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Problem

How can we reliably forecast over long horizons (T ≫ 1) for multivari-
ate time series in environments with nonlinear dynamics?

Our Solution

Tensor-Train RNN (TT-RNN): a novel family of neural sequence model.
High-order non-Markovian dynamics and high-order state interactions.
Theoretical guarantees and accurate forecasts for long horizons.
Full paper: https://arxiv.org/abs/1711.00073
Source code: https://github.com/yuqirose/trnn/

Forecasting Nonlinear Dynamics
Nonlinear systems
A system state xt ∈ Rd evolves under a set of nonlinear differential equations.{
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Real-world examples

Traffic Climate
Long-term forecasting
Given a sequence of initial states x0 . . . xt, learn a model f that outputs a sequence
of future states xt+1 . . . xT .

f : (x0 . . . xt) 7→ (yt . . . yT ) , yt = xt+1, (2)

Tensorized Recurrent Neural Networks
First-order Markov models
An RNN cell recursively computes the output yt from a hidden state ht.

ht = f (xt, ht−1; θ), yt = g(ht; θ), (3)

High-order Markov process
Consider longer “history” with L steps of temporal memory:

ht = f (xt, ht−1, · · · , ht−L; θ) (4)

Polynomial interactions
Consider high-order polynomial interactions between the hidden states:

ht;α = f (W hx
α xt +

∑
i1,··· ,ip

Wαi1···iP
st−1;i1 ⊗ · · · ⊗ st−1;ip︸ ︷︷ ︸

P

) (5)

where sT
t−1 = [1 ht−1 . . . ht−L], and P is the degree of the polynomial.

Tensor-train recurrent cells within a seq2seq model Tensor-train unit.
Tensor-train decomposition
Reduce the number of parameters of TT-RNN from (HL + 1)P to (HL + 1)R2P with
tensor-train [2].
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where {rd} are called the tensor-train rank, and R = maxd rd.

Approximation Guarantees

Let the state transition function f ∈ Hk
µ be a Hölder continuous function defined

on a input domain I = I1 × · · · × Id, with bounded derivatives up to order k and
finite Fourier magnitude distribution Cf . Then a single layer Tensor Train RNN can
approximate f with an estimation error of ϵ using with h hidden units:

h ≤
C2

f
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+

C2
f

ϵ
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where Cf =
∫

|ω|1|f̂ (ω)dω|, d is the size of the state space, r is the tensor-train rank
and p is the degree of high-order polynomials i.e., the order of tensor.

Experiments
Data statistics

Traffic: traffic speed readings, 8, 784 sequences, 288 timestamps, 15 locations
Climate: max daily temperature, 6, 954 sequences, 366 timestamps, 15 stations

Baselines

LSTM[1]: 1st-order RNN with LSTM cell
MLSTM[3]: matrix RNN with LSTM cell

Forecasting performance
For traffic, forecast 18 hours ahead given 5 hours. For climate, forecast 300 days
ahead given 60 days. TT-RNN is more robust to long-term error propagation.

Traffic Climate
Forecasting visualization
TT-RNN captures more detailed curvatures due to the inherent high-order structure.
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Open problem
Chaotic dynamics are highly sensitive to input perturbations. TT-RNN can predict up
to T = 40 steps into the future, but diverges quickly beyond that.

Lorenz attractor T = 20 T = 40 T = 60
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