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Abstract

Variable selection problems are typically addressed un-
der a penalized optimization framework. Nonconvex
penalties such as the minimax concave plus (MCP)
and smoothly clipped absolute deviation (SCAD), have
been demonstrated to have the properties of sparsity
practically and theoretically. In this paper we propose
a new nonconvex penalty that we call exponential-type
penalty. The exponential-type penalty is characterized
by a positive parameter, which establishes a connection
with the ℓ0 and ℓ1 penalties. We apply this new penalty
to sparse supervised learning problems. To solve to re-
sulting optimization problem, we resort to a reweighted
ℓ1 minimization method. Moreover, we devise an ef-
ficient method for the adaptive update of the tuning
parameter. Our experimental results are encouraging.
They show that the exponential-type penalty is compet-
itive with MCP and SCAD.

Introduction
Feature selection plays a fundamental role in regression and
classification models with applications in high-dimensional
datasets. To enhance the performance of the model, we of-
ten seek a smaller subset of important features. Thus, spar-
sity is necessarily required in the resulting estimator. To
pursue sparsity, Tibshirani (1996) proposed the novel lasso
method to select features via the convex ℓ1-norm penalty and
soft shrinkage. However, Fan and Li (2001) showed that the
lasso shrinkage produces biased estimates for the large co-
efficients, and Zou (2006) proved that the lasso might not be
an oracle procedure (Fan and Li 2001).

In the same spirit of lasso, nonconvex penalties have been
also studied. In particular, Fan and Li (2001) provided a
deep insight into the properties that a good penalty function
shares; that is, if the penalty function is singular at the origin
and nonconvex, the resulting penalized estimate owes the
properties of sparsity, continuity and unbiasedness. More-
over, the estimator with the nonconvex penalty performs as
well as the oracle procedure when the tuning parameter is
appropriately chosen.

Copyright c⃝ 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

∗Joint first authors; i.e., Gao and Wang contributed equally to
this work.

A number of nonconvex penalty functions have been pro-
posed in the literature. These functions, including the log-
penalty (Mazumder, Friedman, and Hastie 2009), the mini-
max concave plus (MCP) (Zhang 2010a) and the smoothly
clipped absolute deviation (SCAD) (Fan and Li 2001), have
been demonstrated to have attractive theoretical properties
and practical applications. However, they would yield com-
putational challenges due to their non-differentiability and
non-convexity.

In order to address this computational challenge, Fan and
Li (2001) proposed a local quadratic approximation (LQA),
while Zou and Li (2008) then devised a local linear approx-
imation (LLA). In fact, the LLA method can be regraded as
an iteratively reweighted ℓ1 minimization method (Candès,
Wakin, and Boyd 2008; Wipf and Nagarajan 2010). More-
over, all these methods can be unified under a majorization-
minimization (MM) framework (Lange, Hunter, and Yang
2000). Recently, Mazumder, Friedman, and Hastie (2009)
showed that a coordinate descent algorithm (Friedman et al.
2007) can be used for solving nonconvex penalized prob-
lems; also see Breheny and Huang (2010).

In this paper we further investigate nonconvex penalties
for sparse supervised learning problems. In particular, we
propose a new nonconvex penalty function that we refer as
the exponential-type penalty (ETP). ETP bridges the ℓ0 and
ℓ1 penalties via a positive parameter. More specifically, the
limits of ETP are the ℓ0 and ℓ1 penalties when this parameter
approaches∞ and 0 respectively.

We apply ETP to sparse supervised learning problems. We
explore a penalized linear regression with our ETP. We can
also consider extensions involving other exponential fam-
ily models; in particular we exemplify such an extension by
discussing logistic regression for binary classification prob-
lems.

To obtain the resulting estimator, we resort to the iterative
reweighted ℓ1 minimization method. This method consists
two steps. The first step transforms the original optimization
as a weighted lasso problem, and the second step solves this
new problem via some existing methods for the conventional
lasso, such as the LARS (Efron et al. 2004) and the coordi-
nate descent method. We note that applying the coordinate
descent method to our case yields a so-called conditional
MM algorithm.

In this paper we also devise an efficient approach for the



automatical choice of the tuning parameter. It is well known
that the performance of the existing nonconvex penalized
supervised learning methods heavily relies on the value of
the tuning parameter. The common methods for the tuning
parameter selection use grid-search or gradient-based algo-
rithms. However, these algorithms usually take large com-
putational costs. Contrarily, the principal appeal of our ap-
proach is its simplicity and efficiency.

The rest of the paper is organized as follows. In the next
section, we give a brief overview of existing nonconvex
penalty terms and the reweighted ℓ1 minimization method.
A new nonconvex penalty function and a nonconvex penal-
ized linear regression model are then presented, followed by
an extension in the penalized logistic regression and by some
experimental results on different data sets. The last section
concludes this paper.

Problem Formulation
Suppose we are given a set of training data {(xi, yi) : i =
1, . . . , n}, where the xi ∈ Rp are the input vectors and the yi
are the corresponding responses. Moreover, we assume that∑n

i=1 xi = 0,
∑n

i=1 yi = 0 and xT
i xi = n for i = 1, . . . , p.

We now consider the following linear regression model:

y = Xβ + ε

where y = (y1, . . . , yn)
T is the n×1 output vector, X =

[x1, . . . ,xn]
T is the n×p input matrix, and ε is a Gaussian

error vector. We aim to estimate the vector of regression
coefficients β = (β1, . . . , βp)

T via a penalized likelihood
framework; that is,

max
β

{
Q(β) ,

n∑
i=1

Li(β)− n

p∑
j=1

Pλ(|βj |)
}
, (1)

where Li is the log-likelihood of yi conditional on xi and
Pλ(·) is the penalty function characterized by a tuning pa-
rameter λ. In this paper we mainly consider a nonconvex
penalty.

There are three popular nonconvex penalty terms: the log-
penalty, MCP and SCAD, which and their first-order deriva-
tives are listed in Table 1.

In order to solve the nonconvex penalized regression
problem, Zou and Li (2008) proposed an important algo-
rithm, which employ a local linear approximation (LLA) to
the nonconvex penalty Pλ,γ(|βj |):

Pλ,γ(|βj |) ≈ Pλ,γ(|β(m)
j |) + P ′

λ,γ(|β
(m)
j |)(|βj | − |β(m)

j |)

where the β
(m)
j are the mth estimates of the βj . Their

(m+1)th estimates are then calculated via

β(m+1) = argmax
β

{ n∑
i=1

Li(β)−n
p∑

j=1

P ′
λ,γ(|β

(m)
j |)|βj |

}
.

Since the current estimator can be transformed into the con-
ventional lasso by replacing P ′

λ,γ(|β
(m)
j |)|βj | with |βj |, we

can resort to the existing methods for solving lasso such as
the coordinate descent algorithm (Breheny and Huang 2010)
to calculate β

(m+1)
j .

Recently, Zou and Li (2008) suggested using the un-
penalized maximum likelihood estimate of β as its initial
value β(0) and then using a so-called one-step LARS esti-
mator. Zhang (2010b) then proposed a multi-stage LLA al-
gorithm. The LLA algorithm is in the same spirit of the iter-
ative reweighed ℓ1 method (Candès, Wakin, and Boyd 2008;
Wipf and Nagarajan 2010). Moreover, it can be viewed as a
majorization-minimization (MM) procedure (Hunter and Li
2005). With such a view, the coordinate method mentioned
earlier can be then regarded as a conditional MM procedure.

Methodology
In this section we first propose a novel nonconvex penalty
that we call exponential-type penalty. We the study its appli-
cations in sparse modeling.

The Exponential-Type Penalty
The exponential-type penalty (ETP) is defined by

Pλ,γ(|θ|) =
λ

1− exp(−γ)
(1− exp(−γ|θ|)) (2)

for λ ≥ 0 and γ > 0. It is clear that this penalty is con-
cave in |θ|. Moreover, we can establish its relationship with
the ℓ0 and ℓ1 penalties. In particular, we have the following
propositions.

Proposition 1 Let Pλ,γ(|θ|) be given in (2). Then
(1) limγ→0+ Pλ,γ(|θ|) = |θ|.

(2) limγ→+∞ Pλ,γ(|θ|) =
{

0 if |θ| = 0
1 if |θ| ̸= 0.

This proposition shows that the limits of ETP at 0+ and +∞
are the ℓ1 penalty and the ℓ0 penalty, respectively. The first-
order derivative of Pλ,γ(|θ|) with respect to |θ| is

P ′
λ,γ(|θ|) =

λγ

1− exp(−γ)
exp(−γ|θ|).

Figures 1 and 2 depict the ETP and its derivative together
with other penalties.

Sparse Learning via ETP
For the sake of presentation, we first consider the linear re-
gression problem. An extension to logistic regression for
classification will be given in the next section.

Now the penalized regression model is

Q(β) =
1

2n

n∑
i=1

(yi−xT
i β)

2 + Pλ,γ(|β|).

where |β| = (|β1|, . . . , |βp|)T and Pλ,γ(|β|) =∑p
j=1 Pλ,γ(|βj |). Here Pλ,γ(|βj |) is given in (2).
We now solve the current model by using the iteratively

reweighted ℓ1 method. Given the mth estimate β(m) of β,
the reweighted ℓ1 method finds its next estimate via

β(m+1) = argmin
β

{ 1

2n
∥y−Xβ∥22+

p∑
j=1

w
(m+1)
j |βj |

}
,

(3)



Table 1: The log-penalty, MCP and SCAD (Pλ,γ(|θ|)) as well as their first-order derivatives (P ′
λ,γ(|θ|)).

LOG-PENALTY (γ > 0) SCAD (γ > 2) MCP (γ > 1)

FUNCTIONS λ
log(γ+1)

log(γ|θ|+1)


λ|θ| IF |θ| ≤ λ
γλ|θ|−0.5(|θ|2+λ2)

γ−1
IF λ < |θ| ≤ γλ

λ2(γ2−1)
2(γ−1)

IF |θ| > γλ

{
λ|θ| − |θ|2

2γ
IF |θ| ≤ γλ

1
2
γλ2 IF |θ| > γλ

DERIVATIVES λ
log(γ+1)

γ
γ|θ|+1


λ IF |θ| ≤ λ
γλ−|θ|
γ−1

IF λ < |θ| ≤ γλ
0 IF |θ| > γλ

{
λ− |θ|

γ
IF |θ| ≤ γλ

0 IF |θ| > γλ

(γ = 3.7) (γ = 2.0) (γ = 0.1)

Figure 1: Penalty functions: MCP, SCAD and ETP.

(γ = 3.7) (γ = 2.0) (γ = 0.1)

Figure 2: The first-order derivatives of Log, MCP, SCAD and ETP

where w
(m+1)
j is calculated via the P ′

λ,γ(|β
(m)
j |). We thus

have for j = 1, . . . , p,

w
(m+1)
j = P ′

λ(m),γ(|β
(m)
j |) =

λ(m)γ exp(−γ|β(m)
j |)

1− exp(−γ)
. (4)

where λ(m) is the mth estimate of λ. Unlike from the con-
ventional reweighted ℓ1 method in which the tuning param-
eter λ is specified by users, however, we also consider the
adaptive update of λ at each iteration.

Since wj ≥ 0 for all j, we consider the maximization
of

∑p
j=1{wj log(wj/λ) − wj + λ}, which is Kullback-

Leibler distance between nonnegative vectors (w1, . . . , wp)

and (λ, . . . , λ). Given w = w(m), the minimizer is then

λ(m) =
1

p

p∑
j=1

w
(m)
j . (5)

We can apply the LARS method to solve the weighted
lasso problem in (3). In this case, we also employ the sugges-
tion of Zou and Li (2008); that is, we use the one-step LARS
estimation. It is worth pointing out that when applying the
one-step scheme, it is not necessary to update λ via (5).
However, if we use a k-step or multi-stage scheme (Zhang
2010b), such a update for λ will be very efficient.

We now devise a conditional MM algorithm for solving
(3). The key idea of the algorithm is based on

F (β) , 1

2n
∥y−Xβ∥22+

p∑
j=1

w
(m+1)
j |βj |

=
1

2n
∥y−Xβ∥22+

∑
l ̸=j

w
(m+1)
l |βl|+ w

(m+1)
j |βj |.

We then minimize F with respect to each βj with the re-
maining elements of β fixed. We summary the details in Al-
gorithm 1. Here S is the soft-thresholding operator, which is
defined by

S(z, u) =

{
z − u if z > u
0 if |z| ≤ u
z + λ if z < −u,

for u ≥ 0. The notation ”−j” is referred to the portion that
remains after the jth column or element is removed from a
matrix or a vector in question.

It is worth noting that wj = 1/|β(m)
j |γ was set in the

original iterative reweighed ℓ1 method (Candès, Wakin, and
Boyd 2008; Wipf and Nagarajan 2010). Such a setting suf-
fers from numerical instability. If β

(m)
j = 0, the jth ele-

ment of x should be removed from the iteration. Thus, it



Algorithm 1 The Conditional MM Algorithm for Sparse
Learning Regression with ETP

Input: {X = [x·1, . . . ,x·p],y}, γ, λ(0) and β(0)

for m = 0, 1, . . . do
while not convergent do

for j = 1 to p do
Calculate

zj = n−1xT
.j r̂ = n−1xT

.jr+ β
(m)
j ,

where r = y −Xβ(m) and r̂ = y −X−jβ
(m)
−j .

Update

β
(m+1)
j ←− S

(
zj , w

(m+1)
j

)
.

Update r←− r− (β
(m+1)
j − β

(m)
j )x·j .

end for
end while
Compute w

(m+1)
j via (4)

Compute λ(m+1) via (5)
end for
Output: β

results in a drawback of backward stepwise variable selec-
tion; that is, if a covariant is deleted at any step, it will nec-
essarily be excluded from the final selected model. To deal
with this drawback, Wipf and Nagarajan (2010) suggested
using wj = 1/(|β(m)

j |γ + ϵ2). Although this can alleviate
the aforementioned drawback to some extent, it is difficult
to choose the perturbation ϵ2. Fortunately, our method does
not meet this numerical instability due to the use of ETP.

In addition, our conditional MM algorithm enjoys the
simple computational procedure same to the coordinate de-
scent algorithms for the penalized linear regression with
MCP or SCAD (Mazumder, Friedman, and Hastie 2009;
Breheny and Huang 2010). However, an attractive advan-
tage of our method over the coordinate descent algorithms
is in that it also incorporates the adaptive update of the tun-
ing parameter λ.

Extensions to Logistic Regression
In this section we consider a logistic regression model for a
binary classification problem in which y ∈ {0, 1}. Let η =
(η1, . . . , ηn)

T = Xβ. The model is

P (yi = 1|xi) = πi =
eηi

1 + eηi
.

Estimation of β is now accomplished via minimization of
the objective function

Q(β)

= − 1

n

n∑
i=1

[yi log πi + (1−yi) log(1−πi)] +

p∑
j=1

Pλ,γ(|βj |).

As pointed out by Breheny and Huang (2010), minimization
can be approached by first obtaining a quadratic approxima-
tion to the loss function based on a Taylor series expansion

Algorithm 2 The Conditional MM Algorithm for ETP-
based Logistic Regression

Input: {X = [x·1, . . . ,x·p],y}, γ, λ(0), β(0), ε (toler-
ance).
repeat

Calculate

η = Xβ(m)

πi =
exp(ηi)

1 + exp(ηi)
, i = 1, . . . , n

W = diag(π1(1− π1), . . . , πn(1− πn))

r = W−1(y − π)

ỹ = η + r

while not convergent do
for j = 1 to p do

Calculate vj = n−1xT
.jWx.j

Calculate

zj =
1

n
xT
.jW(ỹ −X−jβ−j)

=
1

n
xT
.jWr+ vjβ

(m)
j

Update β
(m+1)
j ←− S(zj ,w

(m+1)
j )

vj

end for
end while
Calculate w

(m+1)
j via (4)

Calculate λ(m+1) via (5)
until ||β(m+1) − β(m)||22 ≤ ε
Output: β

about the value of the regression coefficients. That is,

Q(β) ≈ 1

2n
(ỹ−Xβ)TW(ỹ−Xβ) +

p∑
j=1

Pλ,γ(|βj |),

where ỹ, the working response, is defined by ỹ = Xβ(m) +
W−1(y−π) and W is a diagonal matrix with diagonal ele-
ments wi = πi(1−πi), and π = (π1, . . . , πn)

T is evaluated
at β(m). With this preparation, we give a conditional MM
algorithm in Algorithm 2.

Numerical Experiments
In this section we conduct experimental analysis about our
sparse learning methods with ETP and also compare them
with other closely related nonconvex methods.

Linear Regression
In this simulation example, we use a toy data model given
by Tibshirani (1996). The data model is given as

y = xTβ + σϵ (6)

where β = (3, 1.5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0)T , ϵ ∼ N(0, 1),
and the input x is a 12-dimensional vector from multivari-
ate normal distribution with covariance between xi and xj



Table 2: Simulation results from the linear regression meth-
ods with MCP, SCAD and ETP, respectively. Here “C” is for
“Correct” and “IC” for “Incorrect”.

PENALTY MRME(%) ”C” ”IC” TOTAL TIME (S)
n = 50, σ = 3
MCP 25.66 8.88 0.31 8.23
SCAD 25.39 8.68 0.13 21.07
ETP 25.34 8.76 0.18 2.34
n = 50, σ = 1
MCP 17.00 9.00 0.03 7.86
SCAD 18.24 8.99 0.01 22.43
ETP 16.41 9.00 .0 1.61
n = 100, σ = 1
MCP 20.21 9.00 .0 8.47
SCAD 18.79 9.00 .0 17.70
ETP 18.89 9.00 .0 1.97
n = 100, σ = 5
MCP 37.87 8.80 0.34 9.49
SCAD 35.96 8.82 0.36 24.62
ETP 31.70 8.78 0.31 2.22

as 0.5|i−j|(1 ≤ i, j ≤ 12). In our experiments, we use the
different n (the data size) and σ. For each pair (n, σ), we
randomly generate 1000 datasets. In other words, we ran-
domly repeat 1000 times for each pair setting. Our reported
results are based on the average of 1000 runs.

In the experiment we use the conditional MM method in
Algorithm 1 to train the linear regression model based on
ETP. For comparison, we also implement the coordinate de-
scent methods (Breheny and Huang 2010) for the two linear
regression methods based on MCP and SCAD, respectively.
As we know, these three methods include the parameter γ.
Here we use the same setting of γ for them. We use the me-
dian of relative model errors (MRME) as an evaluation cri-

terion. The relative model error is defined as
d2
etp

d2
ols

, where

d is the Mahalanobis distance between β̂ and β. The vari-
able selection accuracy is measured by the average number
of coefficients correctly setting to 0 in β̂, and vice visa. If a
method is accurate, then the number of “correct” zeros in β̂
is 9 and “incorrect” is 0.

Table 2 reports the average results over the 1000 runs.
From Table 2, we can see that these three nonconvex ap-
proaches are competitive in regression accuracy and sparse
ability at low noise level. However, ETP has some advan-
tages when the noise is large. Besides, it is worth pointing
out that the performance of the methods based on MCP and
SCAD is sensitive to the value of the tuning parameter λ.
Here the reported results for these two methods are based
on the optimum value of λ, which is selected via the grid
search. However, this search usually takes large computa-
tional costs. Fortunately, our method can avoid this problem.
In Table 2, we also present the computational times of the
three methods. It is seen that our method is more efficient
than the other two methods.

MCP SCAD ETP
0

0.2

0.4

0.6

1 2 3

(a) n = 50 and σ = 1

MCP SCAD ETP
0

0.5

1

1.5

2

(b) n = 1000 and σ = 5

Figure 3: Box-and-whisker plots of regression errors, which
was conducted on the data from 1000 independent runs us-
ing MCP, SCAD and ETP.

Table 3: Classification dataset description (%).

DATA SET # OF FEATURE # OF INSTANCE
BREAST CANCER 30 569
DIABETES 8 768
GENE 5000 72
STATLOG(HEART) 14 270
MUSK(VERSION1) 166 578
MUSK(VERSION2) 166 6700
AUSTRALIAN 14 690
WEBKB 300 2053

Logistic Regression for Classification
In this experiment, we conduct the performance analysis of
Algorithm 2 in classification problems. We also compare our
method with the two nonconvex methods based on MCP and
SCAD respectively. For the fair of comparison, these two
methods are implemented via the coordinate descent meth-
ods (Breheny and Huang 2010).

We perform the analysis on eight binary classification
datasets. The sizes of the datasets are described in Table
3. We split each dataset into 80% for training and 20% for
test. We repeat 10 splits for our analysis and the reported re-
sults are based on the average of these 10 repeats. Table 4
gives the classification accuracy on the test datasets and Ta-
ble 5 gives the coefficient sparsity (zero entries proportion)
of the regression vector β estimated from the three methods,
respectively. The running time of each algorithm on each
dataset is given in Table 6.

The results are encouraging, because in most cases our
method performs over the other two methods in both accu-



Table 4: Classification accuracies on the eight datasets (%)

DATA SET ETP MCP SCAD
BREAST CANCER 97.3 97.3 96.4
DIABETES 72.7 70.6 70.6
GENE 80.0 71.4 71.4
STATLOG(HEART) 90.7 90.7 88.9
MUSK(VERSION1) 82.3 80.0 80.0
MUSK(VERSION2) 72.4 70.4 71.5
AUSTRALIAN 89.1 89.1 92.0
WEBKB 96.0 96.5 95.3

Table 5: Sparsity on the eight datasets (%)

DATA SET ETP MCP SCAD
BREAST CANCER 76.7 93.3 83.3
DIABETES 87.5 87.5 75.0
GENE 99.9 68.1 99.9
STATLOG(HEART) 76.2 61.5 61.5
MUSK(VERSION1) 90.4 87.4 89.2
MUSK(VERSION2) 92.8 88.6 69.3
AUSTRALIAN 85.7 78.6 78.6
WEBKB 92.3 90.3 90.7

racy and sparsity. Moreover, the computational times given
in Table 6 again show that our method is computationally
feasible in comparison with the other two methods.

Conclusion
In this paper we have proposed the exponential-type penalty,
which is nonconvex and singular at the origin. Thus, the re-
sulting penalized estimator enjoys the the properties of spar-
sity, continuity and unbiasedness. In particular, we have ap-
plied the exponential-type penalty to sparse linear regres-
sion and sparse logistic regression problems. We have also
devised iterative reweighted ℓ1 minimization methods for
the solutions of the problems. Moreover, we have presented
a simple scheme for the adaptive update of the tuning pa-
rameter under our nonconvex approach. This simple scheme
makes our approach very efficient and effective in compar-
ison with other popular nonconvex approaches. Our experi-
ment results have demonstrated the efficiency and effective-
ness of our approach.
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