Learning from Multi-Way Data: Simple and Efficient Tensor Regression

Rose $\mathbf{Y u}$, Yan Liu
Poster \#58, Tue 3-7 pm

Multi-Way Data

- Massive multi-way data emerges from many fields
- Climate
- Neural Science
- ...
- Multi-way data contains multi-directional correlations

Illuminations
Climate Measurements
Multi-channel EEG
Facial Recognition

Tensor Regression

- Multi-way data can be naturally represented as tensors
- Tensor Regression: large-scale supervised learning from multiway data
- Goal: learn a regression model with multi-linear parameters

Low-Rank Structure

- Low-rank structures can capture multi-linear correlations

8	5	2	4	3
	4	0	1	1
	3	?	?	1
	5	?	?	?

Collaborative Filtering

- Tucker rank: high-order singular value decomposition

Low-Rank Tensor Regression

- Predictor tensor X; response tensor \mathcal{Y}
- Regression model $\langle\mathcal{X}, \mathcal{W}\rangle$: e.g. $\sum_{m=1}^{M} \mathcal{X}_{\cdot,, m} \mathcal{W}_{:,, m}$
- Loss function $\mathcal{L}(\hat{y} ; \mathcal{Y})$: e.g. $\|\hat{y}-\mathcal{y}\|_{F}^{2}$
- Goal: Learn a parameter tensor \mathcal{W} with low-rank constraint

$$
\begin{aligned}
& \widehat{\mathcal{V}}=\underset{\mathcal{W}}{\operatorname{argmin}}\{\mathcal{L}(\langle\mathcal{X}, \mathcal{W}\rangle ; \mathcal{Y})\} \\
& \text { subject to } \quad \operatorname{rank}(\mathcal{W}) \leq R
\end{aligned}
$$

Examples

- $y=\operatorname{cov}(X, \mathcal{W}\rangle+\varepsilon$ [Zhao et al. 2011]
- $y=\operatorname{vec}(X)^{T} \operatorname{vec}(\mathcal{W})+\operatorname{vec}(\mathcal{E})$ [Zhou et al. 2013]
- $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{w}+\boldsymbol{\varepsilon}$ [Romera-Paredes et al., 2013]

Multi-linear Multi-task Learning [Romera-Paredes et al., 2013]

Related Work

- Alternating least square (ALS) [Romera-Paredes et al. 2013]
- Empirically effective
- Sub-optimal solution
- Spectral regularization [Tomiyoka et al. 2014]
- Nice convex behavior
- Slow convergence rate
- Greedy matching pursuit [Yu et al. 2014]
- Fast convergence
- Memory bottleneck

Subsampled Tensor Projected Gradient (TPG)

- Data $\boldsymbol{\rightharpoonup}$ Random sketching [Woodruff 2014]
- Model \leftrightharpoons Iterative hard thresholding [Thomas and Davies 2009]

- Projected gradient descent: $\mathcal{W}^{k+1}=P_{R}\left(\mathcal{W}^{k}-\eta \nabla \mathcal{W}^{k}\right)$

1. Gradient descent step
2. Low-rank projection step

Subsampled Tensor Projected Gradient (TPG)

- Random sketching as data subsampling
- Iterative hard thresholding as dimensional reduction

Theoretical Analysis

Definition: [Restricted Isometry Property (RIP)] The isometry constant of \mathcal{X} is the smallest number δ_{R} such as the following holds for all \mathcal{W} with Tucker rank at most R.

$$
\left(1-\delta_{R}\right)\|\mathcal{W}\|_{F}^{2} \leq\|\langle X, \mathcal{W}\rangle\|_{F}^{2} \leq\left(1+\delta_{R}\right)\|\mathcal{W}\|_{F}^{2}
$$

- RIP Characterizes matrices which are nearly orthonormal
- Regression model imposes the RIP assumption w.r.t. matrix rank instead of tensor rank

Theoretical Analysis

Theorem: For tensor regression model $\mathcal{Y}=\langle\mathcal{X}, \mathcal{W}\rangle+\mathcal{E}$, suppose the predictor tensor \mathcal{X} satisfies RIP condition with isometry constant $\delta_{R}<1 / 3$. With step-size $\eta=\frac{1}{1+\delta_{R}}$, TPG computes a feasible solution \mathcal{W}^{*} such that the estimation error $\left\|\mathcal{W}-\mathcal{W}^{*}\right\|_{\mathrm{F}}^{2}<\frac{1}{1-\delta_{2 \mathrm{R}}}\|\mathcal{E}\|_{\mathrm{F}}^{2}$ in at most $\left[\frac{1}{\log 1 / \alpha} \log \frac{\|y\|_{\mathrm{F}}^{2}}{\|\varepsilon\|_{\mathrm{F}}^{2}}\right]$ iterations for an universal constant α.

- Weak assumption on RIP constant
- Converge in a fixed number of iterations
- Memory requirement linear in the problem size

I : Multi-Linear Multi-Task Learning

- Multi-task learning where tasks have multi-directional relatedness
- E.g. predict ratings for restaurants on three aspects: food, service, and overall quality

$$
\begin{aligned}
& \widehat{\mathcal{W}}=\underset{\mathcal{W}}{\operatorname{argmin}}\left\{\sum_{t=1}^{T}\left\|Y^{t}-X^{T} w^{t}\right\|_{F}^{2}\right\} \\
& \text { subject to } \quad \operatorname{rank}(\mathcal{W}) \leq R
\end{aligned}
$$

Baselines

- OLS: OLS estimator without low-rank constraint
- THOSVD (De Lathauwer et al., 2000b): a two-step heuristic approach that first solves the least square and then performs truncated singular value decomposition
- Greedy (Yu et al., 2014): a fast tensor regression solution that sequentially estimates rank one sub-space based on Orthogonal Matching Pursuit
- ADMM (Tomiyoka et al., 2014): alternating direction method of multipliers for nuclear norm regularized optimization

Exp: Multi-linear Multi-task Learning

- 45 restaurant features: geographical position, cuisine type, price band, and etc.
- 138 customers with 15,362 rating records

II : Spatio-Temporal Forecasting

- Uses multivariate historical observations to predict future values
- Bayesian spatio-temporal models [Cressie 2008] are not scalable

$$
\widehat{W}=\underset{w}{\operatorname{argmin}}\left\{\|\widehat{X}-y\|_{F}^{2}+\mu \sum_{m=1}^{M} \operatorname{trace}\left(\widehat{X}_{:,, m} L \widehat{X}_{: ;, m}^{T}\right)\right\}
$$

subject to $\operatorname{rank}(\mathcal{W}) \leq R$

$$
\widehat{x}_{t, p, m}=\left[x_{t-1,, m}, x_{t-2,, m} \ldots x_{t-K_{,, m}}\right] \cdot \mathcal{w}_{i, p, m}
$$

Exp: Spatio-Temporal Forecasting

- Foursquare: Hourly check-in records of 739 users in 34 different venue categories over a period of 3,474 hours
- USHCN: Five variables collected across more than 1,200 locations and spans over 45,384 time stamps

Exp: Spatio-Temporal Forecasting

Velocity vector plot of learned atmosphere circulation

Discussion \& Conclusion

- TPG: Random sketching + iterative hard thresholding
- Fixed number of iterations and linear memory requirement
- Further acceleration with second-order Newton's method

Thank You!

Data available on http://www-bcf.usc.edu/~liu32/data.html Details about tensor regression: http://roseyu.com/

References

- [1] Rose Yu, Dehua Cheng, Yan Liu. Accelerated Online Low-Rank Tensor Learning for Multivariate Spatio-Temporal Streams International Conference on Machine Learning (ICML), 2015
- [2] Rose Yu*, Mohammad Taha Bahadori*, Yan Liu. Fast Multivariate Spatio-temporal Analysis via Low Rank Tensor Learning Advances in Neural Information Processing Systems (NIPS), 2014, Spotlight
- [3] Romera-Paredes, Bernardino, et al. "Multilinear multitask learning." Proceedings of the 30th International Conference on Machine Learning. 2013.
- [4] Wimalawarne, Kishan, Masashi Sugiyama, and Ryota Tomioka. "Multitask learning meets tensor factorization: task imputation via convex optimization." Advances in neural information processing systems. 2014
- [5] Woodruff, David P. "Sketching as a Tool for Numerical Linear Algebra." Foundations and Trends \mathbb{R} in Theoretical Computer Science 10.1-2 (2014): 1-157.
- [6] Blumensath, Thomas, and Mike E. Davies. "Iterative hard thresholding for compressed sensing." Applied and Computational Harmonic Analysis 27.3 (2009): 265-274.
- [7] Cressie, Noel, and Christopher K. Wikle. Statistics for spatio-temporal data. John Wiley \& Sons, 2015.

