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Abstract
Unsupervised structure learning in high-
dimensional time series data has attracted a
lot of research interests. Recent advances in
generative sequential modeling have suggested
to combine recurrent neural networks with state
space models (e.g., Hidden Markov Models).
In order to explore the advantages of such
combination, we propose a structured and
stochastic sequential neural network, which
models both the long-term dependencies via
recurrent neural networks and the uncertainty
in the segmentation and labels via discrete
random variables. For accurate and efficient
inference, we present a bi-directional inference
network by reparamterizing the categorical seg-
mentation and labels with the recent proposed
Gumbel-Softmax approximation, and resort to
the Stochastic Gradient Variational Bayes. We
evaluate the proposed model in a number of
tasks such as speech modeling and automatic
segmetation and labeling, and the experimental
results have demonstrated that our proposed
model can achieve significant improvement over
the state-of-the-art methods.

1. Introduction
Unsupervised structure learning in high-dimensional se-
quential data is an important research problem in a number
of applications, such as machine translation, speech recog-
nition, computational biology, and computational physiol-
ogy (Sutskever et al., 2014; Dai et al., 2017).

Models for sequential data analysis such as recurrent neu-
ral networks (RNNs)(Rumelhart et al., 1988) and hidden
Markov models (HMMs)(Rabiner, 1989) are widely used.
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Recent literature have investigated approaches of combin-
ing probabilistic generative models and recurrent neural
networks for the sake of their complementary strengths in
nonlinear representation learning and effective estimation
of parameters (Johnson et al., 2016; Dai et al., 2017; Frac-
caro et al., 2016; Jang et al., 2017). However, most of ex-
isting models are designed primarily for continuous situa-
tions and do not extend to discrete latent variables (John-
son et al., 2016; Krishnan et al., 2015; Archer et al., 2015;
Krishnan et al., 2016), probably due to the difficulty of in-
ference for discrete variables in neural networks.

To address such issues, we propose the Stochastic Sequen-
tial Neural Network (SSNN) consisting of a generative net-
work and an inference network. The generative network is
composed with a continuous sequence (i.e., hidden states
in RNN) as well as two discrete sequences (i.e., segmen-
tation variables and labels in SSM). The inference network
can take the advantages of bi-directional temporal informa-
tion by augmented variables, and efficiently approximate
the categorical variables in segmentation and segment la-
bels via the recently proposed Gumbel-Softmax approxi-
mation (Jang et al., 2017; Maddison et al., 2016). Thus,
SSNN can model the complex and long-range dependen-
cies in sequential data, but also maintain the structure learn-
ing ability of SSMs with efficient inference.

we compare our proposed model with the state-of-the-art
neural models in a number of tasks. Experimental results
in terms of both model fitting and labeling of learned seg-
ments have demonstrated the promising performance of the
proposed model.

2. Model
In this section, we present our stochastic sequential neural
network model. We begin with the model notations, and
then we discuss the generative part of the model.

2.1. Notations

Consider a sequence of temporal sequences of vectors
x1:T = [x1,x2, ...,xT ] that depend on the deterministic
variables h1:T = [h1,h2, ...,hT ] in RNN, hidden state
variables z1:T = [z1, z2, ..., zT ] and time duration vari-
ables d1:T = [d1, d2, ..., dT ] in HSMM. Here xt ∈ Rm,
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ht ∈ Rh, zt ∈ {1, 2, ...,K} and dt ∈ {1, 2, ..,M}. We set
s1:L = [s1, s2, .., sL] as the beginning of the segments. A
difference from HMM is that for segment i, the latent state
zsi:si+dsi−1 is fixed in HMM. An illustration is given in
Figure 1.
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Figure 1. A visualization of the observed sequence x1:T with
the corresponding time segments, hidden states z1:T and duration
variables d1:T .

For the simplicity of explanation, we present our model on
a single sequence. It is straightforward to apply the model
multiple sequences.

2.2. Generative Model

In order to model the long-range temporal dependencies
and the uncertainty in segmentation and labeling of time
series, we aim to take advantages from RNN and HSMM,
and learn categorical information and representation infor-
mation from the observed data recurrently. As illustrated
in Figure 2(a), we design an Stochastic Sequential Neural
Network (SSNN) with one sequence of continuous latent
variables modeling the recurrent hidden states, and two se-
quences of discrete variables denoting the segment duration
and labels, respectively. The joint probability can be fac-
torized as:
pθ(x1:T , z1:T , d1:T ) = pθ(x1:T |z1:T , d1:T )pθ(z1)pθ(d1|z1)
T∏
t=2

pθ(zt|zt−1, dt−1)pθ(dt|zt, dt−1). (1)

To learn more interpretative latent labels, we follow the de-
sign in HSMM to set zt and dt as categorical random vari-
ables, The distribution of zt and dt is

pθ(zt|zt−1, dt−1) =

{
I(zt = zt−1) if dt−1 > 1

pθ(zt|zt−1) otherwise
,

pθ(dt|zt, dt−1) =

{
I(dt = dt−1 − 1) if dt−1 > 1

pθ(dt|zt) otherwise
,

where I(x) is the indicator function (whose value equals
1 if x is True, and otherwise 0). The transition probabil-
ity pθ(zt|zt−1) and pθ(dt|zt), in implementation, can be
achieved by learning a transition matrix.

The joint emission probability pθ(x1:T |z1:T , d1:T ) can be
further factorized into multiple segments. Specifically, for

the i-th segment xsi:si+dsi−1 starting from si, the corre-
sponding generative distribution is

pθ(xsi:si+dsi−1|zsi , dsi) =
si+dsi−1∏
t=si

pθ(xt|xsi:t−1, zsi)

=

si+dsi−1∏
t=si

pθ(xt|ht, zsi), (2)

where ht is the latent deterministic variable in RNN. It
can better model the complex dependency among seg-
ments, and capture past information of the observed se-
quence xt−1 as well as the previous state ht−1. We de-
sign ht = σ(W

(zsi )
x xt−1 +W

(zsi )

h ht−1 + b
(zsi )

h ), where
σ() is a tanh activation function, Wx ∈ RK×h×m and
Wh ∈ RK×h×h are weight parameter, and bh ∈ RK×h

is the bias term. W
(zsi )
x ∈ Rh×m is the zsi -th slice of Wx,

and it is similar for W
(zsi )

h and b
(zsi )

h .

Finally, the distribution of xt given ht and zsi is designed
by a Normal distribution,

pθ(xt|ht, zsi) = N (x;µ,σ2), (3)

where the mean satisfies µ = W
(zsi )
µ ht + b

(zsi )
µ , and the

covariance is a diagonal matrix with its log diagonal ele-
ments logσ2 = W

(zsi )
σ ht+b

(zsi )
σ . We use θ to include all

the parameters in the generative model.
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Figure 2. The generative network and inference network of
SSNN.

3. Structured Inference
The marginal log-likelihood log pθ(x) is generally in-
tractable and we are interested in maximizing its evidence
lower bound (ELBO) as follows,

L(x1:T ; θ, φ) = Eqφ(z1:T ,d1:T |x1:T )[log
pθ(1:T , z1:T , d1:T )

qφ(z1:T , d1:T |1:T )
],

(4)

where qφ(·) denotes the approximate posterior distribution,
and θ and φ denote parameters for their corresponding dis-
tributions, repsectively.

We devise a bi-directional inference scheme and resort to
the Stochastic Gradient Variational Bayes (SGVB) method
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since it could efficiently learn the approximation with rela-
tively low variances (Kingma & Welling, 2013).

3.1. Bi-directional Inference

In order to find a more informative approximation to
the posterior, we augment both random variables dt, zt
with bi-directional information in the inference network.
Such attempts have been explored in previous work (Kr-
ishnan et al., 2016; Khan & Lin, 2017; Krishnan et al.,
2015), however they mainly focus on continuous vari-
ables. We first learn a bi-directional deterministic vari-
able ĥt = BiRNN(x1:t, xt:T ) , where BiRNN is a bi-
directional RNN with each unit implemented as an LSTM
(Hochreiter & Schmidhuber, 1997). Similar to (Fraccaro
et al., 2016), we further use a backward recurrent func-
tion It = gφI (It+1, [xt, ĥt]) to explicitly capture forward
and backward information in the sequence via ĥt, where
[xt, ĥt] is the concatenation of xt and ĥt.

The posterior approximation can be factorized as
qφ(z1:T , d1:T |x1:T ) = qφ(z1|I1)qφ(d1|z1, I1)
T∏
t=2

qφ(zt|dt−1, It)qφ(dt|dt−1, zt, It), (5)

and the graphical model for the inference network is shown
in Figure.2(b). We use φ to denotes all parameters in infer-
ence network. Furthermore, we design the posterior distri-
butions of dt and zt to be categorical distributions, i.e.:

q(zt|dt−1, It;φ) = Cat(softmax(WT
z It)), (6)

q(dt|dt−1, zt, It;φ) = Cat(softmax(WT
d It)). (7)

The parameters of the distributions depend on both the for-
ward sequences (i.e., ht:T and xt:T ) and the backward se-
quences (i.e., h1:t−1 and x1:t−1), leading to a more infor-
mative approximation. Since the reparamterization of dis-
crete variables is a challenging task, we turn to the recently
proposed Gumbel-Softmax reparameterization trick (Jang
et al., 2017; Maddison et al., 2016), as shown in the fol-
lowing section.

3.2. Gumbel-Softmax Reparameterization

The Gumbel-Softmax reparameterization proposes an al-
ternative way to approximately reparameterize the discrete
random variable and allow the back propagation of the
parameter gradients. To use the Gumbel-Softmax trick,
we first map the discrete pair (zt, dt) to a N -dimensional
vector γ(t), and γ(t) ∼ Cat(π(t)), where π(t) is a N -
dimensional vector on the simplex and N = K ×D. Then
we use y(t) ∈ RN to represent the Gumbel-Softmax dis-
tributed variable:

yi(t) =
exp((log(πi(t)) + gi)/τ)∑k
j=1 exp((log(πj(t)) + gj)/τ)

(8)

where gi ∼ Gumbel(0, 1), i = 1, 2, ...N , and τ is the tem-
perature that will be elaborated in the experiment. We set
y(t) ∼ Concrete(π(t), τ) according to (Maddison et al.,
2016).

Now we can sample y(t) from the Gumbel-Softmax
posterior in replacement of the categorically distributed
γ(t). We denote F (z, d) = log pθ(1:T , z1:T , d1:T ) −
log q(z1:T , d1:T |1:T ), and furthermore, F̃ (y, g) is the corre-
sponding approximation term of F (z, d) after the Gumbel-
Softmax trick. Finally, we summarize the inference algo-
rithm in Algorithm 1.
Algorithm 1 Strucutured Inference Algorithm for SSNN

inputs: Observed sequences {x(n)}Nn=1

Randomly initialized φ(0) and θ(0);
Inference Model: qφ(z1:T , d1:T |x1:T );
Generative Model: pθ(x1:T , z1:T , d1:T );

outputs:Model parameters θ and φ;
for i = 1 to Iter do

1. Sample sequences {x(n)}Mn=1 uniformly from
dataset with a mini-batch size B.
2. Estimate and sample forward parameters using
Eq.(1).
3. Evaluate the ELBO using Eq. (4).
4. Estimate the Monte Carlo approximation to∇θL.
5. Estimate the SGVB approximation to ∇φL with
the Gumbel-Softmax approximation.
6. Update θ(i), φ(i) using the ADAM.

end for

4. Experiment
In this section, we evaluate SSNN on several datasets
across multiple scenarios. We first evaluate the per-
formance of finding complex structures on two speech
datasets (TIMIT & Blizard), and then test SSNN with
learning segmentations and latent labels on Human activity
(Reyes-Ortiz et al., 2016) dataset, Drosophila dataset (Kain
et al., 2013) and PhysioNet (Springer et al., 2016) Chal-
lenge dataset. Finally, we provide another test on the multi-
object recognition problem using multi-MNISTdataset.

Due to the limited space, more experiments on synthetic
datasets and more details about parameter setting and
datasets description can be found in the Appendix 6.

4.1. Speech Modeling

We also test SSNN on the modeling of speech data, i.e.,
Blizzard and TIMIT datasets. Blizzard records the English
speech with 300 hours by a female speaker. TIMIT is a
dataset with 6300 English sentences read by 630 speakers.

we report the average log-likelihood for half-second se-
quences on Blizzard, and report the average log-likelihood
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MODELS Blizzard TIMIT
VRNN-GMM ≥ 9107 ≥ 28982
VRNN-GAUSS ≥ 9223 ≥ 28805
VRNN-I-GAUSS ≥ 9223 ≥28805
SRNN(smooth+Resq) ≥ 11991 ≥ 60550
SRNN(smooth) ≥10991 ≥59269
SRNN(filt) ≥10846 50524
RNN-GMM 7413 26643
RNN-GAUSS 3539 -1900
Our Method(SSNN) ≥ 13123 ≥ 64017

Table 1. Average log-likelihood per sequence on the test sets.
The higher the better.

.5

Figure 3. Visualization and comparison of SSNN and DRAW on
multi-object recognition problems.

per sequence for the test set sequences on TIMIT. For the
raw audio datasets, we use a fully factorized Gaussian out-
put distribution. We compare our method with a number of
methods, which is introduced in Appendix 6.5

From Table 4.2 it can be observed that on both datasets
SSNN outperforms the state of the art methods by a large
margin, indicating its superior ability in speech modeling.

4.2. Segmentation and Labeling of Time Series

To show the advantages of SSNN when learning the seg-
mentation and latent labels from sequences, we take ex-
periments on Human activity dataset (Human) (Reyes-
Ortiz et al., 2016), Drosophila dataset (Dros) (Kain et al.,
2013) and PhysioNet (Springer et al., 2016) Challenge
dataset (Physio). Human activity dataset consists of time
series signals from sensors mounted on the volunteers.
Drosophila dataset records the time series movement of
fruit flies’ legs. Both Human Activity and Drosophila
dataset are used for segmentation prediction. PhysioNet
Challenge dataset (Springer et al., 2016) records observa-
tion labeled with one of the four hidden states, namely Di-
astole, S1, Systole and S2, and it is used for latent label
prediction.

Specifically, we compare the predicted segments or latent
labels with the ground truth, and report the mean and the
standard deviation of the error rate for all methods. Details

MODELS DROS HUMAN PHYSIO
HSMM 47.3 ± 0.3% 41.6 ± 8.6 % 45.0 ± 1.9 %
SUBHSMM 39.7 ± 2.2% 22.2 ± 4.5% 43.0 ± 2.4 %
HDP-HSMM 43.6 ± 1.6% 35.5 ± 6.2% 42.6 ± 1.5 %
CRF-AE 57.6 ± 0.2% 49.3 ± 10.6% 45.7 ± 0.7 %
RHSMM-DP 36.2 ± 1.4% 16.4 ± 5.1% 31.2 ± 4.1 %
SSNN 34.8 ± 3.7% 14.7 ± 5.5% 29.3 ± 5.3 %

Table 2. Mean and standard deviation of the error rate.

of hyper-parameters and setting are shown in Appendix 6.2.

We report the comparison with subHSMM (Johnson &
Willsky, 2014), HDP-HSMM (Johnson & Willsky, 2013),
CRF-AE (Ammar et al., 2014) and rHSMM-dp (Dai et al.,
2017). Experimental results are shown in Table 2. It can
be observed that SSNN achieves the lowest mean error
rate, indicating the effectiveness of combining RNN with
HSMM to collectively learn the segmentation and the la-
tent states.

4.3. Sequential Multi-objects Recognition

To further verify the ability of modeling complex spatial
dependency, we test SSNN on the multiple objects recog-
nition problem. we construct a small image dataset includ-
ing 3000 images, named as multi-MNIST. Each image con-
sists of three non-overlapping random MNIST digits with
an equal probability.

Our goal is to sequentially recognize each digit in the im-
age. In our experiment, we train our model with 2500 im-
ages and test on the rest 500 images. We compare the pro-
posed model to DRAW (Gregor et al., 2015) and visualize
our learned latent representations in Figure 3. It can be ob-
served that our model identifies the number and locations
of digits correctly, while DRAW sometimes misses modes
of data. The result shows that our method can accurately
capture not only the number of objects but also locations.

5. Conclusion
In order to learn the structures (e.g., the segmentation and
labeling) of high-dimensional time series in a unsupervised
way, we have proposed a Stochastic sequential neural net-
work(SSNN) with structured inference. For better model
interpretation, we further restrict the label and segmenta-
tion duration to be two sequences of discrete variables, re-
spectively. In order to exploit forward and backward tem-
poral information, we carefully design structured inference,
and to overcome the difficulties of inferring discrete latent
variables in deep neural networks, we resort to the recently
proposed Gumbel-Softmax functions. The advantages of
the proposed inference method have been demonstrated in
both synthetic and real-world sequential benchmarks.
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6. Appendix
6.1. Speech Modeling

Speech modeling on these two datasets has shown to be
challenging since there’s no good representation of the la-
tent states (Chung et al., 2015; Fabius & van Amersfoort,
2014; Gu et al., 2015; Gan et al., 2015; Sutskever et al.,
2014). The data preprocessing and the performance mea-
sures are identical to those reported in (Chung et al., 2015;
Fraccaro et al., 2016).

We compare our method with the following methods, For
RNN+VRNNs (Chung et al., 2015), VRNN is tested with
two different output distributions: a Gaussian distribu-
tion (VRNN-GAUSS), and a Gaussian Mixture Model
(VRNN-GMM). We also compare to VRNN-I in which
the latent variables in VRNN are constrained to be inde-
pendent across time steps. For SRNN (Fraccaro et al.,
2016), we compare with the smoothing and filtering perfor-
mance denoted as SRRR (smooth), SRNN (filt) and SRNN
(smooth+Resq) respectively. The results of VRNN-GMM,
VRNN-Gauss and VRNN-I-Gauss are taken from (Chung
et al., 2015), and those of SRNN (smooth+Resq), SRNN
(smooth) and SRNN (filt) are taken from (Fraccaro et al.,
2016).

6.2. Drosophila and Human activity

We first introduce the dataset in more detail. For Human ac-
tivity, it is collected by (Reyes-Ortiz et al., 2016) that con-
sists of signals collected from waist-mounted smartphones
with accelerometers and gyroscopes. Each volunteer is
asked to perform 12 activities. There are 61 recorded se-
quences, and the maximum time steps T ≈ 3, 000. Each
xt is a 6 dimensional vector. For Drosophila (Kain et al.,
2013), at each time step t, xt is a 45-dimension vector,
which consists of the raw and some higher order features.
the maximum time steps T ≈ 10, 000. In the experiment,
we fix the τ at small value 0.0001.

For the HDP-HSMM(Johnson & Willsky, 2014) and
subHSMM(Johnson & Willsky, 2013), the observed se-
quences x1:T are generated by standard multivariate Gaus-
sian distributions. The duration variable dt is from the
Poisson distribution. We need to tune the concentration pa-
rameters α and γ. As for the hyper parameters, they can be
learned automatically. For subHSMM, we tune the trunca-
tion threshold of the infinite HMM in the second level. For
CRF-AE, we extend the original model to learn continuous
data. We use mixture of Gaussian for the emission prob-
ability. For R-HSMM-dp, it is a version of R-HSMM(Dai
et al., 2017) with the exact MAP estimation via dynamic
programming.

6.3. Physionet

PhysioNet Challenge dataset (Springer et al., 2016) records
observation labeled with one of the four hidden states, i.e.,
Diastole, S1, Systole and S2. The experiment aims to exam
SSNN on learning and predicting the labels. In the experi-
ment, we find that annealing of temperature τ is important,
we start from τ = 0.15 and anneal it gradually to 0.0001.

6.4. TIMIT and Blizzard

For the TIMIT and Blizzard dataset (Prahallad et al., 2013),
the sampling frequency is 16KHz and the raw audio signal
is normalized using the global mean and standard deviation
of the training set. We split the raw audio signals in the
chunks of 2 seconds. The waveforms are divided into non-
overlapping vectors with size 200. For Blizzard we split
the data using 90% for training, 5% for validation and 5%
for testing. For testing we report the average log-likelihood
for each sequence with segment length 0.5s. For TIMIT we
use the predefined test set for testing and split the rest of the
data into 95% for training and 5% for validation.

During training we use backpropagation through time
(BPTT) for 1 second. For the first second we initialize hid-
den units with zeros and for the subsequent 3 chunks we
use the previous hidden states as initialization. In the ex-
periment, the temperature τ starts from a large value 0.1
and gradually anneals to 0.01.

6.5. Multi-MNIST

We first describe the generation of this dataset. We begin
with a 50×50 dataset of multi-MNIST digits. Each image
contains three non-overlapping random MNIST digits with
equal probability. The desired goal is to train a network that
produces sensible explanations for each of the images. First
we fix the maximum time steps T = 3 and feed the same
image as input sequentially to SSNN. We interpret the la-
tent variable dt as intensity and zt as the location variable in
the training images. Then We train SSNN with random ini-
tialized parameters on 60,000 multi-MNIST images from
scratch, i.e., without a curriculum or any form of supervi-
sion. All experiments were performed with a batch size of
64. The learning rate of model is 1 × 10−5 and baselines
were trained using a higher learning rate 1 × 10−3. The
LSTMs in the inference network had 256 cell units.

6.6. Synthetic Experiment

To validate that our method is able to model high dimen-
sional data with complex dependency, we simulated a com-
plex dynamic torque-controlled pendulum governed by a
differential equation to generate non-Markovian observa-
tions from a dynamical system: ml2 d

2φ(t)
dt2 = −µdφ(t)dt +

mgl sinφ(t) + u(t). For fair comparison with (Karl et al.,
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2016), For fair comparison with (Karl et al., 2016), we set
m = l = 1, µ = 0.5, and g = 9.81. We convert the
generated ground-truth angles to image observations. The
system can be fully described by angle and angular veloc-
ity.

We compare our method with Deep Variational Bayes
Filter(DVBF-LL) (Karl et al., 2016) and Deep Kalman
Filters(DKF) (Krishnan et al., 2015). The ordinary least
square regression results are shown in Table 3. Our method
is clearly better than DVBF-LL and DKF in predicting
sinφ, cosφ and dφ

dt . SSNN achieves a higher goodness-
of-fit than other methods.

DVBF-LL DKF SSNN
log ll R2 log ll R2 log ll R2

sinφ 3990.8 0.961 1737.6 0.929 4424.6 0.975
cosφ 7231.1 0.982 6614.2 0.979 8125.3 0.997
dφ
dt

-11139 0.916 -20289 0.035 -9620 0.941

Table 3. The results measured on the log-likelihood(denoted as
log ll) and the goodness-of-fit (denoted by R2) given by three
methods on the prediction of all latent states on respective de-
pendent variables in pendulum dynamics. For both measures, the
higher the better.


