU
T
t )

(3)
4.2.2 Transition matrix

Due to the dynamics of traffic condition, we aim to learn not only
the time-dependent latent attributes, but also a transition model
to capture the evolving behavior from one snapshot to the next.
The transition should capture both periodic evolving patterns (e.g.,
morning/afternoon rush hours) and non-recurring patterns caused
by traffic incidents (e.g., accidents, road construction, or work zone
closures). For example, during the interval of an accident, a vertex

transition from the normal state to the congested at the beginning,
then become normal again after the accident is cleared.

We thus assume a global process to capture the state transitions.
Specifically, we use a matrix A that approximates the changes of
U between time t − 1 to time t, i.e., Ut = Ut−1A, where U ∈
Rn×k

+ , A ∈ Rk×k
+ . The transition matrix A represents how likely

a vertex is to transit from attribute i to attribute j from timestamp
1 to timestamp T .

4.3 LSM-RN Model
Considering all the above discussions, the final objective func-

tion for our LSM-RN model is defined as follows:

argmin
Ut,B,A

J =
T∑

t=1

||Yt � (Gt − UtBUT
t )||2F +

T∑
t=1

λTr(UtLU
T
t )+

T∑
t=2

γ||Ut − Ut−1A||2F
(4)

where λ and γ are the regularization parameters.
By solving Eq. 4, we obtain the learned matrices of Ut, B and A

from our LSM-RN model. Consequently, the task of both missing
value and sensor completion can be accomplished by the following:

Gt =UtBUT
t , when 1 ≤ t ≤ T . (5)

Subsequently, the edge traffic for snapshot GT+h (where h is the
number of future time spans) can be predicted as follows:

GT+h =(UTAh)B(UTAh)T (6)

5. LEARNING&PREDICTION BY LSM-RN
In this section, we first present a typical global multiplicative

algorithm to infer the LSM-RN model, and then discuss a fast in-
cremental algorithm that scales to large road networks.

5.1 Global learning algorithm
We develop an iterative update algorithm to solve Eq. 4, which

belongs to the category of traditional multiplicative update algo-
rithm [16]. By adopting the methods from [16], we can derive the
update rule of Ut, B and A. The details of derivation can be found
in the technical report [8].

Lemma 1 The Update rule of Ut, B and A can be expressed as
follows:

(Ut)←(Ut)�( (Yt �G)(UtB
T + UtB) + λWUt + γ(Ut−1A+ Ut+1A

T )

(Yt � UtBUT
t )(UtBT + UtB) + λDUt + γ(Ut + UtAAT )

) 1
4

(7)

B ← B �
( ∑T

t=1 U
T
t (Yt �Gt)Ut∑T

t=1 U
T
t (Yt � (UtBUT

t ))Ut

)
(8)

A← A�
( ∑T

t=1 U
T
t−1Ut∑T

t=1 U
T
t−1Ut−1A

)
(9)

Algorithm 1 outlines the process of updating each matrix using
aforementioned multiplicative rules to optimize Eq. 4. The general
idea is to jointly infer and cyclically update all the latent attribute
matrices Ut, B and A. In particular, we first jointly learn the la-
tent attributes for each time t from all the graph snapshots (Lines
3–4). Based on the sequence of time-dependent latent attributes
(i.e., U1, U2, · · · , UT ), we then learn the global attribute interac-
tion pattern B and the transition matrix A (Lines 5–6).

From Algorithm 1, we now explain how our LSM-RN model
jointly learns the spatial and temporal properties. Specifically, when



we update the latent attribute of one vertex Ut(i), the spatial prop-
erty is preserved by (1) considering the latent positions of its ad-
jacent vertices (Yt � Gt), and (2) incorporating the local graph
Laplacian constraint (i.e., matrix W and D). Moreover, the tem-
poral property of one vertex is then captured by leveraging its la-
tent attribute in the previous and next timestamps (i.e., Ut−1(i) and
Ut+1(i)), as well as the transition matrix.

Algorithm 1 Global-learning(G1, G2, · · · , GT )
Input: graph matrix G1, G2, · · · , GT .
Output: Ut (1 ≤ t ≤ T ), A and B.

1: Initialize Ut, B and A
2: while Not Convergent do
3: for t = 1 to T do
4: update Ut according to Eq. 7
5: update B according to Eq. 8
6: update A according to Eq. 9

In the following, we briefly discuss the time complexity and con-
vergence of global learning algorithm. From Lemma 1 In each it-
eration, the computation is dominated by matrix multiplication op-
erations. Therefore, the worst case time complexity per iteration is
dominated by O(T (nk2 + n2k)). In practice , we opt to choose
a low-rank latent space representation, where k is a small number
(e.g., 20). In terms of convergence, followed the proof shown in
previous works [4,16,32], we can prove that Algorithm 1 converges
into a local minimal and the objective value is non-increasing in
each iteration.

5.2 Incremental learning algorithm
The intuition behind our incremental algorithm is based on the

observation that each time when we make a prediction for the next
five minutes, the ground truth reading will be available immediately
after five minutes. This motivates us to adjust the latent position of
each vertex so that the prediction is closer to the ground truth. On
the other hand, it is not necessary to perform the latent position ad-
justment for each vertex. This is because during a short time inter-
val, the overall traffic condition of the whole network tends to stay
steady, and the travel cost of most edges changes at a slow pace,
although certain vertices can go through obvious variations. There-
fore, instead of recomputing the latent positions of all the vertices
from scratch at every time stamp, we perform a “lazy" update. In
particular, to learn the latent space Ut, the incremental algorithm
utilizes the latent space we have already learned in the previous
snapshot (i.e., Ut−1), makes predictions for the next snapshot (i.e.,
Gt), and then conditionally adjusts latent attributes of a subset of
vertices based on the changes of traffic condition.

5.2.1 Framework of incremental algorithm
Algorithm 2 presents the pseudo-code of incremental learning

algorithm. Initially, we learn the latent space of U1 from our global
multiplicative algorithm (Line 1). With the learned latent matrix
Ut−1, at each time stamp t between 2 and T , our incremental up-
date consists of the following two components: 1) identify candi-
date vertices based on feedbacks (Lines 3-8); 2) update their la-
tent attributes and propagate the adjustment from one vertex to its
neighbors (Line 9). As outlined in Algorithm 2, given Ut−1 and
Gt, we first make an estimation of Ĝt based on Ut−1 (Line 3).
Subsequently, we use Gt as the feedback information, select the
set of vertices where we make inaccurate predictions, and insert
them into a candidate set cand (Lines 4-8). Consequently, we up-
date Ut based on the learned latent matrix Ut−1, the ground truth
observation Gt and candidate set cand (Line 9). After that, we
learn the global transition matrix A (Line 10).

5.2.2 Topology-aware incremental update
Given Ut−1 and Gt, we now explain how to calculate Ut incre-

mentally from Ut−1 with the candidate set cand, with which we
can accurately approximate Gt. The main idea is similar to an on-
line learning process. At each round, the algorithm predicts an out-
come for the required task (i.e., predict the speed of edges). Once
the algorithm makes a prediction, it receives feedback indicating
the correct outcome. Then, the online algorithm can modify its
prediction mechanism for better predictions on subsequent times-
tamps. In our scenario, we first use the latent attribute matrix Ut−1

to predict Gt as if we do not know the observation, subsequently
we adjust the model of Ut according to the true observation of Gt

we already have in hand.
However, in our problem, we are making predictions for the en-

tire road network, not for a single edge. When we predict for one
edge, we only need to adjust the latent attributes of two vertices,
whereas in our scenario we need to update the latent attributes for
many correlated vertices. Therefore, the effect of adjusting the la-
tent attribute of one vertex can potentially affect its neighboring
vertices, and influence the convergence speed of incremental learn-
ing. Hence, the adjustment order of vertices is very important.

Algorithm 2 Incremental-Learning(G1, G2, · · · , GT )
Input: graph matrix G1, G2, · · · , GT .
Output: Ut (1 ≤ t ≤ T ), A and B.

1: (U1, B)←Global-learning(G1 )
2: for t = 2 to T do
3: Ĝt ← Ut−1BUT

t−1 (prediction)
4: cand← ∅ (a subset of vertices to be updated)
5: for each i ∈ G do
6: for each j ∈ out(i) do
7: if |Gt(i, j)− ̂Gt(i, j)| ≥ δ then
8: cand← cand ∪ {i, j}
9: Ut ← Incremental-Update(Ut−1 , Gt, cand) (See Section 5.2.2)

10: Iteratively learn transition matrix A using Eq. 9 until A converges

Algorithm 3 Incremental-Update(Ut−1, Gt, cand)
Input: the latent matrix Ut−1, observed graph reading Gt, candidate set
cand, hyper-parameters δ and τ
Output: Updated latent space Ut.

1: Ut ← Ut−1

2: while Not Convergent AND cand /∈ ∅ do
3: order cand from the reverse topological order
4: for i ∈ cand do
5: oldu← Ut(i)
6: for each j ∈ out(i) do
7: adjust Ut(i) with Eq. 11
8: if ||Ut(i)− oldu||2F ≤ τ then
9: cand← cand \ {i}

10: for each j ∈ out(i) do
11: p← Ut(i)BUt(j)
12: if |p−Gt(i, j)| ≥ δ then
13: cand← cand ∪ {j}

Algorithm 3 presents the details of updating Ut incrementally
from Ut−1. For each vertex i of cand, we adjust its latent position
so that we could make more accurate predictions (Line 7) and then
examine how this adjustment would influence the candidate task set
from the following two aspects: (1) if the latent attribute of i does
not change much, we remove it from the set of cand (Lines 8-9);
(2) if the adjustment of i also affects its neighbor j, we add vertex
j to cand (Lines 10-13).

The remaining questions in our Incremental-Update algorithm
are how to adjust the latent position of one vertex according to feed-
backs, and how to decide the order of update. In the following, we
address each of them.



Ut-1(v1)

Ut(v1)

highway

bu
si

ne
ss 1

2

v1

28.6      35
v2

v1 v2

v3 v4

v5 v6

v7

v3 v4v6 v7 v1v2 v5

(a) Adjustment method (b) Adjustment order
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Adjusting latent attribute of one vertex. To achieve high effi-
ciency of adjusting the latent attribute, we propose to make the
smallest changes of the latent space (as fast as possible) to pre-
dict the correct value. For example, as shown in Figure 3 (a), sup-
pose we already know the new latent position of v1, then fewer step
movement (Option 1) is preferable than gradual adjustment (Option
2). Note that in our problem, when we move the latent position of
a vertex to a new position, the objective of this movement is to
produce a correct prediction for each of its outgoing edges. Specif-
ically, given Ut−1(i), we want to find Ut(i) which could accurately
predict the weight of each edge e(vi, vj) that is adjacent to vertex
vi. We thus formulate our problem as follows:

Ut(i), ξ
∗ = arg min

U(i)∈Rk
+

1

2
||U(i)− Ut−1(i)||2F + Cξ

s.t. |U(i)BUT (j)−Gt(i, j)| ≤ δ + ξ,

(10)

where ξ is a non-negative slack variable, C > 0 is a parameter
which controls the trade-off between being conservative (do not
change the model too much) and corrective (satisfy the constraint),
and δ is a precision parameter.

Note that we have non-negativity constraint over the latent space
of Ut(i). We thus adopt the approaches from [3]: When the pre-
dicted value ŷt (i.e., Ut(i)BUT

t (j)) is less than the correct value yt
(i.e., Gt(i, j)), we use the traditional online passive-aggressive al-
gorithm [7] because it guarantees the non-negativity of U(i); Oth-
erwise, we update U(i) by solving a quadratic optimization prob-
lem. The detailed solution is as follows:

Ut(i) = max(Ut−1(i) + (k∗ − θ∗) ·BUt−1(j)
T , 0) (11)

k∗ and θ∗ are computed as follows:⎧⎨
⎩

k∗ = αt, θ∗ = 0 if ŷt < yt
k∗ = 0, θ∗ = C if ŷt > yt and f(C) ≥ 0
k∗ = 0, θ∗ = f−1(0) if ŷt > yt and f(C) < 0

(12)

where

αt = min
(
C,

max(|ŷt − yt| − δ, 0)

||BUt−1(j)T ||2
)

ft(θ) = max
(
Ut(i) − θBUt(j)

T , 0
) ·BUt(j)

T −Gt(i, j)− δ

Updating order of cand. As we already discussed, the update
order is important because it influences the convergence speed of
our incremental algorithm. Take the example of the road network
shown in Figure 1, suppose our initial cand contains three vertices
v7, v6 and v2, where we have two edges e(v7, v6) and e(v6, v2). If
we randomly choose the update sequence as < v7, v6, v2 >, that
is, we first adjust the latent attribute of v7 so that c(v7, v6) has a
correct reading; subsequently we adjust the latent attribute of v6 to
correct our estimation of c(v6, v2). Unfortunately,the adjustment of
v6 could influence the correction we have already made to v7, thus
leading to an inaccurate estimation of c(v7, v6) again. A desirable
order is to update vertex v6 before updating v7.

Therefore, we propose to consider the reverse topology of road
network when we update the latent position of each candidate ver-
tex v ∈ cand. The general principle is that: given edge e(vi, vj),
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Figure 4: A batch window framework for real-time forecasting.

the update of vertex vi should be proceeded after the update of vj ,
because the position of vi is dependent on vj . This motivates us
to derive a reverse topological order in the graph of G. Unfortu-
nately, the road network G is not a Directed Acyclic Graph (DAG),
and contains cycles. To address this issue, we first generate a con-
densed super graph where we contract each Strongly Connected
Component (SCC) of the graph G as a super node. We then derive
a reverse topological order based on this condensed graph. For the
vertex order in each SCC, we generate an ordering of vertices inside
each SCC by random algorithms or some heuristics. Figure 3(b)
shows an example of ordering for the road network of Figure 1,
where each rectangle represents a SCC. After generating a reverse
topological order based on the contracted graph and randomly or-
dering the vertices within each SCC, we obtain one final ordering
< v2, v6, v7, v1, v5, v4, v3 >. Each time when we update the latent
attributes of cand, we follow this ordering of vertices.

Time complexity. For each vertex i, the computational complexity
of adjusting its latent attributes using Eq. 11 is O(k), where k is
number of attributes. Therefore, to compute latent attributes u, the
time complexity per iteration is O(kT (Δn + Δm)), where Δn
is number of candidate vertex in cand, and Δm is total number
of edges incident to vertices in cand. In practice, Δn � n and
Δm � m � n2. In addition, the SCC can be generated in linear
time O(m+n) via Tarjan’s algorithm [23]. Therefore, we conclude
that the computational cost per iteration is significantly reduced us-
ing Algorithm 2 as compared to using the global learning approach.

5.3 Real-time forecasting
In this section, we discuss how to apply our learning algorithms

to real-time traffic prediction, where the sensor reading is received
in a streaming fashion. In practice, if we want to make a predic-
tion for the current traffic, we cannot afford to apply our global
learning algorithm to all the previous snapshots because it is com-
putationally expensive. Moreover, it is not always true that more
snapshots would yield a better prediction performance. The alter-
native method is to treat each snapshot independently: i.e., each
time we only apply our incremental learning algorithm for the most
recent snapshot, and then use the learned latent attribute to predict
the traffic condition. Obviously, this might yield poor prediction
quality as it totally ignores the temporal transitions.

To achieve a good trade-off between the above two methods, we
propose to adapt a sliding window setting for the learning of our
LSM-RN model, where we apply incremental algorithm at each
timestamp during one time window, and only run our global learn-
ing algorithm at the end of one time window. As shown in Figure 4,
we apply our global learning at timestamps T (i.e., the end of one
time window), which learns the time-dependent latent attributes for
the previous T timestamps. Subsequently, for each timestamp T+i
between [T, 2T], we apply our incremental algorithm to adjust the
latent attribute and make further predictions: i.e., we use UT+i to
predict the traffic of GT+(i+1). Each time we receive the true ob-
servation of GT+(i+1), we calculate UT+(i+1) via the incremental
update from Algorithm 3. The latent attributes U2T will be re-
computed at timestamp 2T (the end of one time window), and the
U2T would be used for the next time window [2T, 3T ].



Figure 5: Sensor distribution and Los Angeles road network.

6. EXPERIMENT
6.1 Dataset

We used a large-scale high resolution (both spatial and tempo-
ral) traffic sensor (loop detector) dataset collected from Los Ange-
les county highways and arterial streets. This dataset includes both
inventory and real-time data for 15000 traffic sensors covering ap-
proximately 3420 miles. The sampling rate of the data, which pro-
vides speed, volume (number of cars passing from sensor locations)
and occupancy, is 1 reading/sensor/min. We have been collecting
and archiving this sensor dataset continuously since 2010.

We chose sensor data between March and April in 2014 for our
experiments, which include more than 60 million records of read-
ings. As for the road network, we used Los Angeles road net-
work which was obtained from HERE Map dataset [11]. We con-
structed two subgraphs of Los Angeles road network, termed as
SMALL and LARGE. The SMALL (resp. LARGE) network con-
tains 5984 (resp. 8242) vertices and 12538 (resp. 19986) edges.
As described in Section 3, the sensor data are mapped to the road
network, where 1642 (resp. 4048) sensors are mapped to SMALL
(resp. LARGE). Figure 5 shows sensors locations and road network
segments, where the green lines depict the sensors, and blue lines
represent the road network segments. After mapping the sensor
data, we have two months of network snapshots for both SMALL
and LARGE.
6.2 Experimental setting
6.2.1 Algorithms

Our methods are termed as LSM-RN-All (i.e., global learning
algorithm) and LSM-RN-Inc (i.e., incremental learning algorithm).

For edge traffic prediction, we compare with LSM-RN-Naive,
where we adapted the formulations from LSM-SN ( [29] and [21])
by simply combining the topology and temporal correlations. In
addition, LSM-RN-Naive uses a Naive incremental learning strat-
egy in [21], which independently learns the latent attributes of each
timestamp first, then the transition matrix. We also compare our
algorithms with two representative time series prediction methods:
a linear model (i.e., ARIMA [18]) and a non-linear model (i.e.,
SVR [20]). We train each model independently for each time se-
ries with historical data. In addition, because these methods will be
affected negatively due to the missing values during the prediction
stages (i.e, some of the input readings for ARIMA and SVR could
be zero), for fair comparison we consider ARIMA-Sp and SVR-Sp,
which use the completed readings from our global learning algo-
rithm. We also implemented the Tensor method [1, 2], however, it
cannot address the sparsity problem of our dataset and thus produce
meaningless results (most of the prediction values are close to 0).

For missing-value completion, we compare our algorithms with
two methods: (1) KNN [10], which uses the average values of the
nearby edges in Euclidean distance as the imputed value, (2) LSM-
RN-Naive, which independently learns the latent attributes of each
snapshot, then uses them to approximate the edge readings.

To evaluate the performance of online prediction, we consider
the scenario of a batch-window setting described in Section 5.3.

Table 2: Experiment parameters
Parameters Value range
T 2, 4, 6, 8, 10, 12
span 5, 10, 15, 20, 25, 30
k 5, 10, 15, 20, 25, 30
λ 2−7, 2−5, 2−3, 2−1, 21,23, 25

γ 2−7,2−5, 2−3, 2−1, 21, 23, 25

Considering a time window [0, 2T ], we first batch learn the latent
attributes of UT and transition matrix A from [0, T ], we then se-
quentially predict the traffic condition for the timestamps during
[T +1, 2T ]. Each time when we make a prediction, we receive the
true observations as the feedback. We compare our Incremental al-
gorithm (Inc), with three baseline algorithms: Old, LSM-RN-Naive
and LSM-RN-All. Specifically, to predict GT+i, LSM-RN-Inc uti-
lizes the feedback of GT+(i−1) to adjust the time-dependent latent
attributes of UT+(i−1), whereas Old does not consider the feed-
back, and always uses latent attributes UT and transition matrix
A from the previous time window. On the other hand, LSM-RN-
Naive ignores the previous snapshots, and only applies the infer-
ence algorithm to the most recent snapshot GT+(i−1) (aka Mini-
batch). Finally, LSM-RN-All applies the global learning algorithm
consistently to all historical snapshots (i.e., G1 to GT+(i−1)) and
then makes a prediction (aka Full-batch).

6.2.2 Configurations and measures.
We selected two different time ranges that represent rush hour

(i.e., 7am-8am) and non-rush hour (i.e., 2pm-3pm), respectively.
For the task of missing value completion, during each timestamps
of one time range (e.g., rush hour), we randomly selected 20% of
values as unobserved and manipulated them as missing 1, with the
objective of completing those missing values. For each traffic pre-
diction task at one particular timestamp (e.g., 7:30 am), we ran-
domly selected 20% of the values as unknown and use them as
ground-truth values.

We varied the parameters T and span: where T is the number
of snapshots, and span is time gap between two continuous snap-
shots. We also varied k, λ, and γ, which are parameters of our
model. The default settings (shown with bold font) of the experi-
ment parameter are listed in Table 2. Because of space limitations,
the results of varying γ are not reported, which are similar to result
of varying λ. We use Mean Absolute Percentage Error (MAPE) and
Root Mean Square Error (RMSE) to measure the accuracy. In the
following we only report the experiment results based on MAPE,
the experiment results based on RMSE are reported in the technical
report [8]. Specifically, MAPE is defined as follows:

MAPE = (
1

N

N∑
i=1

|yi − ŷi|
yi

)

With ARIMA and SVR, we use the dataset of March to train a
model for each edge, and use 5-fold cross-validation to choose the
best parameters. All the tasks of missing value completion and edge
traffic prediction tasks are conducted on April data. We conducted
our experiments with C++ on a Linux PC with i5-2400 CPU @
3.10G HZ and 24GB memory.

6.3 Comparison with edge traffic prediction
6.3.1 One-step ahead prediction

The experimental results of SMALL are shown in Figures 6 (a)
and (b). Among all the methods, LSM-RN-All and LSM-RN-Inc
achieve the best results, and LSM-RN-All performs slightly better

1Note that missing values are plenty in our dataset, especially for
arterials. However, we needed ground-truth for evaluation purposes
and that is why we generated missing values artificially.
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Figure 6: One-step ahead prediction MAPE

than LSM-RN-Inc. This demonstrates the effectiveness of time-
dependent latent attributes and the transition matrix. We observe
that without imputing of missing values, time series prediction tech-
niques (i.e., ARIMA and SVR) perform much worse than LSM-
RN-All and LSM-RN-Inc. Meanwhile, LSM-RN-Naive, which
separately learns the latent attributes of each snapshot, cannot achieve
good prediction results as compared to LSM-RN-All and LSM-
RN-Inc. This indicates that simply combining topology and time is
not enough for accurate predictions. We note that even with com-
pleted readings, the accuracy of SVR-Sp and ARIMA-Sp is worse
than that of LSM-RN-All and LSM-RN-Inc. One reason is that
simply combining the spatial and temporal properties does not nec-
essarily yield a better performance. Another reason is that both
SVR-Sp and ARIMA-Sp also suffer from missing data during the
training stage, which results in less accurate predictions. In the
technical report [8], we show how the ratio of missing data would
influence the prediction performance. Finally, we observe that SVR
is more robust than ARIMA when encountering missing values:
i.e., ARIMA-Sp performs significantly better than ARIMA, while
the improvement of SVR-Sp over SVR is marginal. This is because
ARIMA is a linear model which mainly uses the weighted average
of the previous readings for prediction, while SVR is a non-linear
model that utilizes a kernel function. Figures 6 (c) and (d) show the
experiment results on LARGE, the trend is similar to SMALL.
6.3.2 Multi-steps ahead prediction

We now present the experiment results on long-term predictions,
with which we predict the traffic conditions for the next 30 min-
utes (i.e., h = 6). The prediction accuracy of different methods on
SMALL are shown in Figures 7 (a) and (b). Although LSM-RN-
All and LSM-RN-Inc still outperform other methods, the margin
between our methods and the baselines is narrower. The reason is
that: when we make long-term predictions, we use the predicted
values from the past for future prediction. This leads to the prob-
lem of error accumulation, i.e., errors incurred in the past are prop-
agated into future predictions. We observe the similar trends on
LARGE, the results are reported in Figures 7 (c) and (d).
6.4 Comparison for missing value completion

In this set of experiments, we evaluate the completion accuracy
of different methods. Due to space limitation, we only report the
experiment results on LARGE in Figures 8 (a) and (b), and the
effects on SMALL are similar. We observe that both LSM-RN-
All and LSM-RN-Inc achieve much lower errors than that of other
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methods. This is because LSM-RN-All and LSM-RN-Inc capture
both spatial and temporal relationships, while LSM-RN-Naive and
KNN only use spatial property. LSM-RN-All performs better than
LSM-RN-Inc by jointly inferring all the latent attributes. On the
other hand, we note that LSM-RN-Naive and KNN have similar
performances, which is inferior to our methods. This also indi-
cates that utilizing both spatial and temporal properties yields a
larger gain than only utilizing the spatial property. As shown in
Figure 8(b), the completion performance during the non-rush hour
is better as compared to the rush hour time. This is because dur-
ing rush hour range, the traffic condition is more dynamic, and the
underlying pattern and transition changes frequently.

6.5 Scalability
Table 3: Running time comparisons. For ARIMA and SVR, the train-
ing time cost is the total training time for all the edges for one-step
ahead prediction, and the prediction time is the average prediction time
per edge per query.

data SMALL LARGE
train (s) pred.(ms) train (s) pred. (ms)

LSM-RN-Naive - 1353 - 29439
LSM-RN-All - 869 - 14247
LSM-RN-Inc - 407 - 4145

ARIMA 484 0.00015 987 0.00024
SVR 47420 0.00042 86093.99 0.00051

Table 3 shows the running time of different methods. Although
ARIMA and SVR are fast in each prediction, they require large
volume of training data and have much higher training time, which
can be a problem for real systems. On the contrary, our methods do
not require extra training data, i.e., our methods efficiently train and
predict at the same time. Among them, LSM-RN-Inc is the most



efficient approach: it only takes less than 500 milliseconds to learn
the time-dependent latent attributes and make predictions for all the
edges of the road network. This is because our incremental learn-
ing algorithm conditionally adjusts the latent attributes of certain
vertices, and utilizes the topological order that enables fast conver-
gence. Even for the LARGE dataset, LSM-RN-Inc takes less than
five seconds, which is acceptable considering that the span between
two snapshots is at least five minutes in practice. This demonstrates
that LSM-RN-Inc scales well to large road networks. Regarding
LSM-RN-All and LSM-RN-Naive, they both require much longer
running time than that of LSM-RN-Inc. In addition, LSM-RN-All
is faster than LSM-RN-Naive. This is because LSM-RN-Naive in-
dependently runs the global learning algorithm for each snapshot T
times, while LSM-RN-All only applies global learning for all the
snapshots once.
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Convergence analysis. Figures 9 (a) and (b) report the conver-
gence rate of iterative algorithm LSM-RN-All on both SMALL and
LARGE. As shown in Figure 9, LSM-RN-All converges very fast:
when the number of iterations is around 20, our algorithm tends to
converge in terms of our objective value in Eq. 4.

6.6 Comparison for real-time forecasting
In this set of experiments, we evaluate our online setting algo-

rithms. Due to space limitation, we only report the experiment
results on LARGE. As shown in Figures 10 (a) and (b), LSM-RN-
Inc achieves comparable accuracy with LSM-RN-All (Full-batch).
This is because LSM-RN-Inc effectively leverages the real-time
feedback to adjust the latent attributes. We observe that LSM-
RN-Inc performs much better than Old and LSM-RN-Naive (Mini-
batch), which ignore either the feedback information (i.e., Old) or
the previous snapshots (i.e., LSM-RN-Naive). One observation is
that Old performs better than LSM-RN-Naive for the initial times-
tamps, whereas Old surpasses Mini-batch at the later timestamps.
This indicates that the latent attributes learned in the previous time-
window are more reliable for predicting the near-future traffic con-
ditions, but may not be good for long-term predictions because of
the error accumulation problem.

Figures 11 (a) and (b) show the running time comparisons of
different methods. One important observation from this experi-
ment is that LSM-RN-Inc is the most efficient approach, which is
on average two times faster than LSM-RN-Naive and one order of
magnitude faster than LSM-RN-All. This is because LSM-RN-Inc
performs a conditional latent attribute update for vertices within a
small portion of road network, whereas LSM-RN-Naive and LSM-
RN-All both recompute the latent attributes from at least one entire
road network snapshot. Since in the real-time setting, LSM-RN-
All utilizes all the up-to-date snapshots and LSM-RN-Naive only
considers the most recent single snapshot, LSM-RN-Naive is faster
than LSM-RN-All. We observe that LSM-RN-Inc only takes less
than 1 second to incorporate the real-time feedback information,
while LSM-RN-Naive and LSM-RN-All take much longer.

Therefore, we conclude that LSM-RN-Inc achieves a good trade-
off between prediction accuracy and efficiency, which is applicable
for real-time traffic prediction applications.
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6.7 Varying parameters of our methods
In this section, we evaluate the performance of our methods by

varying the parameters of our model. Due to space limitation, we
only show the experimental results on SMALL.

6.7.1 Effect of varying T
Figure 12 (a) and Figure 12 (b) show the prediction performance

and the running time of varying T , respectively. We observe that
with more snapshots, the prediction error decreases. In particular,
when we increase T from 2 to 6, the results improve significantly.
However, the performance tends to stay stable at T ≥ 6. This in-
dicates that fewer snapshots (i.e., two or less) are not enough to
capture the traffic patterns and the evolving changes. On the other
hand, more snapshots (i.e., more historical data) do not necessarily
yield better gain, considering the running time increases when we
have more snapshots. Therefore, to achieve a good trade-off be-
tween running time and prediction accuracy, we suggest to use at
least 6 snapshots, but no more than 12 snapshots.
6.7.2 Effect of varying span

The results of varying span are shown in Figure 13. Clearly,
as the time gap between two snapshots increases, the performance
declines. This is because when span increases, the evolving pro-
cess of underlying traffic may not evolve smoothly, the transition
process learned in the previous snapshot is not applicable for the
future. Fortunately our sensor dataset usually have high-resolution,
so it is better to use smaller span to learn the latent attributes. In
addition, span does not affect the running time of either algorithms.

6.7.3 Effect of varying k and λ

Figure 14 (a) shows the effect of varying k. We observe that:
(1) we achieve better results with increasing number of latent at-
tributes; (2) the performance is stable when k ≥ 20. This indicates
that a low-rank latent space representation can already capture the
attributes of the traffic data. In addition, our results show that when
the number of latent attributes is small (i.e., k ≤ 30), the running
time increases with k but does not change much when we vary k
from 5 to 30. Therefore, setting k to 20 achieves a good balance
between computational cost and accuracy.

Figure 14 (b) depicts the effect of varying λ, which is the regular-
ization parameter for our graph Laplacian dynamics. We observe
that the graph Laplacian has a larger impact on LSM-RN-All al-



gorithm than on LSM-RN-Inc. This is because λ controls how the
global structure similarity contributes to latent attributes and LSM-
RN-All jointly learns those time-dependent latent attribute, thus λ
has larger effect on LSM-RN-All. In contrast, LSM-RN-Inc adap-
tively updates the latent positions of a small number of changed
vertices in limited localized view, and thus is less sensitive to the
global structure similarity than LSM-RN-All. In terms of parame-
ters choices, λ = 2 and λ = 8 yields best results for LSM-RN-All
and LSM-RN-Inc, respectively.
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Figure 14: Effect of varying k and λ, where k is number of latent
attributes, and λ is the graph regularization parameter.

7. CONCLUSION
In this paper, we studied the problem of real-time traffic pre-

diction using real-world sensor data for road networks. We pro-
posed LSM-RN, where each vertex is associated with a set of la-
tent attributes that captures both topological and temporal proper-
ties of road networks. We showed that the latent space modeling of
road networks with time-dependent weights accurately estimates
the traffic patterns and their evolution over time. To efficiently
infer these time-dependent latent attributes, we developed an in-
cremental online learning algorithm which enables real-time traffic
prediction for large road networks. With extensive experiments we
verified the effectiveness, flexibility and scalability of our model in
identifying traffic patterns and predicting future traffic conditions.
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