GLAD: Group Anomaly Detection in Social Media Analysis

Poster #: 1150

Rose Yu, Xinran He and Yan Liu

University of Southern California

Yu, He & Liu (USC)

Group Anomaly Detection

Group Anomaly Detection

Anomalous phenomenon in social media data may not only appear as individual points, but also as **groups**.

Group Review Spamming Organized Viral Campaign Mas

Massive Cyber Attack

We develop a hierarchical Bayes model to automatically discover social media groups and detect group anomalies simultaneously.

Yu, He & Liu (USC)

Group Anomaly Detection

Challenges

Detecting group anomalies require us to exploit the structure of the social media groups as well as the attributes of the individual points.

- Point-wise features data and pairwise relational data coexist and are mutually dependent.
- Collective anomalous activities might appear normal at the individual level. [*Chandola2007*]
- People constantly switch groups and we can hardly know groups beforehand.

Yu, He & Liu (USC)

Group Anomaly Detection

Group Anomaly Definition

- Input:
 - Pairwise communication network;
 - Pointwise node features;
- Output:
 - List of groups ranked by anomaly score
- Model a group as a mixture of roles
 - Same roles, different role mixture rate

Definition: Group anomaly has a *role mixture rate* pattern that does not conform to the majority of other groups.

- Existing Approaches:
 - Mixture Genre Model (MGM) [xiong et al 2011a]
 - Flexible Genre Model (FGM) [xiong et al 2011b]

Two- Stage Approaches!

• Support Measure Machine (SMM) [muandet et al 2013]

Group Latent Anomaly Detection (GLAD)

Yu, He & Liu (USC)

Group Anomaly Detection

Dynamic extension of GLAD (d-GLAD)

$$\theta_m^t \sim Gaussian(\theta_m^{t-1}, \sigma)$$

Yu, He & Liu (USC)

Procedure

• GLAD : the expected likelihood of role distribution

AnomalyScore_{GLAD} ~
$$-\sum_{p \in G} E_q[p(R_p \mid \theta)]$$

• d-GLAD : the change of role mixture rate over time

AnomalyScore_{*d*-GLAD} ~
$$\|\theta_m^{t-1} - \theta_m^t\|_2$$

Yu, He & Liu (USC)

Synthetic Experiments

- 500 nodes network, 2 roles, different number of groups
- Normal group mixture rate [0.9, 0.1], anomalous group mixture rate [0.1,0.9], 20% injected group anomaly

Yu, He & Liu (USC)

Group Anomaly Detection

Detect ``anomalous `` research communities

- Pointwise: Bag of words of paper abstracts
- Pairwise: Common authorship
- 28,702 authors, 104,962 links, 11,771 vocabulary size, 4 topics. Injected 20% group anomalies from other venues.

Table : Accuracy of detecting other venues from KDD paper groups.

Methods	GLAD	Graph-LDA	Graph-MGM	MMSB-LDA	MMSB-MGM
KDD/CVPR	0.4167	0.3333	0.3333	0.2500	0.2500
KDD/ICML	0.2500	0.0833	0.0833	0.1667	0.1667
KDD/SIGMOD	0.2875	0.0750	0.0500	0.1625	0.1625
KDD/EDBT	0.2625	0.0500	0.0875	0.2000	0.2000

Detect Party Affiliation Changes

- Pointwise: Senator attributes
- Pairwise: Common votes
- 24 months voting records of 100 senators

Group Anomaly Detection

Conclusion

- Formulate the problem of group anomaly detection social media analysis for both static and dynamic settings
- Develop a unified hierarchical Bayes model GLAD to infer the groups and detect group anomalies simultaneously
- Experiments on both synthetic, academic publications and senator voting datasets show benefits over two-stage approaches .

Future Work

- Non-parametric Bayes model to automatically decide # of groups and # of roles.
- Better detection evaluation procedures and metrics other than anomaly injection.

Yu, He & Liu (USC)

References

- [1] V. Chandola, A. Banerjee, and V. Kumar. Outlier detection: A survey. 2007.
- [2] Liang Xiong, Barnab as P oczos, Jeff G Schneider, Andrew Connolly, and Jake Vanderplas. Hierarchical probabilistic models for group anomaly detection. In *International Conference on Artificial Intelligence and Statistics*, pages 789–797, 2011.
- [3] Liang Xiong, Barnab as P oczos, and Jeff G Schneider. Group anomaly detection using flexible genre models. In *Advances in Neural Information Processing Systems*, pages 1071–1079, 2011.
- [4] Krikamol Muandet and Bernhard Sch⁻olkopf. One-class support measure machines for group anomaly detection. *arXiv preprint arXiv:1303.0309, 2013*.
- [5] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. *the Journal of machine Learning research*, 3:993–1022, 2003.
- [6] Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing. Mixed membership stochastic blockmodels. *Journal of Machine Learning Research*, 9(1981-2014):3, 2008.

Thank You !