Long-Term Forecasting using Tensor-Train RNNs

Rose Yu*, Stephan Zheng*, Anima Anandkumar, Yisong Yue Caltech

Problem

How can we reliably forecast over long horizons $(T \gg 1)$ for multivariate time series in environments with nonlinear dynamics?

Our Solution

Tensor-Train RNN (TT-RNN): a novel family of neural sequence model. High-order non-Markovian dynamics and high-order state interactions. Theoretical guarantees and accurate forecasts for long horizons.

Full paper: https://arxiv.org/abs/1711.00073 Source code: https://github.com/yuqirose/trnn/

Forecasting Nonlinear Dynamics

Nonlinear systems

Caltech

A system state $\mathbf{x}_t \in \mathbb{R}^d$ evolves under a set of *nonlinear* differential equations.

$$\left\{\xi^{i}\left(\mathbf{x}_{t}, \frac{d\mathbf{x}}{u}, \frac{d^{2}\mathbf{x}}{u^{2}}, \dots; \phi\right) = 0\right\}, \qquad (1$$

Approximation Guarantees

Let the state transition function $f \in \mathcal{H}^k_{\mu}$ be a Hölder continuous function defined on a input domain $\mathbf{I} = I_1 \times \cdots \times I_d$, with bounded derivatives up to order k and finite Fourier magnitude distribution C_f . Then a single layer Tensor Train RNN can approximate f with an estimation error of ϵ using with h hidden units:

$$h \leq \frac{C_f^2}{\epsilon} (d-1) \frac{(r+1)^{-(k-1)}}{(k-1)} + \frac{C_f^2}{\epsilon} C(k) p^{-k}$$

where $C_f = \int |\omega|_1 |\hat{f}(\omega) d\omega|$, d is the size of the state space, r is the tensor-train rank and p is the degree of high-order polynomials i.e., the order of tensor.

Experiments

Data statistics

Traffic: traffic speed readings, 8, 784 sequences, 288 timestamps, 15 locations *Climate*: max daily temperature, 6,954 sequences, 366 timestamps, 15 stations

Baselines

LSTM[1]: 1st-order RNN with LSTM cell MLSTM[3]: matrix RNN with LSTM cell

Long-term forecasting

Given a sequence of initial states $\mathbf{x}_0 \dots \mathbf{x}_t$, learn a model f that outputs a sequence of future states $\mathbf{x}_{t+1} \dots \mathbf{x}_T$.

$$f: (\mathbf{x}_0 \dots \mathbf{x}_t) \mapsto (\mathbf{y}_t \dots \mathbf{y}_T), \ \mathbf{y}_t = \mathbf{x}_{t+1}, \tag{2}$$

Tensorized Recurrent Neural Networks

First-order Markov models

An RNN cell recursively computes the output \mathbf{y}_t from a hidden state \mathbf{h}_t .

$$\mathbf{h}_t = f(\mathbf{x}_t, \mathbf{h}_{t-1}; \theta), \ \mathbf{y}_t = g(\mathbf{h}_t; \theta), \tag{3}$$

High-order Markov process

Consider longer "history" with L steps of temporal memory:

$$\mathbf{h}_t = f(\mathbf{x}_t, \mathbf{h}_{t-1}, \cdots, \mathbf{h}_{t-L}; \theta)$$
(4)

Polynomial interactions

Consider high-order polynomial interactions between the hidden states:

$$\mathbf{h}_{t;\alpha} = f(W_{\alpha}^{hx}\mathbf{x}_t + \sum_{i_1,\cdots,i_p} \mathcal{W}_{\alpha i_1\cdots i_P} \underbrace{\mathbf{s}_{t-1;i_1} \otimes \cdots \otimes \mathbf{s}_{t-1;i_p}}_{P})$$
(5)

where $\mathbf{s}_{t-1}^T = [1 \mathbf{h}_{t-1} \dots \mathbf{h}_{t-L}]$, and P is the degree of the polynomial.

Forecasting performance

For traffic, forecast 18 hours ahead given 5 hours. For climate, forecast 300 days ahead given 60 days. TT-RNN is more robust to long-term error propagation.

Forecasting visualization

TT-RNN captures more detailed curvatures due to the inherent high-order structure.

Open problem

Chaotic dynamics are highly sensitive to input perturbations. TT-RNN can predict up to T = 40 steps into the future, but diverges quickly beyond that.

Tensor-train recurrent cells within a seq2seq model

Tensor-train unit.

Tensor-train decomposition

Reduce the number of parameters of TT-RNN from $(HL+1)^P$ to $(HL+1)R^2P$ with tensor-train [2].

$$\mathcal{W}_{i_1\cdots i_P} = \sum_{\alpha_1\cdots\alpha_{P-1}} \mathcal{A}^1_{\alpha_0 i_1\alpha_1} \mathcal{A}^2_{\alpha_1 i_2\alpha_2} \cdots \mathcal{A}^P_{\alpha_{P-1} i_P\alpha_P}, \ \alpha_0 = \alpha_P = 1$$

where $\{r_d\}$ are called the tensor-train rank, and $R = \max_d r_d$.

References

- [1] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.
- [2] Ivan V Oseledets.
 - Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295–2317, 2011.

[3] Rohollah Soltani and Hui Jiang. Higher order recurrent neural networks. arXiv preprint arXiv:1605.00064, 2016.