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Multi-Way Data
• Massive multi-way data emerges from many fields

• Climate
• Neural Science
• …

• Multi-way data contains multi-directional correlations
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Tensor Regression
• Multi-way data can be naturally represented as tensors
• Tensor Regression: large-scale supervised learning from multi-

way data
• Goal: learn a regression model with multi-linear parameters
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Low-Rank Structure
• Low-rank structures can capture multi-linear correlations
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Accelerated Online Low-Rank Tensor Learning

cation of our interest, i.e., the multivariate spatio-temporal
stream analysis, both Z and X grow along the temporal di-
mension as time T increases. We define Wm = W:,:,m and
similarly for others, the unconstrained optimization prob-
lem at time T can be written as minW kWZ1:T �X1:T k2F,
where we omit the index m for simplicity. Suppose that at
time stamp T , we receive a new batch of data of size b, we
can update the parameter tensor in the k-th iteration W(k)

with two possible strategies: one is exact update, and the
other is increment update.

Exact update Notice that we can obtain a closed-form
solution of W (k) by using all the data from time stamp 1 to
T + b as follows:

W(k)
= X1:T+bZ

†
1:T+b.

where † denotes matrix pseudo-inverse. Note that the
pseudo-inverse can be computed efficiently via the Wood-
bury matrix identity (Woodbury, 1950). At each iteration,
we can compute the inverse of the complete data covari-
ance (Z1:T+bZ

>
1:T+b)

�1 by inverting a smaller matrix con-
structed from the new data ZT+1:T+b at a computational
cost linear to the batch size b, with a small memory over-
head to store the inverse of the previous covariance matrix
(Z1:TZ

>
1:T )

�1. We defer the details to Appendix B.1.

Increment update We can also incrementally update the
value of W given the new data as follows:

W(k)
= (1� ↵)W(k�1)

+ ↵XT+1:T+bZ
†
T+1:T+b.

The difference of the two updating scheme lies in the vari-
ables we store in memory. For exact update, we store the
data statistics required to reconstruct the model. It gives
an exact solution for the linear regression problem given
all the historical observations. For incremental update, we
store the previous model, compute the solution for current
data only, and then take a convex combination of two mod-
els. Note that different statistical properties of these two
updating scheme may require different theoretical analysis
tools, but the low-rank projection of the solution is invari-
ant to the updating strategy.

2.4. Online Low-Rank Tensor Approximation

In Step 2, we need to project the solution from Step 1 to
the low-rank tensor space. In ALTO, we measure the rank
with respect to the sum-n-rank of the tensor: We restrict
the maximum n-rank of tensor W over all modes to be no
larger than R. In order to obtain the n-rank projection,
we resort to Tucker decomposition (De Lathauwer et al.,
2000), which decomposes a tensor into a core tensor and
a set of projection matrices. The dimensions of the core
tensor are n-ranks of the tensor itself. The projection is

generally time consuming, as it usually involves SVD on
unfolded matrices at each mode of a full tensor. For the
online setting, this operation needs to be repeated for each
iteration, which is infeasible for large-scale applications. In
ALTO, we utilize the projection results from the last itera-
tion to approximate the current projection. It eliminates the
need of SVD on unfolded matrices of a full tensor. Instead,
it performs dimension reduction and computes the SVD on
unfolded matrices of a low-dimensional tensor.

Without the loss of generality, we elaborate ALTO via a
third order tensor. Given the Tucker decomposition of W 2
RN⇥N⇥N from the previous iteration:

W(k�1)
= S(k�1) ⇥1 U

(k�1)
1 ⇥2 U

(k�1)
2 ⇥3 U

(k�1)
3 .

we first augment each U
(k�1)
i 2 RN⇥R with K random

column vectors for i = 1, 2, 3, which are drawn from a zero
mean Gaussian distribution. These random column vectors
are introduced as noise perturbation. Then we apply Gram-
Schmidt process to create orthonormal augmented projec-
tion matrices V

(k�1)
i 2 RN⇥(R+K), which has K more

columns than U
(t�1)
i , for i = 1, 2, 3 respectively.

With augmented projection matrices V
(k�1)
i , we project

the tensor W(k) to an augmented core tensor S 0(k) with
dimension (R+K)⇥ (R+K)⇥ (R+K).

S 0(k)
= W(k�1) ⇥1 V

(k�1)>
1 ⇥2 V

(k�1)>
2 ⇥3 V

(k�1)>
3 .

Then we compute the rank-R approximation of the aug-
mented core by decomposing S 0(k):

S 0(k) ⇡ S(k) ⇥1 V
0(k)
1 ⇥2 V

0(k)
2 ⇥3 V

0(k)
3

where S(k) is the new core tensor with dimension R⇥R⇥R
and V

0(k)
i is of size (R + K) ⇥ R. We update the new

projection matrices as U(k)
i = V

(k�1)
i V

0(k)
i for i = 1, 2, 3.

And the final low-rank projection of the solution tensor of
current iteration is given by

W(k)
= S(k) ⇥1 U

(k)
1 ⇥2 U

(k)
2 ⇥3 U

(k)
3 .

We summarize the workflow of ALTO in Algorithm 1. The
rank-R approximation of the augmented core S 0(k) is com-
puted by iterating over all the modes and sequentially map-
ping the unfolded tensor into the rank-R subspace. We
name this procedure as low-rank Tensor Sequential Map-

ping (TSM), which is described in Algorithm 2.

ALTO is computationally efficient since the augmented
core tensor S 0(k) has dimension (R + K) ⇥ (R + K) ⇥
(R +K), which is much smaller than W(k). At each iter-
ation, the low-rank mapping procedure TSM only involves
top-R SVD on matrices of size (R + K) ⇥ (R + K)

2, in
comparison to the expensive top-R SVD on N⇥N2 matri-
ces in most existing low-rank tensor learning approaches.
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• Tucker rank: high-order singular value decomposition
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Low-Rank Tensor Regression
• Predictor tensor 𝒳; response tensor 𝒴
• Regression model 𝒳,𝒲 : e.g. ∑ 𝒳:,:,1𝒲:,:,1

2
13*

• Loss function ℒ(𝒴6;𝒴): e.g. 𝒴6 − 𝒴 9
(

• Goal: Learn a parameter tensor 𝒲 with low-rank constraint

𝒲	: = argmin
𝒲

ℒ	( 𝒳,𝒲 ;𝒴)

subject	to					 rank 𝒲 ≤ 𝑅
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Examples
• 𝒴 = 𝑐𝑜𝑣 𝒳,𝒲 + ℰ [Zhao et al. 2011]
• 𝒴 = 𝑣𝑒𝑐 𝒳 S𝑣𝑒𝑐 𝒲 + 𝑣𝑒𝑐 ℰ [Zhou et al. 2013]
• 𝒀 = 𝑿𝒘+ 	𝜺 [Romera-Paredes et al., 2013]

												𝑋2												𝑋(𝑋*

						
						𝑌2

												𝑌(𝑌*

𝒘	𝟏 𝒘	𝟐

𝒘	𝑴
𝒘	𝟑

Multi-linear Multi-task Learning [Romera-Paredes et al., 2013]
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Related Work
• Alternating least square (ALS) [Romera-Paredes et al. 2013]
• Empirically effective
• Sub-optimal solution

• Spectral regularization [Tomiyoka et al. 2014]
• Nice convex behavior
• Slow convergence rate

• Greedy matching pursuit [Yu et al. 2014]
• Fast convergence 
• Memory bottleneck
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Subsampled Tensor Projected Gradient (TPG）
• Data

• Projected gradient descent: 𝒲^_*=𝑃a (𝒲^ − 𝜂𝛻𝒲^)
1. Gradient descent step
2. Low-rank projection step

0…0 1...0

-1…0 0…0

input sketching matrix
output

• Model

Random sketching [Woodruff 2014]
Iterative hard thresholding [Thomas and Davies 2009] 
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Subsampled Tensor Projected Gradient (TPG）

𝒴 𝒳

𝒴	d 𝒳	d

𝑺

𝒲^_*𝒖𝟏

𝒖𝟑

𝒖𝟐

𝛻𝒲^𝒲^
𝒲	d^_*

Sketching
matrix

Tensor power iteration

• Random sketching as data subsampling
• Iterative hard thresholding as dimensional reduction

𝜂
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Theoretical Analysis

Definition: [Restricted Isometry Property (RIP)] The isometry constant of 𝒳 is 
the smallest number 𝛿a such as the following holds for all 𝒲 with Tucker rank 
at most 𝑅. 

(1 − 𝛿a) 𝒲 9
(≤ 𝒳,𝒲 9

( ≤ (1 + 𝛿a) 𝒲 9
(

• RIP Characterizes matrices which are nearly orthonormal
• Regression model imposes the RIP assumption w.r.t. matrix 

rank instead of tensor rank 
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Theoretical Analysis

Theorem: For	tensor	regression	model	𝒴 = 𝒳,𝒲 + ℰ, suppose	the	predictor	
tensor	𝒳 satisfies	RIP	condition	with	isometry constant 𝛿a <1/3.	With	step-size	
𝜂 = *

*_jk
, TPG computes a feasible solution𝒲∗ such that the estimationerror

𝒲−𝒲∗
m
(< *

*nopq
ℰ m

( in at most *
rst */v log

𝒴 x
p

ℰ x
p iterations for	an	universal	

constant 𝛼.

• Weak assumption on RIP constant
• Converge in a fixed number of iterations
• Memory requirement linear in the problem size
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Ⅰ: Multi-Linear Multi-Task Learning
• Multi-task learning where tasks have multi-directional relatedness
• E.g. predict ratings for restaurants on three aspects: food, service,

and overall quality

𝒲	: = argmin
𝒲

{ 𝑌| − 𝑋S𝑤|
9
(

S

|3*
subject	to					 rank 𝒲 ≤ 𝑅
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Baselines
• OLS: OLS estimator without low-rank constraint 
• THOSVD (De Lathauwer et al., 2000b): a two-step heuristic 

approach that first solves the least square and then performs 
truncated singular value decomposition 
• Greedy (Yu et al., 2014): a fast tensor regression solution that 

sequentially estimates rank one sub-space based on Orthogonal 
Matching Pursuit 
• ADMM (Tomiyoka et al., 2014): alternating direction method of 

multipliers for nuclear norm regularized optimization 
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Exp: Multi-linear Multi-task Learning
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• 45 restaurant features: geographical position, cuisine type, price 
band, and etc.
• 138 customers with 15,362 rating records
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Ⅱ: Spatio-Temporal Forecasting
• Uses multivariate historical observations to predict future values
• Bayesian spatio-temporal models [Cressie 2008] are not scalable

？

𝒲	: = argmin
𝒲

𝒳~−𝒴 9
(
+ 𝜇 { trace 𝒳~:,:,1𝐿𝒳~:,:,1S

2

13*
subject	to	 rank 𝒲 ≤ 𝑅
		𝒳~|,�,1= 𝒳|n*,:,1,𝒳|n(,:,1…𝒳|n�,:,1 ⋅ 𝒲:,�,1
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Exp: Spatio-Temporal Forecasting
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• Foursquare: Hourly check-in records of 739 users in 34 
different venue categories over a period of 3,474 hours

• USHCN: Five variables collected across more than 1,200 
locations and spans over 45,384 time stamps 
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Exp: Spatio-Temporal Forecasting

Velocity vector plot of learned atmosphere circulation
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Discussion & Conclusion
• TPG: Random sketching + iterative hard thresholding
• Fixed number of iterations and linear memory 
requirement
• Further acceleration with second-order Newton’s
method
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Thank You!
Data available on http://www-bcf.usc.edu/~liu32/data.html
Details about tensor regression: http://roseyu.com/
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