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Abstract

Most time-series datasets with multiple data
streams have (many) missing measurements that
need to be estimated. Most existing meth-
ods address this estimation problem either by
interpolating within data streams or imputing
across data streams; we develop a novel approach
that does both. Our approach is based on a
deep learning architecture that we call a Multi-
directional Recurrent Neural Network (M-RNN).
An M-RNN differs from a bi-directional RNN
in that it operates across streams in addition to
within streams, and because the timing of in-
puts into the hidden layers is both lagged and
advanced. To demonstrate the power of our ap-
proach we apply it to a familiar real-world med-
ical dataset and demonstrate significantly im-
proved performance.

1. Introduction

Missing data (measurements) presents a ubiquitous and
challenging problem. Missing measurements are especially
common in patient medical data which often incorporates
many streams that are sampled at different and irregular
times. Because missing medical measurements obscure
information crucial to diagnosis, prognosis and treatment,
estimating missing medical measurements is an especially
important and challenging problem. This paper proposes a
novel and extremely effective method of estimating miss-
ing measurements that are missing at random. Our method
exploits the correlations within data streams and the cor-
relation across data streams. (Our method is quite gen-
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eral; we use medical data as the example because missing
data and correlations across streams and between streams
are especially common in medical data.) Our method is
based on a novel neural network architecture that we call
a Multi-directional Recurrent Neural Network (M-RNN).
Our M-RNN executes both interpolation (intra-stream) and
imputation (inter-stream) to infer missing data. Like a
bi-directional RNN (Bi-RNN) (Graves & Schmidhuber,
2005), an M-RNN operates forward and backward in each
data stream — in the intra-stream directions. Unlike a Bi-
RNN, an M-RNN also operates across streams — in the
inter-stream directions. And, also unlike a Bi-RNN, the
timing of inputs into the hidden layers of an M-RNN is
lagged in the forward direction and advanced in the back-
ward direction. (To the best of our knowledge, our architec-
ture is the first that operates in this way). To demonstrate
the power of our method, we apply it a well-known pub-
lic real-world medical dataset. We show that our method
yields large and statistically significant improvements over
previous methods, including familiar interpolation methods
such as (Kreindler & Lumsden, 2012; Mondal & Percival,
2010), imputation methods such as (Garcia-Laencina et al.,
2010; White et al., 2011; Rehfeld et al., 2011) and RNN-
based imputation methods such as (Choi et al., 2015; Lip-
ton et al., 2016; Che et al., 2016) and matrix completion
methods such as (Yu et al., 2016; Schnabel et al., 2016).

1.1. Related Works

There are two standard methods to deal with missing at ran-
dom information in time-series data streams: interpolation
and imputation. ((Alaa et al., 2017) proposed a framework
to deal with missing not at random data.) Interpolation
methods (Kreindler & Lumsden, 2012; Mondal & Percival,
2010) attempt to reconstruct missing data by capturing the
temporal relationship within each data stream but not the
relationships across streams. Imputation methods (Garcia-
Laencina et al., 2010; White et al., 2011; Rehfeld et al.,
2011) attempt to reconstruct missing data by capturing the
synchronous relationships across data streams but not the
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temporal relationships within streams. Matrix completion
methods (Yu et al., 2016; Schnabel et al., 2016) do attempt
to use information within and across streams, but (Yu et al.,
2016) assumes completely synchronized data so is not ap-
plicable in our setting. (Schnabel et al., 2016) is designed
for static data and constrains the model as a linear model;
thus, it cannot capture the non-linear and time-series char-
acteristics.

RNN’s have been used successfully for prediction on the
basis of time-series data with missing data and irregular
sampling. (Gingras & Bengio, 1996) first replaces all the
missing information with a mean value and then uses the
feedback loop from the hidden states to update the im-
puted value while learning the classification problem using
a standard RNN for prediction. (Tresp & Briegel, 1998) use
the Expectation-Maximization (EM) algorithm to impute
the missing values and uses the reconstructed data streams
as inputs to a standard RNN for prediction. As with stan-
dard imputation methods, the imputation depends only on
the synchronous relationships across data streams and not
on the temporal relationships within streams. (Parveen &
Green, 2002) use a linear model to estimate missing val-
ues from the latest measurement and the hidden state of
each stream. As with standard interpolation methods, the
estimate depends only on the temporal relationships within
each stream and not on the relationships across streams.

More recent work addresses both missing values and irreg-
ularly sampled time-series data streams (Choi et al., 2015;
Lipton et al., 2016; Che et al., 2016; Kim et al., 2017).
These papers use the sampling times to capture the infor-
mative missingness and time interval information to deal
with irregular sampling. They do this by concatenating
the measurements, sampling information and time inter-
vals and using the concatenation as the input of an RNN.
These papers differ in the replacements they use for miss-
ing values. (Choi et al., 2015; Lipton et al., 2016; Kim
et al., 2017) replace the missing values with 0, mean values
or latest measurements — all of which are independent of
either the intra-stream or inter-stream relationships or both.
(Che et al., 2016) imputes the missing values using only the
most recent measurements, the mean value of each stream,
and the time interval. It is not bi-directional.

2. Data Streams

The dataset consists of N arrays of data. It is convenient to
use medical language to speak of array n as the informa-
tion of patient n, so that there are N patients in the training

set. For each patient n, we have a multivariate time-series
data stream of length 7" (the length 7" and the other compo-
nents may depend on the patient n but for the moment we
suppress the dependence on n) that consists of two compo-
nents: time stamps S and measurements X. (In many con-
texts, the data would also include labels/outcomes. How-
ever, because we focus here on reconstructing missing data,
we treat a label as simply a measurement.)

The time stamp s; € R represents the actual time at which
the measurements x; were taken. For convenience we nor-
malize so that s; = 0; we assume actual times are strictly
increasing: si+1 > s fort < T — 1. For an irregularly
sampled dataset, the difference s;4; — s; between succes-
sive time stamps is not constant.

There are D streams of measurements; each measurement
is a real number, but not all measurements may be observed
at each time stamp. Hence we view the set of possible mea-
surements at time stamp ¢ as R, = RU {*}; ¢ = x means
that the stream d was not measured at time stamp ¢; other-
wise z¢ € R is the measurement of stream d at time stamp
t. X is the array of measurements of all streams at all time
stamps for the patient under consideration.

We define an index m¢ for missing data; m¢ = 0 if 2¢ = x
(not measured) and mf = 1if zf € R (measured). For
each time stamp ¢, we write 5? for the actual amount of
time that has elapsed since the stream d was measured last;
64 is defined recursively as follows:

51 {st — s+ 6L, ift>1,md, =0.

St — S¢_1 ift > 1,mf_1 =1
where 0¢ = 0. Write §; for the vector of elapsed times at
time stamp ¢t and A = {81, 92, ...,07}.

The information available for patient n is therefore the pair
(X,,Sn) The entire training set therefore is the sets of
pairs D = {(X,,,S,)}Y_;. To avoid confusing multiple
sub/super-scripts, we use functional notation to identify in-
formation about a particular patient, so z¢(n) is the mea-

surement of stream d at time ¢ for patient n, etc.

3. M-RNN

Suppose that stream d was not measured at time ¢, so that
that 2¢ = *; we want to form an estimate #¢ of what the ac-
tual measurement would have been. There are two familiar
approaches to this problem: interpolation and imputation.
Interpolation uses only the measurements ¢, of the fixed
data stream d for other time stamps ¢’ (perhaps both be-
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Figure 1. Cross sections of M-RNN architecture. (a) Time-

dimension, (b) Feature-dimension

fore and after t) — but ignores the information contained in
other data streams d’. Imputation uses only the measure-
ments ¢ at the fixed time ¢ for other data streams d’ — but
ignores the information contained in other data streams d’
at other times ¢’ # t. Because information is often corre-
lated within data streams and across data streams, each of
these approaches throws away potentially useful informa-
tion. Our approach is to form the estimate &¢ using both the
measurements within the given data stream and the mea-
surements across other data streams. In principle, we could
try to form the estimate 2¢ by using all the information in
D. However, this would mean learning a vast number of pa-
rameters and hence would require a vast number of training
instances, and so would be impractical. Moreover, because
of the many parameters, there would be serious danger of
over-fitting. Instead, we propose an efficient hierarchical
learning framework using a novel RNN architecture that
effectively allows us to capture the correlations both within
streams and across streams.

3.1. Algorithm/Architecture

An M-RNN consists of 2 blocks: an Interpolation block
and an Imputation block; see Fig. 1. Our construction puts
the imputation block after the interpolation block in order
to use the outputs of the interpolation block to improve the
accuracy of the imputation block (multiple inputs of the
imputation blocks); the other order would not be helpful.

Error/Loss: The objective of the interpolation and impu-
tation blocks is to minimize the error that would be made
in estimating missing measurements. Evidently, we cannot
estimate the error of a measurement that is truly missing

in the dataset. Instead we fix a measurement that was ac-
tually made, remove that measurement, form an estimate
for the measurement, and then compute the error between
the estimate and the actual measurement (that was deleted)
using only the data set D — ¢ (i.e. the data set with x¢
removed). If z¢ is an actual measurement and Z¢ is the es-
timate formed when ¢ is removed then the loss is defined
as squared error (2 — x#)2. The total loss/error for the
entire dataset D is the mean squared error (MSE):

L({&f, x{})
N Ty D N
-y 2oty g mi(n) x (2 (n) — 2 (n))?
- T, D
n=1 Zt:l Zd:1 m?(n)
In our simulations we use root mean squared error (RMSE)

—1i.e. the square root of MSE — to compare performance of
M-RNN with various benchmarks.

Interpolation: The objective of the interpolation block
is to construct an interpolation function ® that operates
within a stream. To emphasize that the estimate for x¢
depends on the data with ¢ removed, we write 7} =
®(D — z); but also keep in mind that we are actually
only using the data from stream d, not the data from other
streams. We construct the estimation function ® using a
bi-directional recurrent neural network (Bi-RNN) with a
Gated Recurrent Unit (GRU). However, unlike a conven-
tional Bi-RNN (Graves & Schmidhuber, 2005), the timing
of inputs into the hidden layer is lagged in the forward di-
rection and advanced in the backward direction: at time ¢,
inputs of forward hidden states come from ¢ — 1 and inputs
of backward hidden states come from ¢ + 1. Mathemati-
cally, we have:
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where © is element-wise multiplication, o is the sigmoid
function, ¢ is tanh function, and arrows indicate direction.
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Table 1. Performance comparison for missing value estimation

RMSE: Mean =+ Std Dev (% Gain of M-RNN)
M-RNN 0.0137 £ 0.0013 (-)
(Choi et al., 2015) | 0.0337 £ 0.0012 (59.3%)
(Lipton et al., 2016) | 0.0295 + 0.0009 (53.6%)
(Che et al., 2016) | 0.0292 £ 0.0013 (53.1%)
Spline Interpolation | 0.0735 4 0.0012 (81.4%)
Cubic Interpolation | 0.0279 + 0.0013 (50.9%)

MICE Imputation | 0.0611 4+ 0.0011 (77.6%)
Kernel Imputation | 0.0556 4 0.0011 (75.4%)
EM Imputation 0.0467 + 0.0014 (70.7%)

Matrix Completion | 0.0311 £ 0.0013 (55.9%)

The output o is the interpolated value X;. In this interpola-
tion block, we are only using/capturing the temporal corre-
lation within each stream. As a consequence, the matrices
U,V,W are diagonal. Hence the total number of parame-
ters that must be learned is linear in the number of streams
D. See the Interpolation component of Fig. 1.

Imputation: The objective of the imputation block is to
construct an imputation function W that operates across
streams. Again, we write 7¢ = ¥(D — z¢), but keep in
mind that now we are using only data at time stamp ¢, not
data from other time stamps. We construct the function ¥
to be independent of the time stamp ¢; so we construct it
using fully connected layers (FC); see the Imputation com-
ponent of Fig 1:

0 = th + ¢, ht = UXt -+ Vit + th —+ ¢y

where 0; = X; and the diagonal entries of U are zero be-
cause we do not use z¢ to estimate £¢. We use multiple
deeply stacked FC layers. In principle, any activation func-
tions (ReLu, tanh, linear) could be used. In experiments,
we found that linear activation function worked best.

We jointly learn the functions ® and ¥ using the stacked
networks of Bi-RNN and FC layers.

o U =
arg min C({® ({2, @ ({af,mi, 61} 1, ), miY 2, ), 2))

We refer to the entire structure as a Multi-directional Re-
current Neural Network (M-RNN); see Fig.1.

4. Experiments

In this section, we evaluate the performance of M-RNN us-
ing Medical Information Mart for Intensive Care (MIMIC)-
IIT (Johnson et al., 2016), a public real-world dataset of
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Figure 2. RMSE for M-RNN and Best Benchmarks

electronic health records with values missing at random.
Our experimental results present the performance gain of
our M-RNN algorithm in estimating missing valuesm in
comparison to benchmarks. (We describe all configurations
of the our M-RNN and the other algorithms in the online
appendix.)

Simulation To evaluate the performance of the M-RNN
algorithm in estimating missing values, we compare with
familiar interpolation methods (Spline and Cubic) and im-
putation methods (MICE, Kernel, and EM) and state-of-
the-art RNN-based imputation methods (Choi et al., 2015;
Lipton et al., 2016; Che et al., 2016) methods, and matrix
completion method (Schnabel et al., 2016). We use root
mean square error (RMSE) as the performance metric.

We conduct a number of experimental comparisons. The
basic comparison uses the entire MIMIC-III dataset. Ta-
ble 1 shows the mean and standard deviation of RSME for
our method and benchmarks and the percentage improve-
ment of RMSE for M-RNN over the benchmarks. Notice
that the RMSE for M-RNN is less than half that of the best
benchmark. All the improvements are statistically signifi-
cant (p-value < 0.05).

To evaluate the performance of our method in comparison
with benchmarks when there is more missing data (which
makes the problem of estimating missing measurements
more difficult) we construct sub-samples of the MIMIC-
III data set by randomly removing 10%, 20%, 30%, 40%,
50% of the actual data and carrying out the same exercise
on the smaller dataset that remains. The graphs in Fig. 2
show the performance of M-RNN against the best bench-
marks in these settings; as can be seen M-RNN continues to
substantially out-perform the benchmarks. Note that as the
amount of missing data increases the improvement of M-
RNN over the imputation benchmark(s) increases but the
improvement over the interpolation benchmarks decreases.
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