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Abstract
Accurate time-series forecasting during high
variance segments (e.g., holidays), is critical for
anomaly detection, optimal resource allocation,
budget planning and other related tasks. At Uber
accurate prediction for completed trips during
special events can lead to a more efficient driver
allocation resulting in a decreased wait time for
the riders.

State of the art methods for handling this task
often rely on a combination of univariate fore-
casting models (e.g., Holt-Winters) and machine
learning methods (e.g., random forest). Such a
system, however, is hard to tune, scale and add
exogenous variables.

Motivated by the recent resurgence of Long Short
Term Memory networks we propose a novel end-
to-end recurrent neural network architecture that
outperforms the current state of the art event fore-
casting methods on Uber data and generalizes
well to a public M3 dataset used for time-series
forecasting competitions.

1. Introduction
Accurate demand time-series forecasting during high vari-
ance segments (e.g., holidays, sporting events), is critical
for anomaly detection, optimal resource allocation, budget
planning and other related tasks. This problem is challeng-
ing because extreme event prediction depends on numer-
ous external factors that can include weather, city popula-
tion growth or marketing changes (e.g., driver incentives)
(Horne & Manzenreiter, 2004).

Classical time-series models, such as those found in the
standard R forecast(Hyndman & Khandakar, 2008) pack-
age are popular methods to provide a univariate base-level
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forecast. To incorporate exogenous variables, a machine
learning approach, often based on a Quantile Random For-
est (Meinshausen, 2006) is employed. This state of the art
approach is effective at accurately modeling special events,
however, it is not flexible and does not scale due to high
retraining frequency.

Classical time-series models usually require manual tun-
ing to set seasonality and other parameters. Furthermore,
while there are time-series models that can incorporate ex-
ogenous variables (Wei, 1994), they suffer from the curse
of dimensionality and require frequent retraining. To more
effectively deal with exogenous variables, a combination of
univariate modeling and a machine learned model to handle
residuals was introduced in (Opitz, 2015). The resulting
two-stage model, however, is hard to tune, requires man-
ual feature extraction and frequent retraining which is pro-
hibitive to millions of time-series.

Relatively recently, time-series modeling based on Long
Short Term Memory (LSTM) (Hochreiter & Schmidhuber,
1997) technique gained popularity due to its end-to-end
modeling, ease of incorporating exogenous variables and
automatic feature extraction abilities (Assaad et al., 2008).
By providing a large amount of data across numerous di-
mensions it was shown that an LSTM approach can model
complex nonlinear feature interactions (Ogunmolu et al.,
2016) which is critical to model complex extreme events.

Our initial LSTM implementation did not show superior
performance relative to the state of the art approach de-
scribed above. In Section 4 we discuss key architecture
changes to our initial LSTM implementation that were re-
quired to achieve good performance at scale for single-
model, heterogeneous time-series forecasting.

This paper makes the following contributions

• We propose a new LSTM-based architecture and train
a single model using heterogeneous time-series.

• Experiments based on proprietary and public data are
presented showing the generalization and scalability
power of the discussed model.

The rest of this paper is structured as follows: Section 2
provides a brief background on classical and neural net-
work based time-series forecasting models. Section 3 de-
scribes the data and more specifically how it was con-
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(a) Creating an input for the model requires two sliding windows
for x and for y

(b) A scaled sample input to our model

Figure 1. Real-world time-series examples.

structed and preprocessed to be used as input to the LSTM
model. Section 4 describes the architectural changes to our
initial LSTM model. Sections 5 and 6 provide results and
subsequent discussion.

2. Background
Extreme event prediction has become a popular topic for
estimating peak electricity demand, traffic jam severity
and surge pricing for ride sharing and other applications
(Friederichs & Thorarinsdottir, 2012). In fact there is a
branch of statistics known as extreme value theory (EVT)
(de Haan & Ferreira, 2006) that deals directly with this
challenge. To address the peak forecasting problem, uni-
variate time-series and machine learning approaches have
been proposed.

While univariate time-series approaches directly model the
temporal domain, they suffer from a frequent retraining re-
quirement (Ye & Keogh, 2009). Machine learning models
are often used in conjunction with the univariate time-series
models resulting in a bulky two-step process for address-
ing the extreme event forecasting problem (Opitz, 2015).
LSTMs, like traditional time-series approaches, can model
temporal domain well while also modeling the nonlinear
feature interactions and residuals (Assaad et al., 2008).

We found that the vanilla LSTM model’s performance is
worse than our baseline. Thus, we propose a new architec-
ture, that leverages an autoencoder for feature extraction,
achieving superior performance compared to our baseline.

3. Data
At Uber we have anonymized access to the rider and driver
data from hundreds of cities. While we have plethora of
data, challenges arise due to the data sparsity found in new
cities and for special events. To circumvent the lack of data
we use additional features including weather information
(e.g., precipitation, wind speed, temperature) and city level
information (e.g., current trips, current users, local holi-
days). An example of a raw dataset is shown in Figure 1

(b).

Creating a training dataset requires a sliding window X (in-
put) and Y (output) of, respectively, desired look-back and
forecast horizon. X,Y are comprised of (batch, time, fea-
tures). See Figure 1 (a) for an example of X and Y .

Neural networks are sensitive to unscaled data (Hochreiter
& Schmidhuber, 1997), therefore we normalize every mini-
batch. Furthermore, we found that de-trending the data, as
opposed to de-seasoning, produces better results.
4. Modeling
In this section we first present the strategy used for uncer-
tainty computation in our model and then in Section 4.2,
we propose a new scalable neural network architecture for
time-series forecasting.

4.1. Uncertainty estimation

The extreme event problem is probabilistic in nature and
robust uncertainty estimation in neural network based time-
series forecasting is therefore critical. A number of ap-
proaches exist for uncertainty estimation ranging from
Bayesian to those based on the bootstrap theory (Gal,
2016). In our work we combine Bootstrap and Bayesian
approaches to produce a simple, robust and tight uncer-
tainty bound with good coverage and provable convergence
properties (Li & Maddala, 1996).

Listing 1. Practical implementation of estimating the uncertainty
bound
v a l s = [ ]
f o r r in range ( 1 0 0 ) :

v a l s . append ( model . e v a l ( input ,
d r o p o u t = random ( 0 , 1 ) ) )

mean = np . mean ( v a l s )
v a r = np . v a r ( v a l s )

The implementation of this approach is extremely simple
and practical (see listing 1). Figures 2 (a) and (b) describe
the uncertainty derivation and the underlying model used.
The uncertainty calculation above is included for complete-
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(a) Model and forecast uncertainty derivation (b) Model uncertainty is estimated via the architecture on the left
while the forecast uncertainty is estimated via the architecture on
the right.

Figure 2. Model and forecast uncertainty

ness of the proposed end-to-end forecasting model and can
be replaced by other uncertainty measures. We leave the
discussion of approximation bound, comparison with other
methods (Kendall & Gal, 2017) and other detailed uncer-
tainty experiments for a longer version of the paper.

4.2. Heterogeneous forecasting with a single model

It is impractical to train a model per time-series for millions
of metrics. Furthermore, training a single vanilla LSTM
does not produce competitive results. Thus, we propose
a novel model architecture that provides a single model
for heterogeneous forecasting. As Figure 3 (b) shows, the
model first primes the network by auto feature extraction,
which is critical to capture complex time-series dynam-
ics during special events at scale. This is contrary to the
standard feature extraction methods where the features are
manually derived, see Figure 3 (a). Features vectors are
then aggregated via an ensemble technique (e.g., averag-
ing or other methods). The final vector is then concate-
nated with the new input and fed to LSTM forecaster for
prediction. Using this approach, we have achieved an aver-
age 14.09% improvement over the multilayer LSTM model
trained over a set of raw inputs.

Note there are different ways to include the extra features
produced by the auto-encoder in Figure 3 (b). The extra
features can be included by extending the input size or by
increasing the depth of LSTM Forecaster in Figure 3 (b)
and thereby removing LSTM auto-encoder. Having a sepa-
rate auto-encoder module, however, produced better results
in our experience. Other details on design choices are left
for the longer version of the paper.

5. Results
This section provides empirical results of the described
model for special events and general time-series forecast-
ing accuracy. Training was conducted using an AWS
GPU instance with Tensorflow1. Unless otherwise noted,

1On production, the learned weights and the Tensorflow graph
were exported into an equivalent target language

SMAPE was used as a forecast error metric defined as
100
n ×Σn

|ŷ−yt|
|ŷt|+|yt|/2. The described production Neural Net-

work Model was trained on thousands of time-series with
thousands of data points each.

5.1. Special Event Forecasting Accuracy

A five year daily history of completed trips across top US
cities in terms of population was used to provide forecasts
across all major US holidays. Figure 4 shows the average
SMAPE with the corresponding uncertainty. The uncer-
tainty is measured as the Coefficient of Variation defined
as cv = σ

µ . We find that one of the hardest holidays to
predict expected Uber trips for is Christmas day which cor-
responds to the greatest error and uncertainty. The longer
version of the paper will contain more detailed error and
uncertainty evaluation per city. The results presented show
a 2%-18% forecast accuracy improvement compared to the
current proprietary method comprising a univariate time-
series and machine learned model.

5.2. General Time-Series Forecasting Accuracy

This section describes the forecasting accuracy of the
trained model on a general time-series. Figure 5 shows
the forecasting performance of the model on new time-
series relative to the current propriety forecasting solution.
Note that we train a single Neural Network compared to
per query training requirement of the proprietary model.
Similar preprocessing described in Section 3 was applied
to each time-series. Figure 6 shows the performance of
the same model on the public M3 benchmark consisting of
≈ 1500 monthly time-series (Makridakis & Hibon, 2000).

Both experiments indicate an exciting opportunity in the
time-series field to have a single generic neural network
model capable of producing high quality forecasts for
heterogeneous time-series relative to specialized classical
time-series models.
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(a) Classical time-series features that are manu-
ally derived (Hyndman et al., 2015).

(b) An auto-encoder can provide a powerful feature extraction used for
priming the Neural Network.

Figure 3. Single model heterogeneous forecast.

Figure 4. Individual holiday performance.

Figure 5. Forecasting errors for production queries relative to the
current proprietary model.

Figure 6. Forecast on a public M3 dataset. Single neural net-
work was trained on Uber data and compared against the M3-
specialized models.

6. Discussion
We have presented an end-to-end neural network architec-
ture for special event forecasting at Uber. We have shown
its performance and scalability on Uber data. Finally we
have demonstrated the model’s general forecasting appli-
cability on Uber data and on the M3 public monthly data.

From our experience there are three criteria for picking a
neural network model for time-series: (a) number of time-
series (b) length of time-series and (c) correlation among
the time-series. If (a), (b) and (c) are high then the neural
network might be the right choice, otherwise classical time-
series approach may work best.

Our future work will be centered around utilizing the uncer-
tainty information for neural net debugging and performing
further research towards a general forecasting model for
heterogeneous time-series forecasting and feature extrac-
tion with similar use-cases as the generic ImageNet model
used for general image feature extraction and classification
(Deng et al., 2009).
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