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Abstract

Structural analysis is concerned with the de-
composition of traffic matrix into basis vectors,
which corresponds to temporal patterns. In gen-
eral, the effectiveness of basis vectors is deter-
mined by the extent to which it approximates
the current week as well as subsequent consec-
utive week traffic matrix, i.e., the basis vectors
should be temporally stable. Principal compo-
nent analysis (PCA) is the most commonly em-
ployed matrix decomposition method in litera-
ture. Unfortunately being the linear combination
of up to all OD flows, the basis vectors of PCA
are i) notoriously difficult to interpret in terms
of PoP pairs generating it, and ii) are obtained
with the assumption that the variables in ques-
tion are continuous random variables. To over-
come these issues, we propose CUR decomposi-
tion for decomposition of traffic matrices. Exper-
imental results shows that basis vectors obtained
using CUR decomposition i) are temporally more
stable, ii)are 100% interpretable in terms of PoP
pairs generating it, and iii) provides an improved
classification of temporal patterns into periodic,
spikes and noise pattern.

1. Introduction

Traffic matrix, which is an abstract representation of traf-
fic volume flowing between set of point of presence (PoP)
pairs, is considered as a more direct and fundamental in-
put to network-wide applications including network to-
mography(Zhang et al., 2003; Soule et al., 2004; Papagian-
naki et al., 2004; Soule et al., 2005) for accurately esti-
mating traffic matrix, network anomography(Zhang et al.,
2005; Lakhina et al., 2004a; Huang et al., 2006) for infer-
ring anomalies in the network traffic, compressive sensing

*Equal contribution 1Department of CSE, IIT
Guwahati, Assam, India.. Correspondence to:
Awnish Kumar <awnish@iitg.ernet.in>, Vijaya
V. Saradhi <saradhi@iitg.ernet.in>, T. Venkatesh
<t.venkat@iitg.ernet.in>.

ICML 2017 Time Series Workshop, Sydney, Australia, 2017.
Copyright 2017 by the author(s).

(Zhang et al., 2009) for estimating the missing entries in
the traffic matrix. These applications require a deeper un-
derstanding of the components and structure of the traffic
matrix, which falls in the realm of structural analysis of
traffic matrix.

However, the high dimensional multivariate structure of
traffic matrix is a prime source of difficulty in the structural
analysis of traffic matrices. In practice, when presented
with the need to analyze a high-dimensional structure, a
commonly-employed and powerful approach is to seek an
alternate lower-dimensional approximation to the structure
that preserves its important properties. Matrix decom-
position techniques aim to achieve a lower-dimensional
approximation by decomposing the traffic matrix into a
fewer number of basis vectors. Decomposition techniques
have been extensively utilized for addressing the network-
wide applications listed above. Most prevalent of the de-
composition methods being singular valued decomposi-
tion (SVD). SVD is the backbone for various matrix de-
composition methods such as principle component anal-
ysis (PCA), non-negative matrix factorization (NMF) and
co-clustering methods. PCA is extensively used in all the
above-mentioned applications.

Amongst all, PCA was first exercised by Lakhina et
al.(Lakhina et al., 2004b) for decomposition of traffic ma-
trix as a product of three orthogonal matrices using SVD
as X = USV

T , where S is a diagonal matrix containing sin-
gular values, and the columns of U and V are basis vec-
tors, more specifically, left and right singular vectors re-
spectively, arranged in the order of decreasing significance.
They demonstrated that traffic matrix is inherently low di-
mensional, i.e., their structure can be well captured using
remarkably few (generally between 5 and 10) significant
basis vectors. They have also introduced the notion of
eigenflows, to refer left singular vectors, which is a time
series that captures a particular source of a temporal pat-
tern (a “structure”) in the traffic matrix. Traffic flow across
a PoP pair (say P1), also termed as an origin-destination
(OD) flow corresponding to P1, can be expressed as a
weighted sum of these eigenflows, which fall into three nat-
ural classes: periodic, spikes and noise. They have also
examined the temporal stability of basis vectors by demon-
strating that the first week’s basis vectors appear to remain
good choices for forming a low-dimensional representation
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of the subsequent consecutive week.

Later, Wang et al.(Wang et al., 2012) demonstrated the inef-
ficiency of eigenflow classification approach for structural
analysis because of the presence of indeterminate (which
fall into more than one class) and nondeterminate (which
do not fall in any of the classes) temporal patterns. They
have utilized a robust variant of PCA for structural analysis
of traffic matrix by decomposing it as a sum of three sub-
matrices, with each corresponding to three classes as dis-
cussed in (Lakhina et al., 2004b). Despite the simplicity,
PCA-based approach suffers from two fundamental limita-
tions. First, interpretability of obtained basis vectors. The
objective of PCA is to find directions along which max-
imum variance is achieved by projecting the data. The
resulting directions, namely eigenflows, do not preserve
meaning in terms of original dimensions (PoP pairs) as they
stand for a weighted linear combination of the OD flows. It
has been argued in the literature that recovering original
input space from the projected space is an inherently chal-
lenging problem(Ringberg et al., 2007). This is problem-
atic when one is interested in obtaining insights from the
output of matrix decomposition. Consider, for example,
the structural analysis of traffic matrix using eigenflows.
Unfortunately, being linear combinations of up to all the
OD flows, these eigenflows (basis vectors) are notoriously
difficult to interpret in terms of the original PoP pairs gen-
erating the eigenflow. Second, data associated with every
variable is assumed to be continuous and randomly drawn
from the multivariate normal distribution. Sample PCA too
follows this assumption. Variables in the traffic matrix,
namely PoP pairs, are discrete in nature. This assumption
has a direct impact on the covariance matrix computation
which is subject to matrix decomposition. Violation of this
fundamental assumption results in excessive skewness and
kurtosis of the obtained matrix factors (Kolenikov et al.,
2004).

In general, the basis vectors obtained after decomposition
of a traffic matrix (say X01) should provide a low rank
approximation of i) the current week traffic matrix (X01),
as well as ii) subsequent consecutive week traffic matri-
ces. This can be achieved through temporal stability of ba-
sis vectors, which can be beneficial for online applications.
The choice of the decomposition method does influence the
application outcome.

In order to alleviate the identified limitation of existing de-
composition methods and meet the desired objectives of
traffic matrix decomposition, we propose to use CUR de-

composition, which is a low-rank matrix decomposition
technique with basis vectors consisting of a small number
of actual columns and actual rows of the traffic matrix.
Because they are constructed from actual data elements,
the basis vectors are 100% interpretable by the practition-

ers of the field from which the data are drawn (to the ex-
tent that the original data are). By preferentially choosing
columns/rows as basis vectors that exert a disproportion-
ately large influence on the best low-rank approximation,
CUR decomposition ensures that the error in reconstruc-
tion of original traffic matrix is always less as compared
to SVD. In addition to this, there are no distributional as-
sumptions involved in the selection process.

1.1. Main Contributions

In the present work, we employ CUR decomposition for
structural analysis of traffic matrix using the approach of
eigenflow classification(Lakhina et al., 2004b) because of
its simplicity. Using CUR decomposition, we are able to
alleviate the limitations of eigenflow flow classification ap-
proach identified in(Wang et al., 2012) as well as limita-
tions of PCA-based approaches, and obtain: i) temporally

stable basis vectors in terms of low error incurred in low
rank approximation of current as well as subsequent con-
secutive week traffic matrix, ii) 100% Interpretability of

basis vectors in terms of PoP pairs generating it, and iii)
Improved classification of temporal patterns in terms of
reduction in the number of unclassified temporal patterns.

1.2. Roadmap of the Report

This subsection presents the roadmap of the paper. Sec-
tion 2 discusses the technique proposed for decomposition
of traffic matrices, i.e., CUR decomposition. Section 3
presents the details of dataset collected from Abilene net-
work. In the present work, we demonstrate the effective-
ness of CUR decomposition for structural analysis of traf-
fic matrices. The results obtained after evaluation are pre-
sented in section 4. Finally, we provide the summary in
section 5

2. Proposed Method : CUR decomposition

CUR decomposition is a low-rank matrix decomposition
technique that is explicitly expressed in terms of a small
number of original columns and/or original rows of the
data (traffic) matrix. Variants of CUR algorithm(Drineas
& Kannan, 2003; Drineas et al., 2006; 2008) has been pro-
posed in the literature which compete on the reconstruc-
tion error bounds, with the most improved one presented
in (Mahoney & Drineas, 2009). According to (Mahoney &
Drineas, 2009), given an m⇥n matrix X and a rank param-
eter ‘k’, decompose X as a product of 3 matrices, C, U, and
R, where C consists of a small number c (= O(k log k/✏2) )
of actual columns of X, R consists of a small number r (=
O(k log k/✏2) ) of actual rows of X, and U is a small care-
fully constructed matrix that guarantees the error bound of
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the following form

kX�CURk2F  (2+ ✏)kX�Xkk2F (1)

where Xk is best rank-k approximation of X obtained using
SVD, ✏ is the error parameter, and k.kF denote the frobe-
nius norm.

Several things should be noted about this definition. First,
to construct C (similarly R), an importance score is com-
puted, which depends on the euclidean norm of rows of top
‘k’ right singulars obtained after SVD of X. Using this im-
portance score as sampling probability distribution, CUR
decomposition randomly sample ‘c’ columns of X, which
exert a disproportionately large influence on the best low-
rank fit of X. In fact, the product C*U*R will be nearly as
good as the best low-rank approximation to X that is ob-
tained by truncating the SVD. Second, the construction of
C and R involves truncated SVD, i.e., computation of top
k basis vectors, which has a time complexity of O(mnk),
which is an improvement over full SVD with the complex-
ity of O(min{m2n, mn2}). Third, the matrix C and R

can be used in place of left and right singular vectors, but
since they consist of actual data elements they will be in-
terpretable in terms of the original columns and rows of X.
Fourth, a CUR approximation approximately expresses all
of the columns of X in terms of a linear combination of a
small number ‘c’ of original columns of X. This will pro-
vide an aid to structural analysis of traffic matrix in terms of
interpretable basis vectors. Fifth, CUR matrix decomposi-
tion has structural properties that are auspicious for its use
as a tool in the analysis of large data sets. For example, if
the data matrix X is large and sparse but well-approximated
by a low-rank matrix, then C and R (consisting of actual
columns and rows) are sparse, whereas the matrices con-
sisting of the top left and right singular vectors will not,
in general, be sparse. Sixth, there are no distributional as-
sumptions involved in the selection of C and R.

3. Dataset

Traffic matrices utilized in the present work is collected
from Abilene network(abi). In the experimentation traffic
matrices numbered from X10 to X24 of size (2016⇥121)
is utilized because of no missing periods, with each traf-
fic matrix containing traffic flow volume measured over a
week.

4. Application: Structural Analysis

Structural analysis aims to decompose an OD flow into
its constituent temporal patterns. CUR decomposition of
traffic matrix expresses each OD flow as a weighted linear
combination of few significant basis vectors (i.e., columns
of C), which corresponds to temporal patterns of traffic ma-
trix. Before presenting the results of structural analysis, we

demonstrate the temporal stability of basis vectors in ob-
taining a low rank approximation of current as well as sub-
sequent consecutive week traffic matrix.

4.1. Temporal Stability of Basis Vectors

The question we are concerned with in this section is
whether the basis vectors obtained after decomposition of a
given traffic matrix is useful for analyzing subsequent week
traffic matrix that was not part of the input. In general, we
envision applications that may benefit from using matrix
decomposition in an online manner as follows. Given traf-
fic matrix observed over some time period [t0, t1), obtain
the basis vectors. Subsequently, at some time t2 > t1, use
previously derived basis vectors to decompose a new set
of traffic matrix into temporal patterns. Does the subse-
quent decomposition still have relatively low effective di-
mensionality?

To answer this question, we proceed as follows. One way
to assess whether a traffic matrix has low effective dimen-
sion is to measure the error resulting from approximating
the matrix using a small number of basis vectors. Follow-
ing the approach in(Lakhina et al., 2004b), given rank pa-
rameter 2, and two consecutive weeks of traffic matrices
X10 and X11, we obtain basis vectors of X10 and approxi-
mate each OD flow of X10 and X11 using CUR, PCA and
NMF, yielding X10

0 and X11

0 . The error incurred in both
approximation is quantified using sum of squared error
(SSE) per OD flow, which is given as SSE1j = kX10(:
, j)�X100(:, j)k and SSE2j = kX11(:, j)�X110(:, j)k,
where SSE1j and SSE1j denote the sum of squared error
incurred in approximating j-th OD flow of X10 and X11

respectively.
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Figure 1. Exploring the temporal stability of basis vectors ob-
tained using CUR and PCA
Figure 1 shows the plot of logarithmic of SSE1 and SSE2,
obtained using CUR decomposition, PCA, and NMF of top
50 OD flows ordered by decreasing mean rate from left to
right on the x-axis. It can be observed from the figure that
the error incurred in approximation of top 11 OD flows of
X10 using CUR decomposition is significantly small (close
to 0) as compared to PCA and NMF. In addition to this, the
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basis vectors of X10 obtained using CUR decomposition
provides a better low rank approximation of X11 in terms
of low SSE per OD flow as compared to PCA and NMF.
This suggests that the basis vectors of CUR decomposi-
tion are temporally more stable than PCA and NMF, hence
should be preferred for online applications of traffic matrix.

4.2. Interpretability of Basis Vectors

One of main reasons of preferring CUR decomposition
over PCA-based decomposition methods lies in the inter-
pretability of eigenflows. Using CUR decomposition, we
propose to decompose an OD flow into its constituent tem-
poral patterns, that are interpretable in terms of PoP pairs
generating it. That is,

xj =
cX

i=1

ci(ur)ij (2)

where xj is the time-series of the j-th OD flow and urij
is the (i,j)-th element of the matrix (U ⇤R). Equation 2
makes clear that j-th OD flow xj is in turn a linear combi-
nation of a few significant OD flows (i.e., columns of C),
with associated weights given by j-th column of the ma-
trix (U*R). These significant OD flows, i.e., columns of C,
stand for the temporal patterns (or “constituents” or “struc-
tures”) of traffic matrix, which have an edge over the ones
identified in prior works(Lakhina et al., 2004b; Wang et al.,
2012) in terms of interpretability. Experimentation shows
that top two significant temporal patterns (“structures”) of
X10 captured using PCA and CUR decomposition show
spikes behaviour during Wednesday, Thursday and Friday.
However, with CUR decomposition, we can say that these
spikes pattern are generated across Chicago-Los Angeles
(C-L) and Los Angeles-Chicago (L-C) pairs. This type of
interpretability about temporal patterns is inherently absent
in PCA-based approaches and NMF.

4.3. Classification of Temporal Patterns
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Figure 2. Bar plot of fraction of nondeterminate temporal patterns
captured using PCA (red) and CUR decomposition (blue).
Later, to obtain significant insight into the whole-network
properties of data traffic, these temporal patterns are classi-
fied into three classes as defined in (Lakhina et al., 2004b;

Wang et al., 2012) using a more apt procedure as compared
to(Lakhina et al., 2004b). The common periodic trend is
captured using autocorrelation if the traffic flow exhibits
periodicity at 12 or 24 hours. Short-lived burst is captured
if at any time the traffic flow volume exceeds 3- standard
deviation from the mean. Chi-square goodness of fit test
is used to decide whether a flow is a noise or not. This
classification approach has helped in identification of more
temporal pattern which remained unclassified using clas-
sification approach in (Lakhina et al., 2004b). The take-
away point of CUR decomposition is that we have to clas-
sify only a small number c of temporal patterns for struc-
tural analysis of traffic matrices as compared to classifi-
cation of a large number n of eigenflows using PCA and
NMF, where c⌧n. This reduced number of temporal pat-
terns will ease the burden during classification into three
classes. Experimentation shows a significant reduction in
computational time in case of CUR decomposition (4.308
seconds) as compared to PCA (13.382 seconds) and NMF
(18.98 seconds) for X10 of size 2016⇥121, using Matlab
on a 3.20 GHz Windows machine.

The temporal patterns of CUR decomposition, i.e., signif-
icant OD flows, arises from the superposition of periodic,
spike and noise component(Lakhina et al., 2004b); thus can
fall into more than one class. Hence, the presence of in-
determinate temporal patterns is justified to a greater ex-
tent for structural analysis of traffic matrices. Figure 2
shows the bar plot of the fraction of nondeterminate tempo-
ral patterns captured using CUR decomposition and PCA
for 14 traffic matrices (X11 to X24). CUR decomposition
achieves a drop in the number of unclassified temporal pat-
terns as compared to PCA for 12 out of 14 matrices. NMF,
on the other hand, lags behind CUR decomposition in terms
of percentage of indeterminate temporal patterns captured.
The difference is as low as 0.05 for X16 and as high as 0.37
for X13. This improvement in classification of temporal
patterns is achieved because of adopting apt and heuristic
mechanism as used in the present work.

5. Summary

In the present work, we perform CUR decomposition of
traffic matrices for structural analysis of traffic matrices,
which provides basis vectors in terms of original PoP pairs
and time intervals, and is computationally less expensive.
These basis vectors provide a more accurate low rank ap-
proximation of current as well as subsequent consecutive
week traffic matrix. Using CUR decomposition, along with
identification of significant temporal patterns, we are also
able to identify PoP pairs generating it. The classification
accuracy is also improved in terms of reduced number of
unclassified temporal patterns.
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