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Abstract
Many applications such as recommender systems
(RecSys) are built upon streams of events, each as-
sociated with a type in a large-cardinality set and
a timestamp in the continuous domain. To date,
most applied work is focused on the prediction of
the type of the next event, i.e., which exact item
a user may visit when they arrive at the RecSys.
Instead, we aim to predict when and how often
an event of a certain type will be visited by the
given user, without the implicit assumption that
they will arrive and consume exactly one item at
a time. This perspective leads to unique applica-
tions in user recommendation (UserRec), where
the RecSys is tasked to preemptively match users
on behalf of the item producers for marketing pur-
poses. We propose Recurrent Intensity Models
(RIMs) that incorporate user visitation intensities
in the RecSys, based on recent progress in tempo-
ral processes. To our knowledge, our work is the
first to approach UserRec completely based on
hidden temporal representations without heuris-
tics from explicit feature engineering.

1. Introduction
Many ML applications today involve decision making based
on streams of events. In recommender systems (RecSys),
reasoning on the stream of events in a user’s past history has
allowed real-time user-based item recommendations (Item-
Rec), leading to significant impacts (Hidasi et al., 2016;
Hidasi and Karatzoglou, 2018; Ma et al., 2020; Chen et al.,
2019; Kang and McAuley, 2018). However, being user-
centric, ItemRec has limitations in creating a globally in-
clusive environment for the item producers. For example,
ItemRec tends to over-expose a few popular items to im-
prove the immediate user satisfaction, yet this causes the
select items to get even more popular, discouraging the other
producers from creating seminal items with higher potential
values in the future. This is an important limitation because,
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as a RecSys involves the participation of both users and item
producers, we must consider the success of the item produc-
ers for the long-term richness of the RecSys environment.
We thus ask this question:

How can we revert a sequence-based RecSys to achieve User
Recommendation (UserRec) on behalf of an item producer
and, further, balance UserRec and ItemRec by optimizing
a surrogate joint objective, which we formulate via Online
Matching (OnlnMtch) (Mehta, 2013)?

The UserRec problem aims to evaluate users based on their
affinity to a given item or item type, which we call a type as
a unified name, in a future time window. The affinity scores
may be used for offline advertisements. E.g., it helps an
item producer choose a segment of users to send marketing
emails every morning and then measures their engagements
in the next 24 hours. The scores may also be used for online
advertisements within a user browsing session that may con-
clude at an indefinite time. In this case, the item producer
must decide in real-time whether they want their items pro-
moted, without any guarantees that the user will continue to
engage at all. The item producer has a global constraint that
only a fraction of all users can be reached in expectation.
Figure 1 shows the UserRec setup in both scenarios, where
the online case is mathematically equivalent by changing
the window boundaries to relative times while keeping the
window sizes comparable.

The UserRec problem is challenging because, unlike Item-
Rec, each user is:

• Unique. Each user consumes at most one item at a time.
This is unlike ItemRec, where a popular item can be si-
multaneously consumed by everyone.

• Unidentifiable. There are often magnitude-of-order more
users than unique items. In online settings, the users are
sampled from a distribution.

• Evolving over Time. A past event may stimulate further
engagements, whereas sustained inactivity leads to churns.
We must redefine user identity to address Ship of Theseus
Paradox: whether an object that has had all of its compo-
nents replaced remains fundamentally the same object.

We note that some of these problems are also present in
ItemRec in less obvious ways. For example, the state of
an item may change after a price change or a phenomenal
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Figure 1: UserRec scenario. Users are considered positive
if they indeed interact with the given item in a future time
window. A matching hit requires both relevance and active-
ness of the user. An active user may have multiple hits with
different items, whereas an inactive user may have zero hit.
In addition, user hits in a given item are often correlated
with their past histories with similar items.

review (Wu et al., 2017; Ma et al., 2020). Nonetheless, state
changes are often more critical with users than items.

To date, most RecSys have adopted a hidden-state user
representation to solve online ItemRec with evolving user
states. The user states are based on the user’s past event
histories, modeled via a family of recurrent neural networks
(RNNs), for the prediction of the exact item choice upon
their next arrival. However, the ItemRec formulation may
not directly translate to UserRec, because the item choice
is formulated as a user-conditional distribution without an
identifiable user prior. To make matters worse, we must
compare users with different history lengths for their likeli-
hood of future engagements, which is otherwise omitted in
ItemRec because it serves one user at a time.

The cornerstone in UserRec is to connect the user prior with
the rate of user engagement events. Note that the user prior
does not directly come from probability density estimation.
Instead, it comes from the conditional intensity parameter of
a temporal point process based on the recurrent hidden state.
Intensity is a characterization of future event predictions by
the expected number of events in unit time, whereas density
is a summary of the observed events in the past. In this
respect, it is also important to distinguish between a general
user time and an observed user-event time, which are inter-
changeable concepts in ItemRec. Like ItemRec, UserRec
also considers user states that evolve in time, i.e., treating a
different user-time as a different instance. However, unlike
ItemRec, a user-time state may not associate with an event.
Instead, it sets the initial condition of a future time window,
where the hidden state continues to evolve and emit sporadic
events as a random process. UserRec looks for the high-
est expected number of events associated with an item in a
comparable time window. As the window size approaches
zero, the number of events (in general or associated with

the given item type) divided by the window size converges
to the intensity parameter, conditioned on the initial state in
the user-time instance (Reinhart, 2018).

We propose Recurrent Intensity Modeling (RIM) to address
the problem of UserRec by intensity estimation of a given
type in combination with recurrent state representation. To
our knowledge, this is the first work to approach both offline
and online UserRec completely based on hidden tempo-
ral representations, without explicit feature engineering. It
extends two families of work: offline matrix factorization
(MF) (Rendle et al., 2009) and online marketing based on
customer life-time value (CLV) estimation (Fader et al.,
2005). MF decomposes a static matrix of users and items,
creating latent vectors that may be used in either UserRec or
ItemRec. However, the latent vectors cannot be transferred
to unseen users or evolve according to existing users’ up-
dates in online scenarios. On the other hand, online CLV
utilizes explicit feature designs such as Recency, Frequency,
and Monetary value (RFM). While these features may be
updated online, CLV cannot leverage the power of latent
representation via low-rank decomposition to reduce statis-
tical variance. Our models encompass the benefits in both
worlds and are further inspired by recent advances in Neural-
TPPs (Mei and Eisner, 2017; Zuo et al., 2020; Shchur et al.,
2019) and Neural-ODEs (Chen et al., 2018; Jia and Benson,
2019; Chen et al., 2020). For broader impacts, we novelly
connect ItemRec and UserRec in a joint OnlnMtch problem,
to further improve satisfaction on both sides.

2. Problem Formulation
We are interested in modeling a temporal process repre-
sented by a series of event times and types of a given user.
Let Du = [(tj , yj) : ∀t1 < t2 < · · · < tj < . . . , ∀yj ∈ A]
be the random process of this user with a continuous time
variable and a type variable in a large-cardinal set A such
that |A| = n. We consider a user-time as a unique instance
Du(t) = {(tj , yj) ∈ Du : tj < t} based on its realization
until time t. The user-time instance is further summarized
by a hidden state representation h(t) = h(t;Du). We omit
Du when it is obvious from context.

Traditional RNN-based ItemRec forsakes the prediction of
the arrival time and only builds recurrent states right before
the next event time t∗. It then predict the type choice by a
conditional categorical distribution:

p(Y = y∗|h(t∗)) =
λ̃y∗(h(t∗))∑
y∈A λ̃y(h(t∗))

, (1)

where λ̃y(h(t∗)) = exp
(
w>y h(t∗) + by +m(h(t∗))

)
,

where wy is a row in the decoder weight, which is also
interpreted as the hidden embedding of a specific item
type, by is a global bias in type choices, and m(h(t∗))
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is a user-prior term based on their hidden state. We
call λ̃y(h(t∗)) the unnormalized probability score and
λ̃A(h(t∗)) =

∑
y∈A λ̃y(h(t∗)) the partition function. Note

that the value of m(h(t∗)) will be canceled out in the cate-
gorical distribution. Without identifying this user-prior term,
the unnormalized scores cannot be compared across users.

2.1. Recurrent Intensity Modeling (RIM)

With the user-conditional type distribution (1), it is difficult
to compare different user-states from different sequences
corresponding to unique user-time instances. Instead, we
aim to compare sequences by their expected number of
events in the future horizon. Denote ∆Ny to be the total
number of events of a specific type in the next time win-
dow (t, t + ∆t]. For sufficiently small time windows, we
may alternatively model the total count of an event type
as an independent Poisson distribution, parametrized by a
function of the observed events and future window size,
Λ̄y = Λ̄y(t, t+ ∆t;h(t)):

(∆Ny|h(t)) ∼ Poisson
(
Λ̄y
)

(2)
s.t. log p(∆Ny = n; Λ̄y) = n log(Λ̄y)− Λ̄y − log(n!).

Proposition 1 (Poisson-Multinomial Connection). Suppose
{Ny ∼ Poisson(Λ̄y) : y ∈ A} is a set of indepen-
dent Poisson random variables. Then, conditioned on
the number of total events nA =

∑
y∈ANy, the distri-

bution of each variable follows a multinomial distribution
(Ny|nA) ∼ Mult(nA, p), where py = Λ̄y/

∑
ỹ Λ̄ỹ. The cate-

gorical distribution in (1) is a special case with nA = 1.

Proposition 1 shows that we may alternatively model the
RNN-ItemRec predictor (1) as a conditional distribution
from independent Poisson priors. Taking the limit ∆t →
0, the Poisson priors can be more accurately described as
temporal point processes (TPPs) (Reinhart, 2018):

λy(h(t)) ∼ lim
∆t→0

E
[

∆Ny
∆t

∣∣∣∣h(t)

]
= E

[
dNy
dt

∣∣∣∣h(t)

]
, (3)

which compares to the λ̃y notation in (1) and to (2) by

Λ̄y = E
[∫ t+∆t

t
λy(h(τ)) dτ

]
. The expectation is over the

unobserved events in the future horizon, which may require
additional calibration models if we directly learn λy(h(t)).

TPP Likelihood. TPPs are more commonly directly
learned in λy(h(t)). To do so, we break ∆t into infinites-
imal windows and join the likelihoods (2) to describe the
observation of the eventful or event-less past. Concretely,
between any start time t and the next event of type y at
Ty = t∗, we observe one positive window with count one

and all other windows with count zeros, yielding:

log p(Ty = t∗|Du) = log λy(h(t∗;Du))− Λy(t, t∗;Du),

where Λy(t, t∗;Du) =

∫ t∗

t

λy(h(τ ;Du)) dτ. (4)

Notice the subtle difference that the Λy in (4) is one real-
ization in the expectation for Λ̄y, because the likelihood
is based on fully observable data until Du(t∗). (Thus the
need to calibrate for Λ̄y after learning the instantaneous λy .)
The numerical integration may be solved by importance
sampling (Mei and Eisner, 2017), ODE solvers (Chen et al.,
2018), or analytical forms in the case of Hawkes processes.

RIM for Sets. Thanks to Proposition 1, we may extend
(2) and (4) to subsets of types as Λ̄S and λS , ∀S ⊆ A.

2.2. Applications

RIM allows UserRec based on their affinity to a given item
type y. The decision is in the space of user-time that is
appropriate for the application, e.g., all users at a given time
in offline marketing. We call this space H = H(U, T ) to
be consistent with user-time state representation. UserRec
then solves for a vector of assignment π(·; y) : H → {0, 1}
under a finite budget C(y) ≤ |H|:

max
π(h;y)∈{0,1}

∑
h∈H

[π(h; y)λy(h)] (5)

s.t.
∑

h∈H
π(h; y) ≤ C(y).

For online marketing, the user states are drawn from a dis-
tribution P (H). We may replace the summation in (5) with
Lebesgue integral in the probability space. In fact, we fur-
ther extend the assignment problem to consider constraints
in both UserRec and ItemRec for an OnlnMtch solution
π : H ×A→ {0, 1} that maximizes the global objective

max
π(h,y)∈{0,1}

∫∫
[π(h, y)λy(h)] dPH(h) dPA(y) (6)

s.t.

{∫
π(h, y) dPA(y) ≤ k(h), ∀h ∈ H;∫
π(h, y) dPH(h) ≤ c(y), ∀y ∈ A;

where k(h) and c(y) are user and item type capacities in rela-
tive terms. Choosing k(h) = 1 and c(y) = C(y)/|H| reduces
to the offline UserRec problem (5). Choosing k(h) = K/|A|
and c(y) = 1 reduces to the traditional Top-K ItemRec
problem. In its most general formulation, OnlnMtch (6)
simultaneously solves for UserRec and ItemRec, achiev-
ing global diversity by avoiding over-exposures of already
popular item types and over-concentration to busy users.

3. Proposed Models
While RIM is motivated to estimate the intensity of each
type separately, we find it more convenient to utilize ex-
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isting RNN-ItemRec models. Based on Proposition 1, we
keep the RNN model for its categorical prediction of the
preference direction, p(y|h(t)), while introducing separate
estimators for the global user intensity norm, E[∆NA|h(t)],
and estimate the corresponding λA and Λ̄A by RIM for sets.

We emphasize that RNN-TPPs are able to recover the in-
tensity scores in each item type, due to the law of total
expectation as a corollary of Proposition 1: E[∆Ny|h(t)] =
E[E(∆Ny|∆NA)|h(t)] = p(y|h(t))E[∆NA|h(t)], assum-
ing relatively stable preference-direction predictions that are
independent of total event counts.

RNN-Pop is our simplest model, where we use the length
of user histories from the collected data. This approach
works due to a homogeneous intensity assumption, i.e., the
number of past events directly correlates with the future
event intensity. It also assumes that all user activities are
collected over a comparable period of time, which coinci-
dentally holds because practical RecSys often truncates the
training datasets by a fixed time for scalability concerns.

RNN-Hawkes. To extend the naive RNN-Pop models, we
may break the homogeneity assumption to consider user
state changes that affect future event intensity. In this regard,
Hawkes process assumes a positive stimulation through past
user events and a gradual churn-out effect after sustained
inactivity. It models these effects via an exponentially-
decaying kernel in the intensity parameters

λA(t) = µ+
∑
j:tj<t

R∑
r=1

αrφr(t− tj), (7)

where φr(t) = 1
sr

exp
(
− t
sr

)
1t>0, and µ, α, s > 0.

Here, we extend it with a mixture of R latent kernels with
learned coefficients and learn it with tick software package
(Bacry et al., 2017). We design the R kernels to have log-
spaced half-lives between 10−3 and 10tmax where tmax is
the largest temporal span in user histories. A large-sr kernel
approximates the RNN-Pop model with a step function after
each observation, whereas a small-sr kernel suggests a fast-
diminishing effect, often within a short browsing session.

RNN-Hawkes-Poisson. For long prediction horizons, we
may also calibrate Hawkes scores to eliminate the effects of
fast-diminishing kernels. Notice that the Hawkes states h̃(t)
are already positive. We thus model their weighted sums as

Λ̄A = h̃(t)� softplus(w) = h̃(t)� log(1+exp(w)). (8)

We further concatenate h̃(t) with the RNN partition func-
tion λ̃A(h(t)), which we observe to be positively correlated
with the future user intensity. Our additive formulation is
inspired by (Mei and Eisner, 2017) and we slightly improve
it by allocating the softplus to each coordinate to improve
numerical stability.

4. Experiments
We conduct experiments in three RecSys datasets with
unique properties. We set k(h) = c(y) = 1% in the re-
spective UserRec and ItemRec problems.

• Netflix (NF)1 is a movie rental service where movie rat-
ings from a user’s past affects their personalized ItemRec
in the future. NF is widely used in rating prediction and
ItemRec, but less so in UserRec and OnlnMtch.

• Movielens (ML) (Harper and Konstan, 2015)2 is a movie
rating website that collects user preferences to study Rec-
Sys. Over time, it released several versions of datasets.
We use a small-scale ML-1M in an 2003 release with one
million rating events between six thousand users and three
thousand items to easily validate our ideas.

• Yoochoose (YC)34 is a dataset used in RecSys 2015 Chal-
lenge with six months of activities for product recommen-
dation such as general tools, toys cloths, electronics, and
much more.

4.1. Data Splits

NF ML YC

# warm users 32238 3020 71784
# warm items 16217 3669 11431
# training events 2437151 762016 1087267
# clean test events 187096 37597 49500
UserRec C(y) 323 31 718
ItemRec K(h) 163 37 115

Table 1: Data split and statistics

We aim to split the data in a way to conduct evaluation
within a time window. On NF, we simply pick a test window
between 2005/6/15 and 2005/6/28 with a training window
between 2005/1/1 and 2005/6/14. On ML and YC, however,
users typically have short browsing sessions that do not over-
lap. Instead, since we treat every user-time as an instance,

1
https://www.kaggle.com/netflix-inc/netflix-prize-data

2
https://grouplens.org/datasets/movielens/1m/

3
https://www.kaggle.com/phhasian0710/yoochoose

4
https://recsys.acm.org/recsys15/challenge/

https://www.kaggle.com/netflix-inc/netflix-prize-data
https://grouplens.org/datasets/movielens/1m/
https://www.kaggle.com/phhasian0710/yoochoose
https://recsys.acm.org/recsys15/challenge/
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Table 2: RecSys methods evaluated by ranking relevance (precision) and diversity (target perplexity). RNN-TPP models are
clear winners in both ItemRec and UserRec. They also generate larger diversity compared with non-personalized baselines.

ItemRec (Top-K Items per User) UserRec (Top-C Users per Item)

Model Precision (×100) Item Perplexity × User Intensity Precision (×100) User Perplexity

NF ML YC NF ML YC NF ML YC NF ML YC

Rand 0.04 0.37 0.006 16192 3610 11423 Rand 0.04 0.37 0.006 32140 2980 71472

Pop 0.78 1.74 0.067 163 37 115
Pop 0.19 3.03 0.028

323 31 718Hawkes 0.26 4.44 0.030
Hawkes-Poisson 0.35 4.48 0.034

BPR-Item 0.71 0.73 0.222 1139 684 1774 BPR-User 0.26 0.84 0.147 1843 777 18629

RNN 0.86 2.09 0.306 1015 1049 5024

(Uniform) 0.19 1.43 0.223 8910 1952 45992
Pop 0.28 2.81 0.233 3520 1041 44620
Hawkes 0.38 5.42 0.235 2268 375 44880
Hawkes-Poisson 0.38 5.15 0.258 4720 442 34533

we may assign different prediction windows with different
starting times to different users, as long as they have com-
parable horizons. Further, we split the training and testing
set by users. Table 1 shows that we first create Group A and
Group B with 50% users each, followed by TEST-window
creation in Group B according to specific user-start time.
Specifically, the relative test-start time comes from the 50%
global quantile in the temporal span of all user histories and
the test-window size is comparable with the time duration
before the test starts.

The RNN-Hawkes-Poisson model requires an additional
validation window to calibrate by the aggregate statistics
in long horizons. For NF, this happens between 2005/6/1
and 2005/6/14. For MF and YC, we pick the corresponding
validation windows among the training users. The statistics
of all three datasets may be found on Table 1.

A caveat in data preparation is to avoid temporal leakage.
For example, a simple retention of all observed users would
be biased, because users with zero history are destined to
have nonzero future events, which disagrees with our com-
mon prior that inactive users in the past are unlikely to
engage in the future. The issue is that we under-represent
users with zero history and zero future events. As a remedy,
we include only warm users with at least one past event, so
that their future engagements are no longer biased. We also
retain only warm items for similar considerations. For YC,
we set a higher threshold with at least 4 past events per user
and 10 past events per item.

4.2. UserRec and ItemRec Results

Table 2 shows results from the baselines and our proposed
methods, where RNN-TPP models are clear winners in rank-
ing metrics such as Precision@Top-1% in both UserRec and
ItemRec scenarios. Further, in ItemRec, we observe a trend
in Rand < Pop < BPR < RNN, meeting our expectations.

On UserRec, we also see contributions from both the pre-
diction of preference directions and user engagement priors.
For preference directions, we expect Rand < Pop < BPR <
RNN-Pop. For engagement priors, we expect a significant
contribution in RNN-Pop models over the RNN (non-prior)
baseline. Additionally, we hope to observe Pop < Hawkes
< Hawkes-Poisson as we build more complex TPP models.
We see the TPP model improvements obvious in NF and
ML but less so in YC. This is because complex TPPs help
most when users have denser histories.

Besides delivering higher relevance, personalized models
also have the side benefit to increase the global diversity in
the recommended targets, which can be measured with

perplexity = exp
(
−
∑

y∈A
p̃(y) log(p̃(y))

)
,

where p̃(y) =
total # of Item-y recommended
total # of all recommendations

,

or its counterpart in UserRec. Higher diversity is often desir-
able because it improves the exposure of less-popular items
across different user requests or ensures a balanced distri-
bution among the recommended users when coordinating
different item producers. A perplexity score ofX shows that
the global uncertainty in the target distribution, marginal-
ized over all recommendation requests, is comparable to a
fair X-sided dice. Popularity-based models are fixed and
contain the least amount of uncertainty. On the other hand,
learning-based models yield significantly larger perplexity.
The increased perplexity allows these models to reach more
diversified user pools to show larger potential impacts than
what is reflected in the relevance score comparisons.

4.3. Online Matching (OnlnMtch) Results

Previously, people study ItemRec and UserRec separately,
without realizing that one affects the other. To further ex-
plore the diversity effects of personalized models, we for-
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Figure 2: OnlnMtch solves for recommendations under global constraints in the targets. Treating the original ItemRec and
UserRec as unconstrained optimization, we bound the total numbers of times each item and user can be be recommended,
respectively, to increase the global diversity in the targets. We show the Pareto fronts of diversity-relevance trade-offs for all
proposed models, where RNN-TPPs dominate. Showing results on Netflix dataset.

mulate the problem in (6) that combines Top-K constraints
in ItemRec and Top-C constraints in UserRec. On Fig-
ure 2(left), we keep k(h) = 1% of the total number of
items, i.e., to recommend Top-163 personalized items to
every user, while adjusting the global item exposure capaci-
ties by c(y) ∈ [1%, 3%, 10%, 30%, 100%]. The c(y) = 1%
limit is set to create an exact one-to-one matching condition,
i.e., k(h) = c(y), and the c(y) = 100% condition agrees
with ItemRec with unbounded item exposures. As we lower
c(y), we tune-down the exposure rate of popular items.

The OnlnMtch problem is solved by greedy assignment,
where we first sort all the estimated expectations λy(h),
followed by greedy assignments of the corresponding user-
item pairs while the capacities remain unsaturated. We also
experimented with linear programming for global optimality,
but we did not find significant improvements and thus adopt
the greedy solution for its simplicity. On Figure 2(right),
we repeat the experiment for UserRec, with fixed c(y) =
1% and varying k(h) ∈ [1%, 3%, 10%, 30%, 100%], for
increased freedom in user selection.

From the results, we see that all methods have impacted
relevance under global constraints in the targets. Comparing
the Pareto fronts, we see clear winners from RNN-Hawkes
and RNN-Hawkes-Poisson. More generally, personalized
models (BPR and RNN) perform better than unpersonalized
models and RNN models further outperform BPR models.
Among each subgroup, TPP models (Hawkes and Poisson)
outperform vanilla Popularity counts. The difference be-
comes larger as the balance of the constraints focus more
on the item capacity limitations.

In a sense, Figure 2(right) is a continuation of Figure 2(left)
where the ratio of c(y)/k(h) keeps decreasing. The left-top
points of the two plots agree in user-item matching assign-
ments, because the user and item constraints are both tight.

On the other hand, item diversity hurts ItemRec relevance
more than user diversity hurts UserRec relevance, perhaps
showing that UserRec has larger design freedom. UserRec
may be the new frontier of research.

5. Conclusion
We study UserRec in an online RecSys paradigm, where
each user is represented by their history of item consumption
events, without revealing their unique identities. This prob-
lem is of great values in keeping the diversity and liveliness
of RecSys; by addressing the pain points in item marketing,
the item creators can focus on their expertise in creation.

Our main challenge is to discover the missing user-marginal
likelihood to receive new product promotions, in addition
to the prediction of their preference directions. We novelly
connect this challenge to the intensity parameter estimation
of a temporal point process. We explain the key difference
between probability density estimation of an observed user
event and temporal intensity prediction within a user time-
window. In our proposal, the user state is interpreted as a
stochastic process that continuously evolves with or without
explicit update by observable events. We leverage recent
progress in TPPs to build concise models. Our models
evaluate well in both UserRec and ItemRec on three RecSys
datasets that are previously used only for ItemRec.

RecSys is an area of broad social impacts. The techniques
we develop are aimed to improve the diversity and welfare
of all participating parties. We use global optimiality as a
surrogate in OnlnMtch reformulation of RecSys. We show
promising connections between RIM and better diversity-
relevence trade-offs.
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