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Abstract
Recent advances in sequential data modeling
have suggested a class of models that combine
recurrent neural networks with state space mod-
els. Despite the success, the huge model com-
plexity has brought an important challenge to
the corresponding inference methods. This pa-
per introduces an structured inference algorithm
to efficiently learn such models, including vari-
ants where the emission and transition distribu-
tions are modelled by deep neural networks. Our
learning algorithm leverages a structured varia-
tional approximation parameterized by stochastic
models and recurrent neural networks to approx-
imate the posterior distribution. Experimental re-
sults on synthetic datasets have demonstrated the
promising performance of the proposed method.
In addition, our method has significantly outper-
formed the current state-of-the-art methods on
music and speech modeling tasks.

1. Introduction
Sequential data learning is a critical yet challenging re-
search topic in machine learning, which is widely observed
in many tasks such as filtering, human activity recognition
and segmentation. Considerable research has been devoted
to developing probabilistic models for high-dimensional
time-series data, such as video and music sequences, mo-
tion capture data and text streams. Among them, State
Space Models (SSMs) (Roweis & Ghahramani, 1999), such
as Hidden Markov Models (HMMs) (Rabiner & Juang,
1986) and Linear Dynamical Systems (LDS) (Kalman,
1963; Krishnan et al., 2015), have been widely studied, but
they may be limited in the type of dynamical structures they
can model. Recently, some work consider combining neu-
ral networks and graphical model (Johnson et al., 2016) or
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using recurrent neural networks (RNNs) for modelling de-
pendency especially recurrence in sequential data. (Chung
et al., 2015; Fabius & van Amersfoort, 2014; Gu et al.,
2015a; Gan et al., 2015; Sutskever et al., 2014). Most re-
cently, there is a trend of using stochastic neural network in
conjunction with neural network or state space model for
the purpose of increasing modelling capacity (Gu et al.,
2015b; Fraccaro et al., 2016; Bayer & Osendorfer, 2014a).
Specifically, (Fraccaro et al., 2016) introduced a broad
class of stochastic sequential neural network (SRNN).

To efficiently and accurately exploit the temporal depen-
dency structure, we introduce an efficient structured in-
ference for stochastic sequential neural network (SRNN),
which computes each posterior factor’s nonlinear and long-
term dependence through a bi-directional inference for
SRNN. This can utilize both the past and future informa-
tion captured by the RNN.

We apply the structured inference for SRNN to both syn-
thetic and real-world datesets on music and speech mod-
eling tasks. Experimental results have demonstrated the
structured inference significantly outperforms the state-of-
the-art methods.

2. Generative Model
Fristly, throughout this paper, we use zt, zlt and zrt to denote
hidden variables of state space models, ht, hlt and hrt to de-
note hidden variables of recurrent neural network. at de-
notes the input, and xt denotes the observation at the time
t.
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Figure 1. Illustration of the generative model for a single se-
quence.

As with the SRNN, the generative model interlocks the
SSM with the RNN, as illustrated in Figure 1. The joint
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probability of an observable sequence and its latent states
as follows:

pθ(x1:T , z1:T , h1:T |a1:T , z0, h0)

=pθx(x1:T |z1:T , h1:T )pθz (z1:T |h1:T , z0)pθh(h1:T |a1:T , h0)

=

T∏
t=1

pθx(xt|zt, ht)pθz (zt|zt−1, ht)pθh(ht|ht−1, at),

(1)

where θx, θz , and θh denote the parameters related to the
corresponding conditional distributions. And we set θ =
{θx, θz, θh}. For a single sequence setting, the log marginal
likelihood is

L(θ) = log pθ(x1:T |a1:T , z0, h0). (2)

L(θ) could be calculated by averaging out the latent states
z1:T and h1:T from Equation (1). When there are N se-
quences in a dynamic system, the whole log marginal like-
lihood can be written as the summation of each single se-
quence.

Following Figure 1, the states h1:T are determined by h0
and a1:T through the recursion ht = fθh(ht−1, at). fθh is
a GRU network with parameters θh.

We assume pθz (zi|zt−1, ht) to be a Gaussian distri-
bution with a diagonal covariance structure, namely
pθz (zt|zt−1, ht) = N (zt;µt, vt). The parameters of the
distribution are parameterized by neural networks depend-
ing on zt−1 and ht, as follows,

µt = f1(zt−1, ht), log vt = f2(zt−1, ht), (3)

where fi(·) denotes a neural network, and i = 1, 2.

Figure 2. Illustration on the inference network.

3. Structured Inference Network
The posterior is intractable to compute since z1:T can-
not be analytically integrated out. Therefore, we need to
design an efficient inference network to approximate the
true posterior, namely qφ. Instead of maximizing L(θ) in
Equation (2), we maximize a variational variational evi-
dence lower bound (ELBO). For each sequence, we have
F(θ, φ) ≤ L(θ), and F(θ, φ) is defined as

F(θ, φ) =

∫ ∫
[qφ(z1:T , h1:T |x1:T ,Ω)

log
pθ(x1:T , z1:T , h1:T |Ω)

qφ(z1:T , h1:T |x1:T ,Ω)
]dh1:T dz1:T , (4)

where Ω = {a1:T , z0, h0} is a notation shorthand. When
there are multiple sequences in the dynamical system, the
ELBO is the sum of the lower bound of each sequence.

Now, we detail the efficient inference network as illustrated
in Figure 2. Here the calculation of zt is not only dependent
on the previous state zt−1, but also dependent on the com-
prehensive information from history and future, denoted by
zlt and zrt , respectively. We assume zt ∼ N (zt; µ̂t, σ̂

2
t ), and

µ̂t and σ̂2
t are parameterized by neural networks as shown

below,

µ̂t = Wµẑt + bµ,

σ̂2
t = softplus(Wσ2 ẑt + bσ2), (5)

ẑt =
1

3
tanh(Wzt−1 + b) + zlt + zrt ,

where softplus(x) = ln(1 + ex), t ∈ [1, T ]. And we set
φz = {Wµ, bµ,Wσ2 , bσ2 ,W, b}.

We assume that zlt and zrt are respectively subject to the
Gaussian distribution. According to the Figure 2, we can
get the following formula:

qφ
zl

(zlt|h1:T , x1:T , zl0) = qφ
zl

(zlt|zlt−1, hlt),
qφzr (zrt |h1:T , x1:T , zr0) = qφzr (zrt |zrt+1, h

r
t ),

where hlt = gφ
hl

(hlt+1, [ht, xt]), and hrt =
gφhr (hrt−1, [ht, xt]).

With the knowledge of zlt−1, the posterior distribution of
zlt does not depend on the past outputs and determinis-
tic states, but only on the present ones. The advantage
of this function is to allow the information propagation
from future to the current moment. We model each pos-
terior factor’s nonlinear long-term dependence on hi and
xt:T through backward-recurrent function gφ

hl
and gφhr ,

and the inference network can be parameterized by φ =
{φz, φhl , φhr , φzl , φzr} and θh.

We define qφ
zl

(zlt|zlt−1, hlt) = N (zlt;µ
l
t, v

l
t) and

qφzr (zrt |zrt+1, h
r
t ) = N (zrt ;µrt , v

r
t ), whose mean and the
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log-variance are parameterized by neural network, as fol-
lows,

µlt = f3(zt−1, h
l
t), log vlt = f4(zt−1, h

l
t),

µrt = f̃3(zt+1, h
r
t ), log vrt = f̃4(zt+1, h

r
t ),

(6)

where fi(·), f̃i(·) denote a neural network respectively, and
i = 3, 4.

Following Figure 2, the approximated posterior could be
decomposed as

qφ(z1:T , h1:T |x1:T ,Ω)

=qφ(z1:T |h1:T , x1:T , z0)q(h1:T |x1:T , a1:T , h0)

=qφ(z1:T |h1:T , x1:T , z0)q(h1:T |a1:T , h0). (7)

The first factor of Equation (7) could be decomposed as

qφ(z1:T |h1:T , x1:T , z0) =
∏
t

qφ(zt|zt−1, h1:T , x1:T ),

(8)

which is dependent on qφ
zl

(zl1:T |h1:T , x1:T , zl0) and
qφzr (zr1:T |h1:T , x1:T , zr0).

Because h1:T in the second factor of Equation (7) depend
on a1:T and h0, the second factor of Equation (7) is equal to
pθh(h1:T |a1:T , h0) in the generative model. Thus we have
the evidence lower bound as follows:

F(θ, φ) =Eqφ [log pθ(x1:T |z1:T , h1:T )]

−KL(qφ(z1:T |h1:T , x1:T , z0)||pθ(z1:T |h1:T , z0)).

Finally, according to the Equation (8), the ELBO can be
separated as a sum over time steps,

F(θ, φ) =
∑
t

Eq?φ(zt−1)[Eqφ(zt|zt−1,h1:T ,x1:T )[

log pθ(xt|zt, ht)]−KL(

qφ(zt|zt−1, h1:T , x1:T )||pθ(zt|zt−1, ht))], (9)

where q?φ(zt−1) denotes the marginal distribution of zt−1
given by

q?φ(zt−1) =

∫
qφ(z1:t−1|h1:T , x1:T , z0)dz1:t−2

= Eq?φ(zt−2)[qφ(zt−1|zt−2, h1:T , x1:T )]. (10)

Maximizing F(θ, φ) over parameters θ and φ can be done
by the stochastic gradient ascent algorithm. Our proposed
inference for SRNN is summarized in Algorithm.1.

4. Experiment
In this section, we evaluate our proposed method on two
synthetic datasets and three real world dataset: TIMIT,
Blizzard and Polyphonic Music.

Algorithm 1 Strucutured Inference Algorithm for SRNN

inputs: Observed sequences {x(n)}Nn=1,z0,h0,zr0 ,zl0;
Randomly initialized φ(0) and θ(0);
Inference Model: qφ(z1:T , h1:T |x1:T );
Generative Model: pθ(x1:T , z1:T , h1:T );

outputs:Model parameters θ and φ;
for i = 1 to Iter do

1. Sample data points.
2. Estimate parameters of Eq.3.
3. Estimate posterior parameters of Eq.5 and Eq.6.
5. Evaluate ELBO Eq.4 and estimate MC approx. to
∇θF and ∇φF .
5. Update θ(i), φ(i) using the ADAM.

end for

4.1. Synthetic Datasets

Synthetic Sequential Data We first test our model on a
synthetic sequential data generated from a two-dimensional
and non-linear GSSM with N = 5000, T = 25 as follows:

z1:T ∼ N ([0.2z0t−1 + tanh(αz1t−1); 0.2z1t−1 + sin(βz0t−1)], I)

x1:T ∼ N (0.5z1:T , I),

where [·; ·] denotes a concatenation and I denotes the iden-
tity matrix. The objective is to recover the ground-truth
generation parameters α? = 0.50 and β? = −0.10 for the
dataset. Results shown in Figure 3 illustrate that our model
could quickly find the true parameters.
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Figure 3. Parameter estimation: Learning parameters α; β in a
synthetic non-linear GSSM .

Linear Dynamic System We also evaluate our model on a
dynamic system. The data is generated by

xt ∼ N(xt−1 + 0.05, 4), yt ∼ N(0.5yt−1, 25x2t ).

Here yt is the observation and xt is the latent variable. Our
goal is to discover the latent space given the observation.
The results are shown in Figure 4.

Bouncing Balls The dataset simulates three balls rolling
and bouncing within a bounding box on a plane. The dy-
namic movement of balls are highly dependent on the posi-
tions and velocities. We follow the procedure in (Sutskever
et al., 2009; Gan et al., 2015), and generate 4000 videos
for training, and 200 videos for testing. Each video is of
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Figure 4. Visualization of the latent space and observations.
Shading areas denote the standard deviations.

length 100 and of resolution 30 × 30. Our goal is to pre-
dict the next movement of the balls, and we visualize 8
consecutive frames of the videos, as reported in Figure 5.
As can be seen, our model captures the movement of the
balls accurately, demonstrating its advantages of long-term
prediction under uncertainty.
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Figure 5. Visulization of 8 consecutive frames.

4.2. Real World Datasets

Blizzard & TIMIT We evaluate our model on the model-
ing of two speech data, i.e., Blizzard and TIMIT datasets.
Blizzard records 300 hours English speech data by a sin-
gle female speaker and TIMIT consists of 6300 English
sentences read by 630 speakers. The preprocessing of the
data and the performance measures are identical to those
reported in (Chung et al., 2015; Fraccaro et al., 2016).
For Blizzard we report the average log-likelihood for half-
second sequences, and for TIMIT we report the average log
likelihood per sequence for the test data. For the raw audio
datasets, we use a fully factorized Gaussian output distri-
bution. The learning rate is set 0.002 and batch size is 128
for Blizzard, for TIMIT they are 0.001 and 64 respectively.

We report results in Table 1. It can be found that our
method outperforms most state of the art baselines and
shows superior ability in modeling complex dependency in
sequential data.

Polyphonic Music: Additionally, we test our method
for modeling sequences of polyphonic music (Boulanger-
Lewandowski et al., 2012), Each dataset contains more
than 7 hours of polyphonic music with varying complex-
ity: folk tunes (Folk), the four-part chorales by J. S. Bach
(JSB), orchestral music (Muse) and classical piano music
(Piano).

Table 2 compares the average log-likelihood on the test

data with multiple state of the art baselines. The results
of HMSBN, TSBN are from (Gan et al., 2015), NASMC
from (Gu et al., 2015a), STORN from (Bayer & Os-
endorfer, 2014b), RNN-NADE and RNN from (Boulanger-
Lewandowski et al., 2012), SRNN from (Fraccaro et al.,
2016), and DMM from (Krishnan et al., 2016).

It can be seen that our method achieves competitive or
much better results than other methods.

Table 1. Average log-likelihood per sequence on the test sets.

MODELS BLIZZARD TIMIT

SRNN(SMOOTH+Resq ) ≥ 11991 ≥ 60550
SRNN(SMOOTH) ≥10991 ≥59269
SRNN(FILT) ≥10846 50524
VRNN-GMM ≥ 9107 ≥ 28982
VRNN-GAUSS ≥ 9223 ≥ 28805
VRNN-I-GAUSS ≥ 9223 ≥28805
RNN-GMM 7413 26643
RNN-GAUSS 3539 -1900
OUR METHOD ≥ 13756 ≥ 60899

Table 2. Test negative log-likelihood on Polyphonic Music Gen-
eration data, the lower the better.

MODELS FOLK JSB MUSE PIANO

SRNN
(SMOOTH+Resq ) ≥ -2.94 ≥ -4.74 ≥ -6.28 ≥ -8.20

TSBN ≥ -3.67 ≥-7.48 ≥-6.83 ≥ -7.94
NASMC ≈ -2.71 ≈ -3.98 ≈ -6.88 ≈ -7.62
STORN ≈ -2.85 ≈ -6.93 ≈ -6.17 ≈ -7.15
RNN-NADE ≈ -2.31 ≈ -5.19 ≈ -5.60 ≈ -7.05
RNN ≈ -4.45 ≈ -8.72 ≈ -8.11 ≈ -8.34
DMM ≈ - 2.77 ≈ -6.39 ≈ - 6.83 ≈ - 7.84
HMSBN ≥ -7.98 ≥ -5.13 ≥ -9.79 ≥ -8.90
OURS ≈- 2.70 ≈ -6.71 ≈ - 7.91 ≈ -7.91

5. Conclusion
Recurrent neural networks with stochastic variables has
became very popular for modelling sequential data. We
propose an efficient structured inference method, which
explicitly combines both past and future information by
approximating the posterior through RNNs and graphical
model. Experimental results in both synthetic and real-
world sequential benchmarks have fully demonstrated the
advantages of our proposed inference scheme.
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