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Abstract
Tensor regression has shown to be advantageous
in learning tasks with multi-directional related-
ness. Given massive multiway data, traditional
methods are often too slow to operate on or suf-
fer from memory bottleneck. In this paper, we
introduce subsampled tensor projected gradient
to solve the problem. Our algorithm is impres-
sively simple and efficient. It is built upon pro-
jected gradient method with fast tensor power
iterations, leveraging randomized sketching for
further acceleration. Theoretical analysis shows
that our algorithm converges to the correct so-
lution in fixed number of iterations. The mem-
ory requirement grows linearly with the size of
the problem. We demonstrate superior empiri-
cal performance on both multi-linear multi-task
learning and spatio-temporal applications.

1. Introduction
Massive multiway data emerge from many fields: space-
time measurements on several variables in climate dynam-
ics (Hasselmann, 1997), multichannel EEG signals in neu-
rology (Acar et al., 2007) and natural images sequences in
computer vision (Vasilescu & Terzopoulos, 2002). Tensor
provides a natural representation for multiway data. In par-
ticular, tensor decomposition has been a popular technique
for exploratory data analysis (Kolda & Bader, 2009) and
has been extensively studied. In contrast, tensor regression,
which aims to learn a model with multi-linear parameters,
is especially suitable for applications with multi-directional
relatedness, but has not been fully examined. For example,
in a task that predicts multiple climate variables at differ-
ent locations and time, the data can be indexed by variable
× location × time. Tensor regression provides us with a
concise way of modeling complex structures in multiway
data.

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

Many tensor regression methods have been proposed (Zhao
et al., 2011; Zhou et al., 2013; Romera-Paredes et al., 2013;
Wimalawarne et al., 2014; Signoretto et al., 2014), leading
to a broad range of successful applications ranging from
neural science to climate research to social network anal-
ysis. These methods share the assumption that the model
parameters form a high order tensor and there exists a low-
dimensional factorization for the model tensor. They can be
summarized into two types of approaches: (1) alternating
least square (ALS) sequentially finds the factor that mini-
mizes the loss while keeping others fixed; (2) spectral reg-
ularization approximates the original non-convex problem
with a convex surrogate loss, such as the nuclear norm of
the unfolded tensor.

A clear drawback of all the algorithms mentioned above
is high computational cost. ALS displays unstable con-
vergence properties and outputs sub-optimal solutions (Ci-
chocki et al., 2009). Trace-norm minimization suffers from
slow convergence (Gandy et al., 2011). Moreover, those
methods face the memory bottleneck when dealing with
large-scale datasets. ALS, for example, requires the ma-
tricization of entire data tensor at every mode. In addition,
most existing algorithms are largely constrained by the spe-
cific tensor regression model. Adapting one algorithm to a
new regression model involves derivations for all the updat-
ing steps, which can be tedious and sometimes non-trivial.

In this paper, we introduce subsampled Tensor Projected
Gradient (TPG), a simple and fast recipe to address the
challenge. It is an efficient solver for a variety of tensor
regression problems. The memory requirement grows lin-
early with the size of the problem. Our algorithm is based
upon projected gradient descent (Calamai & Moré, 1987)
and can also be seen as a tensor generalization of iterative
hard thresholding algorithm (Blumensath & Davies, 2009).
At each projection step, our algorithm iteratively returns a
set of leading singular vectors of the model, avoiding full
singular value decomposition (SVD). To handle large sam-
ple size, we employ randomized sketching for subsampling
and noise reduction to further accelerate the process.

We provide theoretical analysis of our algorithm, which is
guaranteed to find the correct solution under the Restricted
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Isometry Property (RIP) assumption. In fact, the algorithm
only needs a fixed number of iterations, depending solely
on the logarithm of signal to noise ratio. It is also robust to
noise, with estimation error depending linearly on the size
of the observation error. The proposed method is simple
and easy to implement. At the same time, it enjoys fast con-
vergence rate and superior robustness. We demonstrate the
empirical performance on two example applications: multi-
linear multi-task learning and multivariate spatio-temporal
forecasting. Experiment results show that the proposed al-
gorithm significantly outperforms existing approaches in
both prediction accuracy and speed.

2. Preliminary
Across the paper, we use calligraphy font for tensors, such
as X ,Y , bold uppercase letters for matrices, such as X,Y,
and bold lowercase letters for vectors, such as x,y.

Tensor Unfolding Each dimension of a tensor is a mode.
An n-mode unfolding of a tensor W along mode n trans-
forms a tensor into a matrix W(n) by treating n as the
first mode of the matrix and cyclically concatenating other
modes. The indexing follows the convention in (Kolda &
Bader, 2009). It is also known as tensor matricization.

N-Mode Product The n-mode product between tensorW
and matrix U on mode n is represented asW ×n U and is
defined as (W ×n U)(n) = UW(n) .

Tucker Decomposition Tucker decomposition factorizes a
tensorW intoW = S ×1 U1 · · · ×n Un, where {Un} are
all unitary matrices and the core tensor satisfies that S(n) is
row-wise orthogonal for all n = 1, 2, . . . , N .

3. Related Work
Several algorithms have been proposed for tensor regres-
sion. For example, (Zhou et al., 2013) proposes to use Al-
ternating least square (ALS) algorithm. (Romera-Paredes
et al., 2013) employs ALS as well as an Alternating Di-
rection Method of Multiplier (ADMM) technique to solve
the nuclear norm regularized optimization problem. (Sig-
noretto et al., 2014) proposes a more general version
of ADMM based on Douglas-Rachford splitting method.
Both ADMM-based algorithms try to solve a convex relax-
ation of the original optimization problem, using singular
value soft-thresholding. To address the scalability issue of
these methods, (Yu et al., 2014) proposes a greedy algo-
rithm following the Orthogonal Matching Pursuit (OMP)
scheme. Though significantly faster, it requires the matri-
cization of the data tensor, and thus would face memory
bottleneck when dealing with large sample size.

Our work is closely related to iterative hard thresholding in
compressive sensing (Blumensath & Davies, 2009), spar-

sified gradient descent in sparse recovery (Garg & Khan-
dekar, 2009) or singular value projection method in low-
rank matrix completion (Jain et al., 2010). We generalize
the idea of iterative hard thresholding to tensors and uti-
lize several tensor specific properties to achieve acceler-
ation. We also leverage randomized sampling technique,
which concerns how to sample data to accelerate the com-
mon learning algorithms. Specifically, we employ count
sketch (Clarkson & Woodruff, 2013) as a pre-processing
step to alleviate the memory bottleneck for large dataset.

4. Simple and Efficient Tensor Regression
We start by describing the problem of tensor regression and
our proposed algorithm in details. We use three-mode ten-
sor for ease of explanation. Our method and analysis di-
rectly applies to higher order cases.

4.1. Tensor Regression

Given a predictor tensor X and a response tensor Y , tensor
regression targets at the following problem:

W? = argmin
W

L(W;X ,Y)

s.t. rank(W) ≤ R (1)

The problem aims to estimate a model tensor W ∈
RD1×D2×D3 that minimizes the empirical loss L, subject
to the constraint that the Tucker rank of W is at most R.
Equivalent, the model tensor W has a low-dimensional
factorization W = S ×1 U1 ×2 U2 ×3 U3 with core
S ∈ RR1×R2×R3 and orthonormal projection matrices
{Un ∈ RDn×Rn}. The dimensionality of S is at most
R. The reason we favor Tucker rank over others is due to
the fact that it is a high order generalization of matrix SVD,
thus is computational tractable, and carries nice properties
that we later would utilize.

Many existing tensor regression models are special cases
of the problem in (1). For example, in multi-linear multi-
task learning (Romera-Paredes et al., 2013), given the pre-
dictor and response for each task (Xt,Yt), the empiri-
cal loss is defined as the summarization of the loss for
all the tasks, i.e., L(W;X ,Y) =

∑T
t=1 ‖Yt − Xtwt‖2F ,

with wt as the tth column of W(1). For the univariate
GLM model in (Zhou et al., 2013), the model is defined
as Y = vec(X )T vec(W)+E . Table 1 summarizes existing
tensor regression models, their algorithms as well as main
application domains. In this work, we use the simple linear
regression model Y = 〈X ,W〉 + E to illustrate our idea,
where X ∈ RT×D1×D3 , Y ∈ RT×D2×D3 with sample size
T , and E as i.i.d Gaussian noise. The tensor inner product
〈X ,W〉 is defined as the matrix multiplication on each slice
independently, i.e., 〈X ,W〉:,:,m = X:,:,m,W:,:,m. Our
methodology can be easily extended to handle more com-



Simple and Efficient Tensor Regression

Table 1. Summarization of contemporary tensor regression models, algorithms and applications
MODEL ALGO APP

Y = cov〈X ,W〉+ E 1 (Zhao et al., 2011) High-order Partial Least Square Neural Imaging (EEG)
Y = vec(X )T vec(W) + E (Zhou et al., 2013) Alternating Least Square Neural Imaging (MRI)

Yt = Xtwt + εt (Romera-Paredes et al., 2013) ADMM Multi-task learning
Ym = XmWm + Em (Yu et al., 2014) Orthogonal Matching Pursuit Spatio-temporal Forecasting

plex regression models.

4.2. Tensor Projected Gradient

To solve problem (1), we propose a simple and effi-
cient tensor regression algorithm: subsampled Tensor Pro-
jected Gradient (TPG). TPG is based upon the prototypi-
cal method of projected gradient descent and can also be
seen as a tensor generalization of iterative hard threshold-
ing algorithm (Blumensath & Davies, 2009). For the pro-
jection step, we resort to tensor power iterations to itera-
tively search for the leading singular vectors of the model
tensor. We further leverage randomized sketching (Clark-
son & Woodruff, 2013) to address the memory bottleneck
and speed up the algorithm.

As shown in Algorithm 1, subsampled Tensor Projected
Gradient (TPG) combines a gradient step with a proximal
point projection step (Rockafellar, 1976). The gradient step
treats (1) as an unconstrained optimization ofW . As long
as the loss function is differentiable in a neighborhood of
current solution, standard gradient descent methods can be
applied. For our case, computing the gradient under lin-
ear model is trivial: OL(W;X ,Y) = 〈X T ,Y − 〈X ,W〉〉.
After the gradient step, the subsequent proximal point
step aims to find a projection PR(W) : RD1×D2×D3 →
RD1×D2×D3 satisfying:

PR(Wk) = argmin
W

(‖Wk −W‖2F )

s.t. W ∈ C(R) = {W : rank(W) ≤ R} (2)

The difficulty of solving the above problem mainly comes
from the non-convexity of the set of low-rank tensors. A
common approach is to use nuclear norm as a convex sur-
rogate to approximate the rank constraint (Gandy et al.,
2011). The resulting problem can either be solved by Semi-
Definite Programming (SDP) or soft-thresholding of the
singular values. However, both algorithms are computa-
tional expensive. Soft-thresholding, for example, requires
a full SVD for each unfolding of the tensor.

Iterative hard thresholding, on the other hand, avoids full
SVD. It takes advantage of the general Eckart-Young-
Mirsky theorem (Eckart & Young, 1936) for matrices,
which allows the Euclidean projection to be efficiently
computed with thin SVD. Iterative hard thresholding al-
gorithm has been shown to be memory efficient and ro-

Algorithm 1 Subsampled Tensor Projected Gradient
1: Input: predictor X , response Y , rank R
2: Output: model tensorW ∈ RD1×D2×D3

3: Compute count sketch S
4: Sketch Ỹ ← Y ×1 S, X̃ ← X ×1 S
5: InitializeW0 as zero tensor
6: repeat
7: W̃k+1 =Wk − ηOL(Wk; X̃ , Ỹ)
8: Wk+1 = ITP(W̃k+1)
9: until Converge

Algorithm 2 Iterative Tensor Projection (ITP)

1: Input: model W̃ , predictor X , response Y , rank R
2: Output: projectionW ∈ RD1×D2×D3

3: Initialize {U0
n} with R left singular vectors ofW(n)

4: while i ≤ R do
5: repeat
6: uk+1

1 ← W̃ ×2 uk2
T ×3 uk3

T

7: uk+1
2 ← W̃ ×1 uk1

T ×3 uk3
T

8: uk+1
3 ← W̃ ×1 uk1

T ×2 uk2
T

9: until Converge to {u1,u2,u3}
10: Update {Un} with {un}
11: W ← W̃ ×1 U1U1

T ×2 U2U2
T ×3 U3U3

T

12: if L(W;X ,Y) ≤ ε then
13: RETURN
14: end if
15: end while

bust to noise. Unfortunately, it is well-known that Eckart-
Young-Mirsky theorem no long applies to higher order ten-
sors (Kolda & Bader, 2009). Therefore, computing high-
order singular value decomposition (HOSVD) (De Lath-
auwer et al., 2000b) and discarding small singular values
do not guarantee optimality of the projection.

To address the challenge, we note that for tensor Tucker
model, we have : W = S ×1 U1 ×2 U2 ×3 U3. And
the projection matrices {Un} happen to be the left singu-
lar vectors of the unfolded tensor, i.e., UnΣnVT

n =W(n).
This property allows us to compute each projection ma-
trix efficiently with thin SVD. By iterating over all factors,
we can obtain a local optimal solution that is guaranteed to
have rank at mostR. We want to emphasize that there is no
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known algorithm that can guarantee the convergence to the
global optimal solution. However, in the Tucker model,
different local optimas are highly concentrated, thus the
choice of local optima does not really matter (Ishteva et al.,
2011b).

When the model parameter tensor W is very large, per-
forming thin SVD itself can be expensive. In our problem,
the dimensionality of the model is usually much larger than
its rank. With this observation, we utilize another prop-
erty of Tucker model Un = W ×1 · · · ×n−1 UT

n−1 ×n+1

UT
n+1 · · · ×N UN . This property implies that instead of

performing thin SVD on the original tensor, we can trade
cheap tensor matrix multiplication to avoid expensive large
matrix SVD. This leads to the Iterative Tensor Projection
(ITP) procedure as described in Algorithm 2. Denote {un}
as row vectors of {Un}, ITP uses power iteration to find
one leading singular vector at a time. The algorithm stops
either when hitting the rank upper bound R or when the
loss function value decreases below a threshold ε.

ITP is significantly faster than traditional tensor regression
algorithms especially when the model is low-rank. It guar-
antees that the proximal point projection step can be solved
efficiently. If we initialize our solution with the top R left
singular vectors of tensor unfoldings, the projection itera-
tion can start from a close neighborhood of the stationary
point, thus leading to faster convergence. In tensor regres-
sion, our main focus is to minimize the empirical loss. Se-
quentially finding the rank-1 subspace allows us to evaluate
the performance as the algorithm proceeds. The decrease
of empirical loss would call for early stop of the thin SVD
procedure.

Another acceleration trick we employ is randomized
sketching. This trick is particularly useful when we are en-
countered with ultra high sample size or extremely sparse
data. Online algorithms, such as stochastic gradient de-
scent or stochastic ADMM are common techniques to
deal with large samples and break the memory bottleneck.
However, from a subsampling point of view, online algo-
rithms make i.i.d assumptions of the data and uniformly
select samples. It usually fails to leverage the data sparsity.

In our framework, the convergence of the TPG algorithm,
as will be discussed in a later section, depends only on the
logarithm of signal to noise ratio. Randomized sketching
instantiates the mechanism to reduce noise by duplicating
data instances and combining the outputs. This mecha-
nism provides TPG with considerable amount of boost. Its
performance therefore increases linearly if the noise is de-
creased. We resort to count sketch (Clarkson & Woodruff,
2013) as a subsampling step before feeding data into TPG.
A count sketch matrix of size M × N , denoted as S, is
generated as follows: start with a zero matrix RM×N , for
each column j, uniformly pick a row i ∈ {1, 2, · · ·M} and

assign {−1, 1} with equal probability to Si,j . In practice,
we find count sketch works well with TPG, even when the
sample size is very small.

5. Theoretical Analysis
We now analyze theoretical properties of the proposed al-
gorithm. We prove that TPG guarantees optimality of the
estimated solution, under the assumption that the predictor
tensor satisfies Restricted Isometry Property (RIP) (Candes
et al., 2006). With carefully designed step size, the algo-
rithm converges to the correct solution in constant number
of iterations, and the achievable estimation error depends
linearly on the size of the observation error.

We assume the predictor tensor satisfies Restricted Isome-
try Property in the following form:

Definition 5.1. (Restricted Isometry Property) The isom-
etry constant of X is the smallest number δR such as the
following holds for allW with Tucker rank at most R.

(1− δR)‖W‖2F ≤ ‖〈X ,W〉‖2F ≤ (1 + δR)‖W‖2F

Note that even though we make the RIP analogy for ten-
sor X , we actually impose the RIP assumption w.r.t. ma-
trix rank instead of tensor rank. Similar assumption can be
found in (Rauhut et al., 2015).

The proposed solution TPG as in Algorithm 1 is built upon
projected gradient method. To prove the convergence, we
first guarantee the optimality (local) of the proximal point
step, obtained by ITP in Algorithm 2. The following lemma
guarantees the correctness of the solution from ITP.

Lemma 5.2. (Tensor Projection) The projection step in Al-
gorithm 2, defined as PR : RD1×D2×D3 → RD1×D2×D3

computes a proximal point PR(W̃k+1) = Wk+1, whose
Tucker rank is at most R. Formally,

Wk+1 = argmin
W

‖W − W̃k+1‖2F s.t rank(W) ≤ R

the projected solutionWk+1 follows a Tucker model, writ-
ten as Wk+1 = S ×1 U1 ×2 U2 ×3 U3, where each di-
mension of the core S is upper bounded by R.

Proof. Minimizing ‖W − W̃k+1‖2F given S is equivalent
to minimizing the following problem

‖S ×1 U1 ×2 U2 ×3 U3 − W̃k+1‖2F
= {‖S ×1 U1 ×2 U2 ×3 U3‖2F
− 2〈S ×1 U1 ×2 U2 ×3 U3, W̃k+1〉+ ‖W̃k+1‖2F }
= {‖S‖2F + ‖W̃k+1‖2F
− 2〈S, W̃k+1 ×1 UT

1 ×2 UT
2 ×3 UT

3 〉}
= −‖S‖2F + ‖W̃k+1‖2F
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Given projection matrices {Un}, we have:

S = W̃k+1 ×1 UT
1 ×2 UT

2 ×3 UT
3

Thus, the minimizer of ‖W−W̃k+1‖2F generates projection
matrices that maximize the following objective function:

{Un} = argmax
{Un}

‖W̃k+1 ×1 UT
1 ×2 UT

2 ×3 UT
3 ‖2F (3)

Each row vector un of Un can be solved independently
with power iteration. Therefore, repeating this procedure
for different modes leads to an optimal (local) minimizer
near a neighborhood of W̃k+1. In fact, for Tucker ten-
sor, convergence to a saddle point or a local maximum is
only observed in artificially designed numerical examples
(Ishteva et al., 2011a). �

Next we prove our main theorem, which states that TPG
converges to the correct solution in constant number of it-
erations with isometry constant δ2R < 1/3.

Theorem 5.3. (Main) For tensor regression model Y =
〈X ,W〉+ E , suppose the predictor tensor X satisfies RIP
condition with isometry constant δ2R < 1/3. Let W?

be the optimal tensor of Tucker rank at most R. Then
tensor projected gradient (TPG) algorithm with step-size
η = 1

1+δR
computes a feasible solution W such that the

estimation error ‖W − W?‖2F ≤ 1
1−δ2R ‖E‖

2
F in at most

d 1
log(1/α) log(

‖Y‖2F
‖E|2F

)e iterations for an universal constance
α that is independent of problem parameters.

Proof. : The decrease in loss

L(Wk+1)− L(Wk) (4)

= 2〈OL(Wk),Wk+1 −Wk〉+ ‖〈X ,Wk+1 −Wk〉‖2F
≤ 2〈OL(Wk),Wk+1 −Wk〉+ (1 + δ2R)‖Wk+1 −Wk ‖2F

Here the inequality follows from RIP condition. And isom-
etry constant of δ2R follows from the subadditivity of rank.

Define upper bound

u(W) := 2〈OL(Wk),W −Wk〉+ (1 + δ2R)‖W −Wk ‖2F
= (1 + δ2R){‖W − W̃k+1‖2F − 〈OL(Wk),W −Wk〉}

where the second equality follows from the definition of
gradient step W̃k+1 =Wk − ηOL(Wk)

From Equation (4) and Lemma 5.2,

L(Wk+1)− L(Wk) ≤ u(Wk+1) ≤ u(W?) (5)

= 2〈OL(Wk),W? −Wk〉+ (1 + δ2R)‖W? −Wk ‖2F
= 2〈OL(Wk),W? −Wk〉+ 2δ2R‖W? −Wk ‖2F
+ (1− δ2R)‖W? −Wk ‖2F
≤ 2〈OL(Wk),W? −Wk〉+ 2δ2R‖W? −Wk ‖2F
+ ‖〈X ,W? −Wk〉‖2F (6)

= L(W?)− L(Wk) + 2δ2R‖W? −Wk ‖2F
≤ L(W?)− L(Wk) + 2δ2R

1−δ2R
‖〈X ,W? −Wk〉‖2F (7)

In short,

L(Wk+1) ≤ L(W?) +
2δ2R

1− δ2R
‖〈X ,W? −Wk〉‖2F (8)

The inequality (6) and (7) follows from RIP condition.
Given model assumption Y − 〈X ,W?〉 = E , we have

‖〈X ,W? −Wk〉‖2F = ‖Y − 〈X ,Wk〉 − E‖2F
= L(Wk)− 2〈E ,Y − 〈X ,Wk〉〉+ ‖E‖2F

≤ L(Wk) +
2

C
L(Wk) +

1

C2
L(Wk)

= (1 +
1

C
)2L(Wk) (9)

as long as the noise satisfies C2‖E‖2F ≤ L(Wk).

Following Equation (8),

L(Wk+1) ≤ ‖E‖2F +
2δ2R

1− δ2R
(1 +

1

C
)2L(Wk)

≤ [
1

C2
+

2δ2R
1− δ2R

(1 +
1

C
)2]L(Wk)

= αL(Wk) (10)

With the assumption that δ2R < 1/3, select C > 1+δ2R
1−3δ2R ,

we have [ 1
C2 + 2δ2R

1−δ2R (1 + 1
C )

2] < 1. The above inequal-
ity implies that the algorithm enjoys a globally geometric
convergence rate and the loss decreases multiplicatively.

For the simplest case, with initial point as zero, we have
L(W0) = ‖Y‖2F .

In order to obtain a loss value that is small enough

L(WK) ≤ αKL(W0) ≤ ‖E‖2F (11)

the algorithm requires at least K ≥ 1
log(1/α) log(

‖Y‖2F
‖E|2F

) it-
erations.

‖WK −W?‖2F ≤ 1

1− δ2R
‖〈X ,WK −W?〉‖2F (12)

≤ 1

1− δ2R
(1 +

1

C
)2L(WK)

≤ 1

1− δ2R
‖E‖2F

where inequality (12) follows from RIP. �

Theorem 5.3 shows that under RIP assumption,
TGP converges to an approximate solution in
O( 1

log(1/α) log(
‖Y‖2F
‖E|2F

)) number of iterations, which
depends solely on the logarithm of signal to noise ratio.
The achievable estimation error depends linearly on the
size of the observation error.

As a pre-processing step, our proposed algorithm employs
l2-subspace embedding (count sketch) to subsample the
data instances.
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Definition 5.4. (l2-subspace embedding) A (1 ± ε) l2-
subspace embedding for the column space of a N ×D ma-
trix A is a matrix S for which for all x ∈ RD

‖SAx‖22 = (1± ε)‖Ax‖22

Subsampling step solves an unconstrained optimization
problem which is essentially a least square problem, the
approximation error can be upper-bounded as follows:

Lemma 5.5. (Approximation Guarantee) For any 0 <
δ < 1, given a sparse l2-subspace embedding matrix S
with K = O((D1D2D3)

2/δε2) rows, then with probabil-
ity (1 − δ), we can achieve (1 + ε)-approximation. The
sketch X ×1 S can be computed in O(nnz(X )) time, and
Y ×1 S can be computed in O(nnz(Y)) time.

The result follows directly from (Clarkson & Woodruff,
2013). The randomized sketching leads to a (1 + ε) ap-
proximation of the original tensor regression solution. It
also serves as a noise reduction step, facilitating fast con-
vergence of subsequent TPG procedure.

6. Applications of Tensor Regression
Tensor regression finds applications in many domains. We
present two examples: one is the multi-linear multi-task
learning problem in machine learning community, and the
other is the spatio-temporal forecasting problem in time se-
ries analysis domain.

6.1. Multi-linear Multi-task Learning

Multi-linear multi-task learning (Romera-Paredes et al.,
2013; Wimalawarne et al., 2014) tackles the scenario where
the tasks to be learned are references by multiple indices,
thus contain multi-modal relationship. Given the predictor
and response for each task: (Xt ∈ Rmt×dt ,Yt ∈ Rmt×1),
traditional multi-task learning concatenate parameter vec-
tor wt ∈ Rdt×1 into a matrix. Here, with additional infor-
mation about task indices, the model stacks the coefficient
vectors into a model tensor W . The empirical loss is de-
fined as the summarization of the least square loss for all
the tasks, i.e L(W;X ,Y) =

∑T
t=1 ‖Yt −Xtwt‖2F , with

wt as the t th column ofW(1). The multi-linear multi-task
learning problem can be described as follows:

Ŵ = argmin
W

{
T∑
t=1

‖Yt −Xtwt‖2F

}
s.t. rank(W) ≤ R (13)

6.2. Spatio-temporal Forecasting

Spatio-temporal forecasting (Cressie & Wikle, 2015) is to
predict the future values given their historical measure-
ments. Suppose we are given access to measurements

X ∈ RT×P×M of T timestamps of M variables over
P locations as well as the geographical coordinates of
P locations. We can model the time series with a Vec-
tor Auto-regressive (VAR) model of lag L, where we as-
sume the generative process as Xt,:,m = Xt,mW:,:,m +
Et,:,m, for m = 1, . . . ,M and t = L + 1, . . . , T . Here
Xt,m = [X>t−1,:,m, . . . ,X>t−L,:,m] denotes the concatena-
tion of L-lag historical data before time t. We learn a
model coefficient tensorW ∈ RPL×P×M to forecast mul-
tiple variables simultaneously. The forecasting task can be
formulated as follows:

Ŵ = argmin
W

{
‖X̂ − X‖2F + µ

M∑
m=1

tr(X̂>:,:,mLX̂:,:,m)

}
s.t. X̂ = Xt,mW:,:,m, s.t. rank(W) ≤ R (14)

where rank constraint imposes structures such as spatial
clustering and temporal periodicity on the model. The
Laplacian regularizer L is constructed from the kernel us-
ing the geographical information, which accounts for the
spatial proximity of observations.

7. Experiments
We conduct a set of experiments on one synthetic dataset
and two real world applications. In this section, we present
and analyze the results obtained. We compare TGP with
following baseline methods:

• OLS: ordinary least square estimator without low-
rank constraint

• THOSVD (De Lathauwer et al., 2000b): a two-step
heuristic that first solves the least square and then per-
forms truncated singular value decomposition

• Greedy (Yu et al., 2014): a fast tensor regression so-
lution that sequentially estimates rank one subspace
based on Orthogonal Matching Pursuit

• ADMM (Gandy et al., 2011): alternating direction
method of multipliers for nuclear norm regularized
optimization

7.1. Synthetic Dataset

We construct a model coefficient tensor W of size 30 ×
30 × 20 with Tucker rank equals to 2 for all modes. Then,
we generate the observations Y and X according to mul-
tivariate regression model Y:,:,m = X:,:,mW:,:,m + E:,:,m
for m = 1, . . . ,M , where E is a noise tensor with zero
mean Gaussian elements. We generate the time series with
30, 000 time stamps and repeat the procedure for 10 times.

Figure 1(a) and 1(b) shows the parameter estimation RMSE
and the run time error bar with respect to the sketching size.
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Figure 1. Performance comparison on the synthetic dataset over 10 random runs. (a) model parameter estimation RMSE for different
algorithms, (b) running time with respect to sketching size for different algorithms, (c) RMSE for different sketching method, (d) running
time for different sketching method.

Since the true model is low-rank, simple OLS suffers from
poor performance. Other methods are able to converge to
the correct solution. The main difference occurs for small
sketch size scenario. TPG demonstrates its impressively
robustness to noise while others shows high variance in es-
timation RMSE. ADMM obtains reasonable accuracy and
is relatively robust, but is very slow.

We also investigate the impact of sketching scheme on
TPG. We compare count sketch (Count) with sketch with
i.i.d Gaussian entries (Gaussian) and sparse random pro-
jection (Sparse) (Achlioptas, 2003). Figure 1(c) and 1(d)
shows the parameter estimation RMSE and the run time er-
rorbar for TPG combined with different random sketching
algorithm. TPG with count sketch achieves best perfor-
mance, especially for small sketch size. The results justify
the metrit of leveraging count sketch for noise reduction, in
order to accelerate the convergence of TPG algorithm.

7.2. Real Data

In this section, we test the described approaches with
two real world application datasets: multi-linear multi-task
learning and spatio-temporal forecasting problem.

7.2.1. MULTI-LINEAR MULTI-TASK LEARNING

We compare TPG with state-of-art multi-linear multi-task
baseline. Our evaluation follows the same experiment set-
ting in (Romera-Paredes et al., 2013) on the restaurant &
consumer dataset, provided by the authors in the paper. The
data set contains consumer ratings given to different restau-
rants. The data has 138 consumers gave 3 type of scores for
restaurant service. Each restaurant has 45 attributes for rat-
ing prediction. The total number of instances for all the
tasks were 3483. The problem results in a model tensor of
dimension 45× 138× 3.

We split the training and testing set with different ratio
ranging from 0.1 to 0.9 and randomly select the training
data instances. When the training size is small, many tasks
contained no training example. We also select 200 in-
stances as the validation set. We compare with MLMTL-
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Figure 2. Multi-linear multi-task learning performance compari-
son on the synthetic dataset over 10 random runs. (a) average
forecasting MSE and (b) running time w.r.t. training size.

C and multi-task feature learning baselines in the original
paper. MTL-L21 uses L21 regularizer and MTL-Trace is
the trace-norm regularized multi-task learning algorithm.
The model parameters are selected by minimizing the mean
squared error on the validation set.

Figure 2 demonstrates the prediction performance in terms
of MSE and runtime with respect to different training size.
Compared with MLMTL-C, TPG is around 10% − 25%
more accurate and at least 20 times faster. MTL-L21 or
MTL-Trace runs faster than MLMTL-C but also sacrifices
accuracy. The difference is more noticeable in the case of
small training size. These results are not surprising. Given
limited samples and highly correlated tasks in the restau-
rant score prediction, the model parameters demonstrate
low-rank property. In fact, we found that rank 1 is the opti-
mal setting for this data during the experiments.

7.2.2. SPATIO-TEMPORAL FORECASTING

For the spatio-temporal forecasting task, we experiment
with following two datasets.

Foursquare Check-In The Foursquare check-in data set
contains the users check-in records in Pittsburgh area from
Feb 24 to May 23, 2012, categorized by different venue
types such as Art & Entertainment, College & University,
and Food. We extract hourly check-in records of 739 users
in 34 different venues categories over 3, 474 hours time pe-
riod as well as users’ friendship network.
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USHCN Measurements The U.S. Historical Climatol-
ogy Network (USHCN) daily (http://cdiac.ornl.
gov/ftp/ushcn_daily/) contains daily measure-
ments for 5 climate variables for more than 100 years. The
five climate variables correspond to temperature max, tem-
perature min, precipitation, snow fall and snow depth. The
records were collected across more than 1, 200 locations
and spans over 45, 384 time stamps.

We split the data along the temporal dimension into 80%
training set and 20% testing set. We choose VAR (3) model
and use 5-fold cross-validation to select the rank during the
training phase. For both datasets, we normalize each in-
dividual time series by removing the mean and dividing
by standard deviation. Due to the memory constraint of
the Greedy algorithm, evaluations are conducted on down-
sampled datasets.

Table 2. Forecasting RMSE and run time on Foursquare check-
in data and USHCN daily measurement for VAR process with 3
lags, trained with 80% of the time series.

TPG OLS THOSVD GREEDY ADMM
RMSE 0.3580 0.8277 0.4780 0.3639 0.3916

RUNTIME 37.06 5.85 12.37 290.12 445.41

TPG OLS THOSVD GREEDY ADMM
RMSE 0.3872 1.4265 0.7224 0.4389 0.5893

RUNTIME 144.43 23.69 46.26 410.38 6786

Table 2 presents the best forecasting performance (w.r.t
sketching size) and the corresponding run time for each
of the methods. TPG outperforms baseline methods with
higher accuracy. Greedy shows similar accuracy, but
TPG converges in very few iterations. For USHCN, TPG
achieves much higher accuracy with significantly shorter
run time. Those results demonstrate the efficiency of our
proposed algorithm for spatio-temporal forecasting tasks.

We further investigate the learned structure of TPG al-
gorithm from USHCN data. Figure 3 shows the spatial-
temporal dependency graph on the terrain of California.
Each velocity vector represents the aggregated weight
learned by TPG from one location to the other. The graph
provides an interesting illustration of atmospheric circula-
tion. For example, near Shasta-Trinity National forecast
in northern California, the air flow into the forecasts. On
the east side along Rocky mountain area, there is a strong
atmospheric pressure, leading to wind moving from south
east to north west passing the bay area. Another notable at-
mospheric circulation happens near Salton sea at the border
of Utah, caused mainly by the evaporation of the sea.

1cov(X ,W) : Y··· ,in−1in+1··· ,jn−1jn+1,··· =
∑
in
XinWin

Figure 3. Velocity vectors plot of spatial-temporal dependency
graph obtained via TPG. Results are averaged across all five dif-
ferent climate variables.

8. Discussion
The implication of our approach has several interesting as-
pects that might shed light upon future algorithmic design.

(1) The projection step in TPG does not depends on data,
thus it connects to tensor decomposition techniques such
as high order orthogonal iteration (HOOI) (De Lathauwer
et al., 2000a). However, there is subtle difference in that the
regression would call for early stop of iterative projection
as it sequentially search for the orthogonal subspaces.

(2) TPG behaves similarly as first order methods. The con-
vergence rate can be further improved with second order
Newton method. This can be done easily by replacing
the gradient with Hessian. This modification does not af-
fect the theoretical properties of the proposed algorithm,
but would lead to significant empirical improvement (Jain
et al., 2010).

9. Conclusion
In this paper, we study tensor regression as a tool to analyze
multiway data. We introduce Tensor Projected Gradient to
solve the problem. Our approach is built upon projected
gradient method, generalizing iterative hard thresholding
technique to high order tensors. The algorithm is very sim-
ple and general, which can be easily applied to many tensor
regression models. It also shares the efficiency of iterative
hard thresholding method. We prove that the algorithm
converges within a constant number of iterations and the
achievable estimation error is linear to the size of the noise.
We evaluate our method on multi-linear multi-task learning
as well as spatio-temporal forecasting applications. The re-
sults show that the our method is significantly faster and is
impressively robust to noise.

http://cdiac.ornl.gov/ftp/ushcn_daily/
http://cdiac.ornl.gov/ftp/ushcn_daily/
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