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Abstract
Sparse approximations for Gaussian process
models provide a suite of methods that en-
able these models to be deployed in large data
regime and enable analytic intractabilities to be
sidestepped. However, the field lacks a prin-
cipled method to handle streaming data, which
are important for time-series analysis. The small
number of existing approaches either use subop-
timal hand-crafted heuristics for hyperparameter
learning, or suffer from catastrophic forgetting or
slow updating when new data arrive. This pa-
per develops a new principled framework for de-
ploying Gaussian process probabilistic models in
the streaming setting, providing principled meth-
ods for learning hyperparameters and optimising
pseudo-input locations. New theoretical bounds
for general online variational Bayesian inference
are also given and discussed in the paper.

1. Introduction
Probabilistic models employing Gaussian processes (GPs)
have become a standard approach to solving many ma-
chine learning tasks, thanks largely to the modelling flexi-
bility, robustness to overfitting, and well-calibrated uncer-
tainty estimates afforded by the approach (Rasmussen &
Williams, 2006). One of the pillars of the modern GP prob-
abilistic modelling approach is a set of sparse approxima-
tion schemes that allow the prohibitive computational cost
of GP methods, typically O(N3) for training and O(N2)
for prediction where N is the number of training points, to
be substantially reduced whilst still retaining accuracy. Ar-
guably the most important and influential approximations
of this sort are pseudo-point approximation schemes that
employ a set of M � N pseudo-points to summarise the
observational data thereby reducing computational costs
to O(NM2) and O(M2) for training and prediction, re-
spectively (Snelson & Ghahramani, 2006; Titsias, 2009).
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Stochastic optimisation methods that employ mini-batches
of training data can be used to further reduce computational
costs (Hensman et al., 2013; 2015; Dezfouli & Bonilla,
2015; Hernández-Lobato & Hernández-Lobato, 2016), al-
lowing GPs to be scaled to datasets comprising millions of
data points.

The focus of this paper is to provide a comprehensive
framework for deploying the GP probabilistic modelling
approach to streaming data, which arrive sequentially in
an online fashion, possibly in small batches, and whose
number are not known a priori. The vast majority of previ-
ous work has focussed exclusively on the batch setting and
there is not a satisfactory framework that supports learning
and approximation in the streaming setting. A naı̈ve ap-
proach might simply incorporate each new datum as they
arrived into an ever growing dataset and retrain the GP
model from scratch each time. With infinite computational
resources, this approach is optimal, but in the majority of
practical settings it is intractable. A feasible alternative
would train on just the most recent K training data points,
but this completely ignores potentially large amounts of in-
formative training data and it does not provide a method for
incorporating the old model into the new one which would
save computation (except through initialisation of the hy-
perparameters). Existing, sparse approximation schemes
could be applied in the same manner, but they merely al-
low K to be increased, rather than allowing all previous
data to be leveraged, and again do not utilise intermediate
approximate fits.

What is needed is a method for performing learning and
sparse approximation that incrementally updates the pre-
viously fit model using the new data. Such an approach
would utilise all the previous training data (as they will
have been incorporated into the previously fit model) as
well as leverage as much of the previous computation as
possible at each stage (since the algorithm only requires
access to the data at the current time point). This paper pro-
vides a new principled framework for deploying GP prob-
abilistic models in the streaming setting. The framework
subsumes Csató’s seminal approach to online regression
(Csató, 2002) that was based upon the variational free en-
ergy (VFE) approach to approximate inference. In the new
framework this algorithm is recovered as a special case. We
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also provide principled methods for learning hyperparam-
eters and optimising pseudo-input locations. The approach
also relates to the streaming variational Bayes framework
(Broderick et al., 2013).

The paper also proves novel theoretical bounds for general
online variational Bayesian inference. Previous theoreti-
cal work for variational Bayesian inference mainly focused
on the batch (offline) setting (Seeger, 2002; Alquier et al.,
2016), and a theory for the online setting is needed. Our pa-
per presents the first attempt towards establishing theoreti-
cal guarantees for online variational Bayesian inference.

2. Online Variational Free Energy Inference
and Learning for Sparse GP

2.1. Sparse Gaussian Process for Regression

Given N input and real-valued output pairs {xn, yn}Nn=1, a
standard GP regression model assumes yn = f(xn) + εn,
where f is an unknown function that is corrupted by Gaus-
sian observation noise εn ∼ N (0, σ2

y). Typically, f is
assumed to be drawn from a zero-mean GP prior f ∼
GP(0, k(·, ·|θ)) whose covariance function depends on hy-
perparameters θ. In this paper, we focus on the vari-
ational free energy (VFE) sparse approximation scheme
(Titsias, 2009; Matthews et al., 2016) which lower bounds
the marginal likelihood of the data using a variational dis-
tribution q(f) over the latent function:

log p(y|θ) = log

∫
df p(y, f |θ)

≥
∫

df q(f) log
p(y, f |θ)
q(f)

= Fvfe(q, θ).

This variational bound approximates the marginal likeli-
hood and can be used for learning the hyperparameters θ.

In order to arrive at a computationally tractable method,
the approximate posterior is parameterized via a set of
pseudo-points u that are a subset of the function val-
ues f = {f6=u,u} and which will summarise the data.
Specifically, the approximate posterior is assumed to be
q(f) = p(f 6=u|u, θ)q(u), where q(u) is a variational dis-
tribution over u and p(f 6=u|u, θ) is the prior distribution of
the remaining latent function values f 6=u. This assumption
allows the variational lower bound to be computationally
tractable. We also use z to denote the input locations of u.

For the GP model considered here closed-form ex-
pressions for the optimal variational approximation
qvfe(f) and the optimal variational bound Fvfe(θ) =
maxq(u)Fvfe(q(u), θ) are available. In order for this
method to perform well, it is necessary to adapt the pseudo-
point input locations, e.g. by optimising the variational free
energy, so that the pseudo-data distribute themselves over
the training data.

2.2. Online VFE Inference and Learning for Sparse GP

This paper assumes data arrive sequentially so that at each
step new data points ynew are added to the old dataset yold.
The goal is to approximate the marginal likelihood and the
posterior of the latent process at each step, which can be
used for anytime prediction. The hyperparameters will also
be adjusted online. Importantly, we assume that we can
only access the current data points ynew directly for com-
putational reasons (it might be too expensive to hold yold

and x1:Nold
in memory, for example, or approximations

made at the previous step must be reused to reduce com-
putational overhead). So the effect of the old data on the
current posterior must be propagated through the previous
posterior. We will now develop a new sparse VFE approxi-
mation for this purpose, that compactly summarises the old
data via pseudo-points. The pseudo-inputs will also be ad-
justed online since this is critical as new parts of the input
space will be revealed over time. The framework is easily
extensible to more complex non-linear models.1

Consider an approximation to the true posterior at the pre-
vious step, qold(f), which must be updated to form the new
approximation qnew(f),

qold(f) ≈ p(f |yold) =
1

Z1(θold)
p(f |θold)p(yold|f), (1)

qnew(f) ≈ p(f |yold,ynew)

=
1

Z2(θnew)
p(f |θnew)p(yold|f)p(ynew|f). (2)

Whilst the updated exact posterior p(f |yold,ynew) bal-
ances the contribution of old and new data through
their likelihoods, the new approximation cannot access
p(yold|f) directly. Instead, we can find an approxima-
tion of p(yold|f) by inverting (1), that is p(yold|f) ≈
Z1(θold)qold(f)/p(f |θold). Substituting this into (2) yields

p̂(f |yold,ynew) =
Z1(θold)

Z2(θnew)
p(f |θnew)p(ynew|f)

qold(f)

p(f |θold)
.

Although it is tempting to use this as the new posterior,
qnew(f) = p̂(f |yold,ynew), this recovers exact GP re-
gression with fixed hyperparameters and it is intractable.
So, instead, we consider a variational update that projects
the distribution back to a tractable form using pseudo-
data. At this stage we allow the pseudo-data input loca-
tions in the new approximation to differ from those in the
old one. This is required if new regions of input space
are gradually revealed, as for example in typical time-
series applications. Let a = f(zold) and b = f(znew)
be the function values at the pseudo-inputs before and af-
ter seeing new data. Note that the number of pseudo-

1Due to space constraints, we only include key results here.
Full results and derivations can be found in https://arxiv.
org/abs/1705.07131.

https://arxiv.org/abs/1705.07131
https://arxiv.org/abs/1705.07131


Online Variational Bayesian Inference: Algorithms and Bounds

points, Ma = |a| and Mb = |b| are not necessarily re-
stricted to be the same. The form of the approximate pos-
terior mirrors that in the batch case, that is, the previous
approximate posterior, qold(f) = p(f 6=a|a, θold)qold(a)
where we assume qold(a) = N (a;ma,Sa). The new
posterior approximation takes the same form, but with the
new pseudo-points and new hyperparameters: qnew(f) =
p(f 6=b|b, θnew)qnew(b). Similar to the batch case, this ap-
proximate inference problem can be turned into an opti-
misation problem using variational inference. Specifically,
consider the KL-divergence between the approximate pos-
terior and the running posterior:

KL =

〈
log

p(f 6=b|b, θnew)qnew(b)
Z1(θold)
Z2(θnew)p(f |θnew)p(ynew|f) qold(f)

p(f |θold)

〉
qnew(f)

= log
Z2(θnew)

Z1(θold)
+

〈
log

p(a|θold)qnew(b)

p(b|θnew)qold(a)p(ynew|f)

〉
qnew(f)

.

Since the KL divergence is non-negative, the second
term in the expression above is the negative approximate
lower bound of the online log marginal likelihood (as
Z2/Z1 ≈ p(ynew|yold)), or the variational free energy
F(qnew(f), θnew). By setting the derivative of F w.r.t.
q(b) equal to 0, the optimal approximate posterior can be
obtained for the regression case,2

qvfe(b) ∝ p(b) exp
(∫

da p(a|b) log
qold(a)

p(a|θold)

+

∫
df p(f |b) log p(ynew|f)

)
∝ p(b)N (ŷ;Kf̂bK

−1
bbb,Σŷ,vfe),

where f is the latent function values at the new training
points, Da = (S−1

a −K′−1
aa )−1 and,

ŷ =

[
ynew

DaS
−1
a ma

]
, Kf̂b =

[
Kfb

Kab

]
, Σŷ,vfe =

[
σ2
yI 0
0 Da

]
.

The negative variational free energy is also analytically
available and can be used for hyperparameter learning.
The computational complexity and memory overhead of
the new method is of the same order as the uncollapsed
stochastic variational inference approach. The procedure
is demonstrated on a toy regression example as shown
in fig. 1. These results can be extended to handle non-
Gaussian likelihoods, as shown in fig. 2.

3. Theoretical Bounds for Online VFE
Inference

In this section, we give some novel theoretical bounds for
online VFE inference in general. We shall assume the hy-
perparameters are fixed and thus suppress the dependence

2Note that we have dropped θnew from p(b|θnew),
p(a|b, θnew) and p(f |b, θnew) to lighten the notation.
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Figure 1. Online VFE inference and learning on a toy time-series.
Black crosses are data points (past points are greyed out), red cir-
cles are pseudo-points, and blue lines and shaded areas are the
marginal predictive means and confidence intervals at test points.

on the hyperparameters in our notations. Thus, the con-
sidered online VFE inference algorithm can be written as:

qn = arg min
q∈Ω

KL
(
q(f) ‖ 1

Zn
p(yn|f)qn−1(f)

)
, (3)

which approximates the current posterior by minimising
the KL-divergence to the posterior computed from the pre-
vious variational distribution qn−1. In the above equation,
yn is the batch of data received at the current iteration n,
Zn =

∫
p(yn|f)qn−1(f)df is the normalization factor, Ω

is the space of all distributions that we use to approximate
the posteriors, and q0 = p (the prior).

Equation (3) can also be interpreted as minimising an
approximation of the KL-divergence between q(f) and
p(f |y1:n). Specifically, note that for all q ∈ Ω,

KL(q(f) ‖ p(f |y1:n)) = KL(q(f) ‖ p(f |y1:n−1))

−
∫
q(f) log p(yn|f)df + log p(yn|y1:n−1),

and minimising the RHS of this equation with p(f |y1:n−1)
replaced by the variational distribution qn−1(f) is equiva-
lent to (3).

We now give the following bounds for the algorithm. These
bounds are general and not specific to GP models.

3.1. Bounds for Optimal Variational Distributions

The first quantity of interest is the optimal KL-divergence
of the approximated posteriors. Formally, for n ≥ 1, we
define the optimal variational distribution q∗n as:

q∗n = arg min
q∈Ω

KL(q(f) ‖ p(f |y1:n)), (4)

and we are interested in upper bounding the optimal KL-
divergence KL(q∗n(f) ‖ p(f |y1:n)). We will give two upper
bounds for this divergence: a one-step and an n-step bound.

Lemma 1 (One-step bound). For all n ≥ 1,

KL(q∗n(f) ‖ p(f |y1:n)) ≤ KL(q∗n−1(f) ‖ p(f |y1:n−1))

+ log p(yn|y1:n−1)− Ef∼q∗n−1
[log p(yn|f)].
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Figure 2. Inference and learning on a binary classification task in a non-iid streaming setting. The right-most plot shows the prediction
made by using sparse variational inference on full training data (Hensman et al., 2015). Past observations are greyed out. The pseudo-
points are shown as black dots and the black curves show the decision boundary.

This one-step bound states that the optimal KL-divergence
at each iteration is upper bounded by the optimal KL-
divergence at the previous iteration plus the difference
between the exact log-likelihood and the expected log-
likelihood (w.r.t. the previous optimal variational distribu-
tion q∗n−1) of the current batch of data.

Asymptotically, if q∗n−1(f) → p(f |y1:n−1), i.e. we
can exactly estimate p(f |y1:n−1) with the variational
distribution q∗n−1(f), the RHS of Lemma 1 becomes
log p(yn|y1:n−1) − Ef∼p(f |y1:n−1)[log p(yn|f)], the dif-
ference in the Jensen’s inequality log p(yn|y1:n−1) ≥
Ef∼p(f |y1:n−1)[log p(yn|f)].

Using Lemma 1, we can prove the following n-step bound.
Theorem 1 (n-step bound). For all n ≥ 1,

KL(q∗n(f) ‖ p(f |y1:n)) ≤ KL(q∗0(f) ‖ p(f))

+ log p(y1:n)−
n∑
i=1

Ef∼q∗i−1
[log p(yi|f)].

This n-step bound states that the optimal KL-divergence
at each iteration is upper bounded by the optimal KL-
divergence at the first iteration plus the difference be-
tween the data log-likelihood and the total expected log-
likelihood of each batch (w.r.t. the optimal variational dis-
tribution obtained from the previous batch).

If p ∈ Ω and q∗0 = p, then KL(q∗0(f) ‖ p(f)) = 0.
In this case, the RHS of Theorem 1 becomes
log p(y1:n) −

∑n
i=1 Ef∼q∗i−1

[log p(yi|f)]. Since
KL(q∗n(f) ‖ p(f |y1:n)) ≥ 0, we also have∑n
i=1 Ef∼q∗i−1

[log p(yi|f)] ≤ log p(y1:n).

3.2. Bounds for Approximate Variational Distributions

Another quantity of interest is the KL-divergence of the
variational distribution qn in (3). To bound this quantity,
we consider the divergence regret of qn compared to the
optimal q∗n, which is defined as:

R(qn) = KL(qn(f) ‖ p(f |y1:n))−KL(q∗n(f) ‖ p(f |y1:n)).

The following theorem gives an upper bound for R(qn).

Theorem 2. For all n ≥ 1, R(qn) ≤
∫
| log qn−1(f)

p(f |y1:n−1) |df√
2 KL(q∗n(f) ‖ 1

Zn
p(yn|f)qn−1(f)).

The bound in this theorem depends both on
KL(q∗n(f) ‖ 1

Zn
p(yn|f)qn−1(f)) and the integral∫

| log(qn−1(f)/p(f |y1:n−1))|df . This integral is a form
of distance between qn−1(f) and p(f |y1:n−1), which
specifies how well we have done up to the previous step.

As a consequence of Theorem 2, if the integral∫
| log(qn−1(f)/p(f |y1:n−1))|df is bounded and

1
Zn
p(yn|f)qn−1(f)) → q∗n(f), then R(qn) → 0.

On the other hand, if KL(q∗n(f) ‖ 1
Zn
p(yn|f)qn−1(f))

is bounded and qn−1(f) → p(f |y1:n−1), we also have
R(qn) → 0. In these cases, KL(qn(f) ‖ p(f |y1:n)) →
KL(q∗n(f) ‖ p(f |y1:n)).

We note that Theorem 2 can be slightly modified to give
another bound: R(qn) ≤

∫
| log(p(yn|f)qn−1(f)/Zn

p(f |y1:n) )|df√
2 KL(q∗n(f) ‖ 1

Zn
p(yn|f)qn−1(f)), which contains the

integral
∫
| log( 1

Zn
p(yn|f)qn−1(f)/p(f |y1:n))|df instead

of the integral
∫
| log(qn−1(f)/p(f |y1:n−1))|df .

Combining Theorems 1 and 2, we can obtain the following
bound for KL(qn(f) ‖ p(f |y1:n)):

KL(qn(f) ‖ p(f |y1:n)) ≤ KL(q∗0(f) ‖ p(f))

+ log p(y1:n)−
∑n
i=1 Ef∼q∗i−1

[log p(yi|f)] +√
2KL(q∗n(f)‖ 1

Zn
p(yn|f)qn−1(f))

∫
| log qn−1(f)

p(f |y1:n−1) |df.

4. Conclusion
We have introduced a novel online inference and learning
framework for GP models. The framework unifies dis-
parate methods in the literature and greatly extends them,
allowing sequential updates of the approximate posterior
and online hyperparameter optimisation in a principled
manner. We also proved new bounds as a preliminary step
towards establishing theoretical guarantees for online vari-
ational Bayesian inference.
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