
Time series processing for software failure prediction in deep learning training

Lev Faivishevsky 1 Ori Ernst 1 Amitai Armon 1

Abstract
Deep learning models rely on an iterative training
process. This training is highly time consuming,
encouraging the development of many software
packages with extensive optimizations. These
complex optimizations may introduce small nu-
meric differences between implementations, but
it is crucial to verify that they do not cause non-
convergence to the desired accuracy. We propose
a time series processing approach to detect a fail-
ure to converge in the beginning of the training.
The approach predicts whether the current exe-
cution differs significantly from a valid training
run, with the help of statistical tests. This makes
it possible to detect most implementation faults
without completing full training runs, thus signif-
icantly accelerating software development. This
method was developed as part of an effort to op-
timize deep-learning frameworks.

1. Introduction
Research on how to predict software failures accurately is
of great practical importance. Many software failures pre-
diction models have been developed , see e. g. (Goel, 1985)
and (Xie, 1993), among which many popular classic prob-
ability models are widely discussed (S. Ozekici, 2003) and
(Reussner et al., 2003). However, many of these models
make restrictive assumptions of reality to ensure tractabil-
ity and solvability (Bishop & Pullen, 1988).

These assumptions have been relaxed by making no distri-
bution assumptions on the failure process (Pfefferman &
Cemuschi-Frias, 2002),and various variants of neural net-
works have been applied in (Cai et al., 2001) and (Ho et al.,
2003). Bayesian networks were used in (Bai et al., 2005).
In order to use the Markov Bayesian network model to pre-
dict software failure, the initial distribution of software de-
fects and the distribution of software failure time distribu-
tions are essential. This type of the information is rarely

1Intel Advanced Analytics. Correspondence to: Lev Faivi-
shevsky <lev.faivishevsky@intel.com>.

ICML 2017 Time Series Workshop, Sydney, Australia, 2017.
Copyright 2017 by the author(s).

available in the early stages of software implementations
for modern deep learning algorithms. This limits the ap-
plicability of the Bayesian networks in this important use
case, which is characterized by long training time and a se-
vere need for fast software development time, in the current
competitive environment of data science software market.
In addition, the iterative nature of the training for such algo-
rithms gives rise to another type of data, which manifests
itself in time series form. This way the beginning of the
time series may help to predict the behaviour of the whole
time series, see (Li et al., 2016).

In this paper we suggest a new method for software fail-
ure detection by time series processing. The method re-
lies on statistical hypothesis testing for comparison of time
series generated during training stage. Our results empir-
ically show its potential ability to significantly reduce the
software development duration.

2. Deep Learning Training Software Failure
Prediction

Many modern machine learning algorithms are trained in
an iterative manner. This way an initial solution for the
training optimization task is gradually improving through a
number of iterations. The quality of the solution is assessed
during the training iterations by applying the underlying
machine learning algorithm on a test set. Training an it-
erative machine learning algorithm G yields a sequence of
testing set accuracy estimates A1, A2, .., Ai.., AN , where
Ai is the testing accuracy of the algorithm after i training
iterations and N is the total number of training iterations.
Such sequence of accuracy estimates is dubbed Learning
curve, see (Domhan et al., 2015). The accuracy of the com-
pletely trained algorithm is given obviously by AN .

We denote the reference software implementation of the al-
gorithm G as G0, and its subsequent implementations by
Gm, so that the training of Gm outputs a time series of ac-
curacies Am

N . Usually, the subsequent software implemen-
tations should be at least as fast as G0, and, of course, they
should achieve the same final accuracy as the reference im-
plementation: Am

N = A0
n. Due to the complicated nature of

the highly optimized software implementations a software
failure (bug) may be introduced into a subsequent software
implementation, such that the running time of the training



Time series processing for software failure prediction in deep learning training

Gm may be higher, or alternatively, it may not reach the
desired final accuracy: Am

N < A0
N . The former case is easy

to reveal during the training run, as it clearly manifests it-
self after the first few iterations of the training. The latter
case is of much higher severity, as it might take the whole
training run of N iterations in order to reveal that the de-
sired final accuracy is not achieved. Our goal is therefore
to detect whether the bug exists using only a few training
iterations n� N .

A straightforward approach might be to predict the final
accuracy as a function of the learning curve beginning:
AN = f(A1, ..., An). One disadvantage of this approach
is that function f is dependent on the algorithm G, so we
need to rebuild the predictor for each new algorithm to be
implemented. In addition, training the predictor f usually
requires a high number of verified runs of G, which is too
time-consuming.

Instead we base our method on comparing the time se-
ries corresponding to the beginnings of the learning curves:
A1, ..., An. We would like to define a distance D and
a threshold T such that we may alert about a pos-
sible software bug in software implementation Gm if
D({A0

1, ..., A
0
n}, {Am

1 , ..., A
m
n }) > T . Evaluating such a

distance for the nonstationary time series {Ai} might pose
a difficult problem. Therefore we make a further assump-
tion, that there is an additional reference learning curve
A1

1, ..., A
1
N , which is also valid: A0

N ≈ A1
N . Then we con-

sider time series of differences of accuracies between the
current run and a reference run Am

i −A0
i .

The second reference run enables computing a time series
of differences between partial accuracies of the two valid
runs of the training. These difference are caused by the
computational effects of different random seeds and pos-
sibly rounding order noise (in the multi-node case). We
therefore expect that these deviations A1

i − A0
i follow the

normal distribution with zero mean. If the current run
is not valid Am

N < A0
N then at some iteration we ex-

pect a significant deviation between partial accuracies and
Am

i − A0
i will not be so close to zero as Am

i − A0
i . For

a faulty run the partial accuracies may be either lower or
higher in the beginning of the learning curve, which mo-
tivates us to measure a magnitude of the deviation as the
distance. More specifically, we propose to compare the
variance of the differences between partial accuracies as
a distance between the current run and the valid runs. If
the current run m is valid as well then we would have
V ar(Am

i −A0
i ) ≈ V ar(A1

i −A0
i ). We apply the Bartlett

test (Snedecor & Cochran, 1989) to compute the probabil-
ity for a difference of variances between two sequences of
samples of a normal random variable. We use it for a re-
quired confidence level α, so that we may mistakenly alert
about a bug in the valid implementation Gm with a proba-

Algorithm 1 Software Bug prediction by Bartlett test
(SBPBT)

Inputs: Current Software implementation Gm, two valid
learning curves {A0

i }, {A1
i }, confidence level α, fraction

of the learning curve to be computed γ
Run Gm training for n = γN iterations
Gm → {Am

1 , ..., A
m
n }

Compute p-value of Bartlett test
p = Prob(V ar({Am

i −A0
i }ni=1);V ar({A1

i −A0
i }ni=1))

Alert about a bug if:
p ≤ α

Table 1. Testing normality of difference between first 20% of
learning curves of valid runs of deep learning training by Shapiro-
Wilk test. P-values shown for 6 pairs of single node AlexNet runs
and 3 pairs of single node GoogleNet runs

pair index p-value of AlexNet p-value of GoogleNet

1 0.64 0.15
2 0.57 0.96
3 0.78 0.87
4 0.60 -
5 0.84 -
6 0.52 -

bility less or equal to α.

Prob(V ar({Am
i −A0

i });V ar({A1
i −A0

i })) ≤ α (1)

This approach may be applied in the early stages of soft-
ware optimization, as it requires only two valid runs. It
does not require training a sophisticated predictor specific
for the implemented algorithm G. The method gives a
probabilistic prediction of the software bug with a con-
trolled false alarm rate α using only a γ = n

N fraction of
the training run. We summarize the algorithm which we
dub Software Bug Prediction by Bartlett Test (SBPBT) in
Algorithm 1

3. Experiments
We performed a number of experiments to justify the
SBPBT numerically. First we checked the assumptions of
normality of differences of corresponding partial accura-
cies between valid runs. Then we compared predictive per-
formance of Bartlett test with other statistical tests. Finally
we applied the SBPBT to real-world single and multinode
deep learning training runs performed by software opti-
mization teams for testing their implementation.



Time series processing for software failure prediction in deep learning training

3.1. Normality of differences between beginning of
learning curves

Using the Bartlett test assumes that under null hypothe-
sis the differences between beginnings of (valid) learning
curves are normally distributed: A0

i − A1
i ∼ N(µ, σ). We

used first 20% of training runs for AlexNet (Krizhevsky
et al., 2012) and GoogleNet (Szegedy et al., 2015) in the
single node implementations. As we had 12 valid training
runs for AlexNet and 6 valid runs for GoogleNet we ran-
domly divided them into 6 and 3 pairs correspondingly and
checked the normality of the difference between runs in
each pair by the Shapiro-Wilk test (Shapiro & Wilk, 1965).
In our experiments all differences were found to be normal,
see p-values in Table 1. This demonstrates empirically the
validity of Bartlett test usage for measuring similarity be-
tween differences of learning curves.

Figure 1. Distinguishing a correct learning curve from a faulty
learning curve. Bottom part: learning curves of 2 valid refer-
ence runs of GoogleNet single node training, a correct run and a
faulty run. Top part: p-value of the Bartlett test comparing the
differences between the beginnings of the learning curves

Figure 2. Valid learning curves of GoogleNet single node training

Figure 3. Faulty learning curves of GoogleNet single node train-
ing. A valid ’Reference’ run is shown to visualize deviations of
the faulty learning curves from a valid run

Figure 4. Effect of changing γ and α of SBPBT on the detection
rate and false alarm rate. GoogleNet single node implementations

3.2. Motivating example

We begin with a motivating example of differentiating be-
tween a correct and faulty training runs for GoogleNet sin-
gle node implementation, see Figure 1. In the bottom part
of the figure we provide learning curves for two a priori
valid runs, called ’Reference 1’ and ’Reference 2’ and two
runs to be predicted, the correct and the faulty, which we
dub ’Test Correct’ and ’Test Bug’ correspondingly. First
we compared difference between ’Reference 1’ and ’Ref-
erence 2’ from one hand and the difference between ’Ref-
erence 1’ and ’Test Correct’ runs from the other. We com-
puted a whole time series of Bartlett test p-values piNi=1,
where pi is computed by considering the first i iterations
of the training. We dub this time series as ’Correct Time-
series’, see the top part of the Figure 1. In the same way we
computed the ’Bug Timeseries’ comparing differences be-
tween ’Reference 1’ and ’Reference 2’ from one hand and
difference between ’Reference 1’ and ’Test Bug’ runs from



Time series processing for software failure prediction in deep learning training

Table 2. SBPBT prediction performance. Using γ = 20% of the training run at confidence level α = 0.01

Dataset Valid runs Faulty runs Number of samples N Detection rate False Alarm rate

Alexnet SingleNode 12 2 45 100% 1%
Googlenet SingleNode 7 12 240 79% 1%
Googlenet MultiNode I 2 104 48 89% -
Googlenet MultiNode II 2 45 48 88% -

the other. It is easy to see that starting approximately from
10% of the run the Bartlett test correctly predicts whether
a current run is going to fail at confidence level of 5%, i.e.
γ = 0.1 and α = 0.05. It is worth to notice that at first
10% of the run the differences between learning curves are
small, see the left part of the bottom graph in Figure 1, and
Bartlett test is able to make this difficult prediction by ac-
cumulating the differences for the whole beginning of the
learning curves.

3.3. Application to AlexNet and GoogleNet multiple
runs

To assess SBPBT performance in early detection of soft-
ware failures we have examined logs of deep learning runs
using four model implementations: single-node AlexNet
and single-node GoogleNet and two multi-node GoogleNet
with two different mini-batch sizes. These logs are of train-
ing runs performed by software optimization teams.

At each experiment, we tagged the runs as valid or faulty,
according to their final accuracy, number of iterations re-
quired to converge, and behavior during the run. The best
results with similar behavior were labeled as valid, while
the rest as faulty, see examples of valid runs for single-
node implementation of GoogleNet in Figure 2 and faulty
runs in Figure 3. In each case we assessed the prediction
performance of SBPBT in terms of detection rate. In cases
where we had more than two valid runs for the implemen-
tation we assessed the false alarm rate of SBPBT as well.

In each case we chose a pair of valid runs to be the ref-
erence runs, and then we applied SBPBT to the first 20%
of learning curves of remaining runs at a confidence level
of 1%. Detection rate then was measured as a fraction of
correctly classified faulty runs and the false alarm was mea-
sured as a fraction of mistakenly classified remaining valid
runs. In order to gain statistics we repeat the experiments
for all possible pairs of valid runs to be the reference in
each case. The results of the experiments showed that we
are able to detect at least 79% of faulty runs. The false
alarm rate was as expected 1% in the relevant cases.

To examine the possible effect of changing the fraction γ of
the beginning of the learning curve and the impact of confi-
dence level α, we varied both quantities for the example of

Table 3. Comparison of methods to measure differences between
learning curves deviations. AlexNet and GoogleNet single node
implementations

AlexNet GoogleNet

Detection FA Detection FA

Bartlett 100% 1% 79% 1%
Mann-Whitney 70% 1% 95% 33%
T-test 86% 3% 91% 38%

single node GoogleNet implementations, see the resulting
detection rate and false alarm curves in Figure 4.

3.4. Alternative methods to measure differences
between learning curves deviations.

We compared other methods to quantify similarity between
differences of learning curves, instead of comparison of
variances. We compared the Bartlett test with the t-test
(Welch, 1947) that measures the similarity of sample means
assuming normality and the Mann-Whitney test (Mann &
Whitney, 1947), checking the similarity of sample medi-
ans without assuming normality. We applied all three tests
to runs of single node implementations of AlexNet and
GoogleNet, see Table 3. The Bartlett test showed the best
results in terms of detection rate and false alarm rate, that
supporting our choice for the SBPBT method.

4. Conclusion
We introduced a novel simple method for predicting faults
in software implementations of deep learning training algo-
rithms. We based it on comparison of variances of differ-
ences between partial accuracies time series of valid runs
and the current run. The resulting algorithm requires nei-
ther a sophisticated training stage nor a significant amount
of training data. It is easily tuned for a desired false alarm
rate using the p-value of the Bartlett test.

Our assumptions about validity of Bartlett test for this case
were supported empirically. We demonstrated that using
only 20% of the beginning of training run one could detect
most of the of faults in the datasets we had, while maintain-
ing a low false alarm rate of 1%.



Time series processing for software failure prediction in deep learning training

References
Bai, C.G., Hu, Q.P., Xie, M., and Ng, S.H. Software failure

prediction based on a markov bayesian network model.
Journal of Systems and Software, 2005.

Bishop, P. and Pullen, F. D. Probabilistic modeling of soft-
ware failure characteristics. In Proceedings of the IFAC
Workshop SAFECOMP, 1988.

Cai, K.Y., Cai, L., and Wang, W.D. On the neural network
approach in software reliability modeling. Journal of
Systems and Software, 2001.

Domhan, T., Springenberg, J. T., and Hutter, F. Speed-
ing up automatic hyperparameter optimization of deep
neural networks by extrapolation of learning curves. In
IJCAI, 2015.

Goel, A.L. Software reliability models: assumptions, lim-
itations, and applicability. IEEE Transactions on Soft-
ware Engineering, 1985.

Ho, S.L., Xie, M., and Goh, T.N. A study of the connec-
tionist models for software reliability prediction. Com-
puters and Mathematics with Application, 2003.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems
25, 2012.

Li, Lisha, Jamieson, Kevin G., DeSalvo, Giulia, Ros-
tamizadeh, Afshin, and Talwalkar, Ameet. Efficient
hyperparameter optimization and infinitely many armed
bandits. CoRR, abs/1603.06560, 2016. URL http:
//arxiv.org/abs/1603.06560.

Mann, H. B. and Whitney, D. R. ”on a test of whether one
of two random variables is stochastically larger than the
other. Annals of Mathematical Statistics, 1947.

Pfefferman, J.D. and Cemuschi-Frias, B. A non-parametric
non-stationary procedure for failure prediction. IEEE
Transactions on Reliability, 2002.

Reussner, R.H., Schmidt, H.W., and Poernomo, I.H. Relia-
bility prediction for component-based software architec-
tures. Journal of Systems and Software, 2003.

S. Ozekici, R. Soyer. Reliability of software with an op-
erational profile. European Journal of Operational Re-
search, 2003.

Shapiro, Samuel Sanford and Wilk, Martin B. An anal-
ysis of variance test for normality (complete samples).
Biometrika, 52(3-4):591–611, 1965.

Snedecor, George W. and Cochran, William G. Statistical
Methods. Iowa State University Press, 8 edition, 1989.

Szegedy, C., L., Wei, Y., Jia, P., Sermanet, S., Reed,
D., Anguelov, D., Erhan, V., Vanhoucke, and A., Ra-
binovich. Going deeper with convolutions. In CVPR,
2015.

Welch, B. L. The generalization of student’s problem
when several different population variances are involved.
Biometrika, 1947.

Xie, M. Software reliability models: a selected bibliogra-
phy. Journal of Software Testing, Verification and Relia-
bility, 1993.

http://arxiv.org/abs/1603.06560
http://arxiv.org/abs/1603.06560

