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Introduction

• Multivariate spatio-temporal data can be represented as tensors.

• Low-rank structure corresponds to properties such as spatial
clustering, temporal periodicity, etc.

• Low-rank tensor learning framework for the multivariate
spatio-temporal analysis.
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Introduction

• Large-scale spatio-temporal data come in streams.
• Learning low-rank tensor in batch settings suffers from

computational bottleneck, especially short response time.
• Goal: Online Low-Rank Tensor Learning

• Efficiently update model tensor as data come in.
• Preserve the low-rank structure.
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Challenges

Inherent complexity of tensor analysis[HL13]:

• Most works are on online low-rank matrix learning.

• Local solution (e.g. streaming tensor analysis [STP+08]) lacks
theoretical justification.

• Using nuclear norm as a convex surrogate for the rank (e.g.
Stochastic ADMM [OHTG13] ) is computationally expensive,
may lead to sub-optimal solutions.
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Contribution

• Accelerated Low-rank Tensor Online Learning (ALTO)
algorithm.
• Acceleration by keeping track of the low-rank components.
• Overcome the local optima issue via randomization.

• Applications in two spatio-temporal stream analysis tasks.
• Online forecasting: n-step ahead prediction from historical

observations.
• Multi-model ensemble: combining multiple simulation model

forecasts for more accurate predictions.
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Online Low Rank Tensor Learning

Low-rank tensor learning problem for regression

• Predictor tensor Z ∈ RQ×T×M .

• Response tensor X ∈ RP×T×M .

• Model tensor W ∈ RP×Q×M .

Problem Definition

Ŵ = argminW

{∑
t,m ‖W:,:,mZ:,t,m −X:,t,m‖2F

}
s.t. rank(W) ≤ R

• Two Stage Procedure

1 Solve unconstrained optimization problem.
2 Update solution to satisfy low-rank constraint.
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Step 1: Tensor Stream in Online Setting

At time T , given a new data batch of size b.
Denote Wm =W:,:,m, omit the variable index m for simplicity.

Ŵ = argmin
W

{∑
t,m

‖W:,:,mZ:,t,m −X:,t,m‖2F

}
⇓

min
W
‖WZ1:T −X1:T‖2F

• An ordinary linear regression problem.
• Two possible updating strategies.

• Exact update:
W(k) = X1:T+bZ

†
1:T+b.

• Increment update:

W(k) = (1− α)W(k−1) + αXT+1:T+bZ
†
T+1:T+b.
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Step 2: Online Low-Rank Tensor Approximation

• Update the solution by low-rank projection.

• Perform low-rank projection at each iteration is computationally
expensive.

• Tensor sum-n-rank:
∑N

n=1 rank(W(n))
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Step 2: Online Low-Rank Tensor Approximation
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Theoretical Analysis

• Dimension reduction based on
previous decomposition.

• Jumping out of the same
low-rank subspace with
randomization.

• Low-Rank Guarantee: The solution is guaranteed to be
low-sum-n-rank after the tensor sequential mapping (TSM)
procedure.

• Approximation Guarantee: When the target tensor is
low-rank, then in its neighborhood, we can conduct low-rank
mapping and expect the error to be reduced. The approximation
error of the low-rank mapping is upper bounded by a factor of 8
in the worst case scenario.
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Applications I: Online Forecasting

Description: Predict the value of (Xp,t+1,m,Xp,t+1,m, · · · , ) for all M
variables and P locations given their historical measurements.
Formulation: Vector Auto-regressive (VAR) model:
X:,t,m =W:,:,mXt,m + E:,t,m, where Xt,m = [X>:,t−1,m, . . . ,X>:,t−L,m]>

Ŵ = argmin
W

{
‖X̂ − X‖2F + µ

M∑
m=1

tr(X̂>:,:,mLX̂:,:,m)

}

s.t. X̂:,t,m =W:,:,mXt,m

N∑
n=1

rank(W(n)) ≤ R,
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Applications II: Multimodel Ensemble

Description: Combine S climate model outputs of M climate
variables in P locations over time period T into a more accurate
description of the observations.
Formulation: : Linear model between observations and model
outputs. Yt,m = [Y>:,t,m,1, . . . ,Y>:,t,m,S]

> denotes the concatenation of
S model outputs at time t for variable m, Y ∈ RP×T×M×S.

Ŵ = argmin
W

{
‖X̂ − X‖2F + µ

M∑
m=1

tr(X̂>:,:,mLX̂:,:,m)

}

s.t. X̂:,t,m =W:,:,mYt,m

N∑
n=1

rank(W(n)) ≤ R,
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Synthetic Experiments

Baselines:

• simple VAR model (INV),
• streaming tensor analysis [STP+08] (STA)
• stochastic ADMM [OHTG13] (SADMM),
• iterative singular value thresholding [JMD10] (ISVT),
• greedy algorithm [BYL14] (GREEDY).

Setting: 30000 time stamps with VAR(2) model, parameter tensor

W ∈ R30×60×20. Initial batch size 200, mini-batch size 100.
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Online Forecasting

Datasets:

• Foursquare: 121 user check-ins in 15 categories of business venues
over 1200 time intervals.

• AWS: 153 weather stations measurements of 4 climate variables over
76 time stamps.

Setting: 90 % training data on both datasets for VAR model with
different lags and average run time.

Forecasting RMSE
Lag ALTO ISVT SADMM INV Greedy

Foursquare
1 0.1239 0.1285 0.1240 0.1394 0.1246
2 0.1244 0.1244 0.1234 0.1357 0.1225
3 0.1241 0.1240 0.1242 0.1362 0.1223

AWS
1 0.9318 1.0055 0.9441 1.4707 0.8951
2 0.9285 0.9182 0.9447 1.0853 0.9131
3 0.9303 0.9297 0.9485 0.9840 0.9166

Overall run time
Data set ALTO ISVT SADMM
Foursquare 16 (s) 65 (s) 119 (s)
AWS 20 (s) 64 (s) 126 (s)
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Multimodel Ensemble

Dataset:7 model outputs, 19 climate variables, 252 time points. variables
of observation series are aligned with the model output series.

Settings: 90 % training data, 5-fold cross validation
Forecasting RMSE
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• Japan Center for Climate System Research
(Red) has a dominating area in Asia.

• Norway Bjerknes Centre for Climate
Research (Yellow) is most influential in
Europe.
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Conclusion and Future Work

Conclusion

• A simple and efficient algorithm, ALTO, to accelerate the
process of online low-rank tensor learning.

• Randomization technique to overcome the local optimal issue.

• Accurate predictions and reduced computational costs for online
forecasting and multi-model ensemble tasks.

Future Work

• Examining broader applications of online low-rank tensor learning

• Relaxing the assumptions of ALTO for better theoretical
properties.
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