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Abstract
The timing and temporal order are two character-
istic properties that are frequently omitted in ma-
chine learning approaches, but carry crucial in-
formation. Their consideration is currently lim-
ited to algorithms that are specialized to sequen-
tial data, but it takes a projection into a vector
space to employ the wealth of ML algorithms
that are known and understood. Projections in-
evitably cause a loss of detail. A naı̈ve appli-
cation of bag-of-words, as a prominent example,
utilizes neither order nor timing of events. In this
paper we introduce a projection strategy that re-
tains order and timings. It identifies the latent
space that the generating processes underlying
the time series are spanning.

1. Introduction
Consecutive measurements of processes naturally yield se-
quences of presumably interdependent observations, and
time-series hence have become a very popular represen-
tation of data. Therefore, we see an increase in attempts
to extract patterns and learn algorithms on time-series
data in various domains. These include recommendations
for locations, music, and products of potential interest
(Figueiredo et al., 2016), as well as the detection of social
bots (Viswanath et al., 2014), the forecasting of financial
data (Cao & Tay, 2003), and the mining of electronic health
records (Jensen et al., 2012). All these applications rely on
approaches able to process time-series data.

The current trend is directed at specializing algorithms to
specific types of time-series data (Figueiredo et al., 2016;
Saeedi et al., 2016; Beal et al., 2001; Fine et al., 1998).
This, however, prevents leveraging the benefits of the broad
majority of the known and understood ML algorithms, as
they rely on projections onto fixed dimensions. Addition-
ally, a projection reduces the problem complexity and al-
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lows for the augmentation of context information, like, e.g.,
the age and gender of an observed subject. However, com-
mon projections retain only highly reduced information
of the input data, which unnecessarily limits the potential
quality and performance of the ML algorithms applied to
them (Wallach, 2006). An example is the naı̈ve utiliza-
tion of a bag-of-words approach. It projects the data into
a vector space by simply mapping the frequency of each
observation to the different dimensions. Thus, the infor-
mation retained by the projection hinges on the design of
the feature space the bag-of-words is applied to, i.e. the
representation of observed time-series data.

A common approach for constructing a latent vector space
factoring in sequential information is to utilize n-grams.
N-gram methods represent data by the frequency count of
segments of length n+1 within the time-series data. Span-
ning the latent space by the set of unique n-grams would in-
corporate sequential information into the process, but also
hold obvious drawbacks. For one, such a representation
could potentially result in an explosion of the vector space
dimensionality. Also, the lack of a reasonable abstraction
mechanism potentially increases the information loss in-
duced by the projection.

An adjustment to this approach is to mine patterns from
the n-gram representations of time-series data (Cadez
et al., 2000; Wallach, 2006). This mechanism provides a
level of abstraction to mitigate the mentioned drawbacks.
Figueiredo et al. (2016) propose an enhanced approach that
applies a static segment identification before mining under-
lying patterns. By splitting the data into smaller chunks to
then model their dynamics results in a more accurate rep-
resentation of information contained in time-series data.

In this paper, we bridge the gap between specialized se-
quential algorithms and approaches on fixed dimensional
input data. We claim that applying these algorithms to
identify the axes of a latent feature space for the utiliza-
tion of approaches on fixed dimensional input data can sig-
nificantly improve the performance of these approaches.
The proposed specialized algorithm identifies segments in
categorical-valued time-series data (e.g. click traces), by
approximating underlying latent processes. It automati-
cally splits the time-series into segments of arbitrary length
while modeling the processes. The result is a latent vec-
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tor space, spanned by the detected processes. This projec-
tion yields the benefits of vector space representations and
maintains timing and sequential information. We finally
sketch an application of our projection for social bot detec-
tion, by outlining an evaluation strategy that measures the
impact of the proposed Latent Behavior Space (LBS). Thus,
our contributions in this paper are as follows, we propose

(i) a standardized scheme to project time-series data into
a suitable vector space,

(ii) a segmentation algorithm on categorical-valued time-
series data incorporating timing and temporal order,

(iii) an evaluation strategy to measure the performance of
social bot detection methods.

2. Latent Behavior Space
The core component of the LBS is its approach to identify
the latent dimensions, i.e. the latent processes underlying
time-series data. In the following we describe the segmen-
tation algorithm in more detail before illustrating the LBS.

2.1. Behavior Axes

The segmentation algorithm extends previous work
(Reubold et al., 2017) by integrating a click-duration
model. It takes as input a set ofM time-series {xi}Mi=1 with
elements xij ∈ Y with j ∈ [1, li] and li denoting the length
of xi. Y denotes the set of possible observations. The algo-
rithm consists of a mixture model. In the remainder of this
work we refer to the corresponding mixture components as
super states c ∈ C.

Super states are a representation of repeating patterns
which we learn from our observational data. For example
an online user can be observed by a series of click traces.
Each such state belongs to something the user wants to do,
i.e. a super state. For example checking their mail or reply-
ing to someone on social media. With the context of previ-
ous observations and intentions we can assign the current
event a probability of belonging to a certain super state.
The vector space spanned by the frequency of observed
user intentions, i.e. super states, then allows us to repre-
sent time series’ as vectors. This vector partially preserves
temporal information, yet allows the addition of further di-
mensions, such as the gender or age of an online user, and
the application of common ML techniques. We will now
describe this process formally.

Mixture Model. In order to extract patterns from within
time-series data, the algorithm learns a set of super states
C upper bounded by N . Each super state c is comprised of
a set of internal states representing the observations in Y .

For each observation xij within time-series xi the corre-
sponding super state is denoted by a latent parameter zij .
To not clutter the notation, we omit subscripts i and j when-
ever context allows.

The transitions within- and transitions between super states
are modeled by Multinomial distributions (Mu). Their prior
distributions consist of hierarchically arranged Dirichlet
distributions (Dir). In the following, we describe the tran-
sition model between super states, the transition model
within super states, and conclude with a summary of the
generative process.

Super State Transitions. To model the dependencies
between successive super states we apply a hierarchical
model. The design expresses our prior belief that the condi-
tioned transition probabilities of super states are governed
by their prior probabilities. Therefore, the top layer en-
codes the importance of super states and is represented by
a N -dimensional Dirichlet distribution

β|γ ∼ Dir(γ), (1)

where γ represents the base distribution. The bottom layer
is governed by β and represents the transition probability
between super states conditioned on the active super state
zij−1, p(zij |zij−1 = c),

πc|α, β ∼ Dir(αβ + ρ1c), (2)

where Π , {πc}c∈C , ρ represents a bias towards self-
transitions, 1 the indicator function, and α, γ base distri-
butions. The bias towards self-transitions represents our
prior belief that a successive observation has an increased
probability to be generated from the same super state as
its predecessor. Technically, it acts as a countermeasure to
fast switching between redundant states in the hierarchical
model and, therefore, a possible decrease in prediction per-
formance (Fox et al., 2011).

Super States. Similar to MCs, super states are expressed
by an initial-state distribution θI and a transition distribu-
tion θT . We augment the latter by an additional distribu-
tion and internal end-state E. Internal end-states provide a
measure of the super state duration by leveraging the ob-
servations recorded at the end of segments. Finally, the
additional distribution provides a means to measure the du-
ration between successive observations in a segment. Due
to these additions our model can capture both, timings and
temporal order.

For ease of notation, the initial- and transition distribution
of a super state c are denoted by θc , {θIc , θTc }. The prior
for the initial-state distribution, θI , is modeled by a Dir
representing p(x|θI),

θIc |λIc ∼ Dir(λIc), (3)



The Latent Behavior Space

where λ denotes the base distribution. The transition model
of the internal state θT is expressed similar to the super
state transition model. Here, Gc denotes the importance of
the internal states of super state c, p(x|c),

Gc|ψc ∼ Dir(ψc), (4)

with ψc denoting a base distribution. The transition distri-
bution conditioned on the active super state and previous
internal state, p(xij |zij = c, xij−1 = s) with s ∈ Y , is
then

θTcs|λTc , Gc ∼ Dir
(
λTc , Gc

)
, (5)

where θTc , {θTcs}s∈Sc . With the addition of the internal
end-state Eq. 2 has to be adjusted,

πc|α, β ∼ Dir (αβ + (1− τ) ρ1c) , (6)

with τ denoting an indicator function which is 1 if
xij−1 ∈ {∅, E} and 0 otherwise. This adjustment factors
in the information of a certain end of the current segment
(τ = 1).

For the internal state duration model, we extend the condi-
tioned transition distribution θT by one-dimensional Gaus-
sian mixture models (GMMs). Each Gaussian mixture
component encodes the duration distribution of a state con-
dition on the successive state. Therefore, θT is extended to
also depend on the time spent in the current state. The prior
for the parameters of the mixture model are sampled as

Σcs ∼ IWυ0
(
Λ−10

)
µcs ∼ N (µ0,Σcs/κ0) ,

(7)

where IW is the Inverse-Wishart distributions with
H = {Λ−1, υ0, µ0, κ0} its parameters. N denotes the Nor-
mal distribution.

Generative Model. Finally, we can define the genera-
tive process of our model. An element of a time-series
is generated by one of the super states which is recorded
by the layer of latent parameters z. If xij−1 /∈ {∅, E},
zij = zij−1, otherwise,

zij |π̃zij−1
∼ Mu

(
π̃zij−1

)
(8)

where π̃ is similar to π, but accounting only for the first
element of a segment, factoring out state transitions within
super states. Additionally, we keep track of the first ele-
ment of segments by recording their indexes [i, j] ∈ z̃.

Given the corresponding super state zij and the previous
internal state xij−1 with tij−1, the successive state is sam-
pled by

xij |zij , xij−1, tij−1 ∼ Mu
(
θzijtij−1

[xij−1]
)
, (9)

where θ either corresponds to θI , if x represents the first
element of a segment, xij−1 ∈ {∅, E}, or θT otherwise.

Finally, the state duration tij is sampled by

tij |zij , xij ∼ N (µzijxij ,Σzijxij ). (10)

The approach leverages first-order dependencies of super-
and internal state to identify common patterns within time-
series data. Information on the truncated Gibbs Sampler
and further details can be found in (Reubold et al., 2017).
With the obtained set of behavior patterns, we can now span
the latent behavior space.

2.2. Latent Space

In this section we define a suitable latent space for time-
series data. It accounts for the sequential information in-
herent in the data while allowing to apply standard point
based vector space methods, e.g. SVM, kNN, and other
well known approaches.

Consider the previous example of users surfing on the Web.
Each user is represented by a set of time-series, i.e. click-
traces. Given the corresponding LBS, a user is represented
as a point in this latent space encoding his intentions in-
stead of the exact click sequences.

Let us assume C̃ is the set of relevant/active super states,
|C̃| ≤ N . Then, the vector space V is spanned by these
super states. Each axis represents one of the patterns in C̃.
Thus, a set of time-series X = {xb}b∈B with cardinality
B, e.g. the set of time-series representing a user, can be
expressed as a point v ∈ RD,

v = φz(X), (11)

where φz denotes the projection as a function of the latent
super state assignments z. Depending on the application
we provide two variants of φ, one representing the occur-
rences of super states φO and a second representing time
spent in each of the super states φD,

φOz (X) ,

∑
i,j∈z̃ 1zij

|z̃|
,

φDz (X) ,

∑
1≤i≤B

∑
1≤j≤li 1zij tij∑

1≤i≤B
∑

1≤j≤li tij
.

(12)

Compared to approaches representing the data by naı̈ve
bag-of-words projections, such a representation retains sig-
nificantly more of the original information contained in
time-series data.

3. Application
In the following, we outline a suitable evaluation strategy.
In experiments, we replace the individually devised projec-
tion strategies proposed in papers by the LBS. This setup
allows to measure the impact of the LBS in the context of
applications utilizing behavioral time-series data.
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Social Bot Detection. One possible application of our
proposed algorithm is in the area of social bot detection.
A social bot is an automation software created to control
an Online Social Network (OSN) account (fake or compro-
mised profile) and tries to pose as a human. To improve
their range of influence they can be connected to so called
‘social bot networks’ (Boshmaf et al., 2013). The inten-
tions behind social bots range from identity theft to influ-
encing the society (hype or denounce people, organisations,
political discussions, etc.), to the distribution of malicious
content (e.g. spam, phishing, malware). Overall they are
created for harvesting and/or distributing information.

Existing countermeasures are widespread. From preven-
tion, like fast-response captchas, to social graph based sybil
detection (fake accounts) (Cao et al., 2012; Boshmaf et al.,
2015) to crowd based- and (Beutel et al., 2013; Cao et al.,
2014; Li et al., 2016) behavior based detection methods
(Wang et al., 2013; Viswanath et al., 2014). The latter
try to differentiate between sybils, cyborgs (compromised
accounts) and humans by leveraging behavioral observa-
tions. According to the intention, sophistication and struc-
ture (cyborg or sybil), social bots exhibit different behavior
patterns distinct to real users, like, e.g., frequent liking or
posting of content.

Wang et al. (2013) developed a semi-supervised detection
algorithm based on a clickstream similarity graph for sybil
detection. They map clickstreams (click-traces and tim-
ings) to a similarity graph, where clickstreams (vertices)
are connected using weighted edges that capture pairwise
similarity. Finally they apply graph partitioning to identify
clusters that represent specific click patterns.

Viswanath et al. (2014) proposed an unsupervised anomaly
detection technique. They project the user behavior traces
(timings, temporal order, and combined features) using the
bag-of-words approach. Using the transformed data they
extract a latent vector space identified by Principal Com-
ponent Analysis (PCA).

Hypothesis. In order to evaluate the impact of the LBS
we propose a modification to their methodologies.

First, instead of constructing a graph with user as vertices
and distances between them as edge weights (Wang et al.,
2013), we suggest to use the LBS. Here, users are repre-
sented by a weighted set of shown intentions. Therefore,
the euclidean distance represents a reasonable similarity
measure. Our hypothesis is that the level of abstraction
gained by this projection yields more reasonable clusters
of similar user behavior.

Second, instead of using a naı̈ve bag-of-words projection,
as proposed by Viswanath et al. (2014), we suggest to use
the LBS. Our hypothesis is that this procedure retains cru-

cial sequential information which otherwise would be lost.

Data Set. Evaluating social bot detection algorithms pose
a challenging task. Approaches making use of labeled
datasets are biased, because only known attack behaviors
are labeled as such. In addition to real world dataset, we
suggest to enrich the data. By creating theoretically at-
tacker models, one can build generating processes to emu-
late such attacks. These attacker models depend on param-
eters like attack intention, bot complexity or the structure of
the targeted OSN, in addtion to a benefit-cost analysis. For
the design of these models we include related work knowl-
edge (Boshmaf et al., 2013; Thomas & Nicol, 2010).

An example of such a model could be a bot that co-acts
on a real client, like the koobface botnet (Thomas & Nicol,
2010). Such a bot could have the ability to analyze and
adapt the specific user behavior. While less beneficial for
attack intentions like spam or harvesting information (be-
cause of the increased cost and decreased influence factor)
these bots can potentially be of high value for e.g. influenc-
ing political discussions or hyping different products over
a longer period of time.

Enriching real-world data sets with additional artificial bot
traces potentially yield a better understanding of the reach
and performance of proposed detection approaches.

4. Summmary and Outlook
In this paper, we proposed an approach to construct la-
tent vector spaces for time-series data. Therefore, we de-
signed a model to automatically split time-series data into
segments that represent identified processes. It allowed
to integrate temporal information into the modeling phase
while providing a natural abstraction mechanism. Our ap-
proach presents a trade-off between modeling detail and
data abstraction. Different trade-off strategies result in dif-
ferent modeling approaches. While our approach presents
a solid base algorithm (timing and temporal order), further
research could lead to a family of time-series projection
strategies. In our opinion, such a development will result
in a significant advancement in the field.

Finally, we proposed an evaluation strategy that allows to
decrease the bias in social bot detection evaluations. An
enriched data set allows for evaluating the detection per-
formance on real-world data as well as testing against un-
known attack strategies.
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