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Problem

How can we reliably forecast over long horizons (7" > 1) for multivari-
ate time series in environments with nonlinear dynamics”’

Our Solution

Tensor-Train RNNIN (TT-RNN): a novel family of neural sequence model.
High-order non-Markovian dynamics and high-order state interactions.
Theoretical guarantees and accurate forecasts for long horizons.

Full paper: https://arxiv.org/abs/1711.00073
Source code: https://github.com/yuqirose/trnn/

Forecasting Nonlinear Dynamics

Nonlinear systems
A system state x; € R? evolves under a set of nonlinear differential equations.
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Real-world examples
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Long-term forecasting
Given a sequence of initial states x...xy, learn a model f that outputs a sequence
of future states x;41...X7.
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Tensorized Recurrent Neural Networks

First-order Markov models
An RNN cell recursively computes the output y; from a hidden state h;.
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High-order Markov process
Consider longer “history” with L steps of temporal memory:

h; = f(Xt; hy_q,--- ,hy_p; ‘9) (4)

Polynomial interactions
Consider high-order polynomial interactions between the hidden states:
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where s/, = [1hy_; ... hy_;], and P is the degree of the polynomial.
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Tensor-train recurrent cells within a seqZ2seq model

Tensor-train unit.

Tensor-train decomposition
Reduce the number of parameters of TT-RNN from (H L+ 1) to (HL + 1) R?P with
tensor-train |2].
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where {r;} are called the tensor-train rank, and R = max,ry.

Approximation Guarantees

Let the state transition function f & Hllj be a Holder continuous function defined
on a input domain I = I; X --- x Iz, with bounded derivatives up to order k£ and
finite Fourier magnitude distribution Cy. Then a single layer Tensor Train RNN can
approximate f with an estimation error of € using with A hidden units:
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where Cf = [ |wly] f(w)dwl, d is the size of the state space, r is the tensor-train rank
and p is the degree of high-order polynomials i.e., the order of tensor.

Experiments

Data statistics

Traffic: traffic speed readings, 8, 784 sequences, 288 timestamps, 15 locations

Climate: max daily temperature, 6, 954 sequences, 366 timestamps, 15 stations
Baselines

LSTM[1]: 1st-order RNN with LSTM cell
MLSTM|[3]: matrix RNN with LSTM cell
Forecasting performance

For traffic, forecast 18 hours ahead given 5 hours. For climate, forecast 300 days
ahead given 60 days. TT-RNN is more robust to long-term error propagation.
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Forecasting visualization
TT-RNN captures more detailed curvatures due to the inherent high-order structure.
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Open problem
Chaotic dynamics are highly sensitive to input perturbations. TT-RNN can predict up
to T' = 40 steps into the future, but diverges quickly beyond that.
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