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Abstract
Partial observations of continuous time-series dy-
namics at arbitrary time stamps exist in many
disciplines. Fitting this type of data using sta-
tistical models with continuous dynamics is not
only promising at an intuitive level but also has
practical benefits, including the ability to generate
continuous trajectories and to perform inference
on previously unseen time stamps. Despite excit-
ing progress in this area, the existing models still
face challenges in terms of their representational
power and the quality of their variational approx-
imations. We tackle these challenges with con-
tinuous latent process flows (CLPF), a principled
architecture decoding continuous latent processes
into continuous observable processes using a time-
dependent normalizing flow driven by a stochas-
tic differential equation. To optimize our model
using maximum likelihood, we propose a novel
piecewise construction of a variational posterior
process and derive the corresponding variational
lower bound using trajectory re-weighting. Our
model shows favourable performance on synthetic
data simulated from stochastic processes.

1. Introduction
Sparse and irregular observations of continuous dynam-
ics are common in many areas of science, including fi-
nance (Zumbach & Müller, 2001; Gençay et al., 2001),
healthcare (Goldberger et al., 2000), and physics (Rehfeld
et al., 2011). Time-series models driven by stochastic dif-
ferential equations (SDEs) provide an elegant framework
for this challenging scenario and have recently gained pop-
ularity in the machine learning community (Deng et al.,
2020; Hasan et al., 2020; Li et al., 2020). The SDEs are
typically implemented by neural networks with trainable
parameters and the latent processes defined by SDEs are
decoded into an observable space with complex structure.
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As observations on irregular time grids can take place at
arbitrary time stamps, models based on SDEs are a natural
fit for this type of data. Due to the lack of closed-form
transition densities for most SDEs, dedicated variational
approximations have been developed to maximize the obser-
vational log-likelihoods (Archambeau et al., 2007; Hasan
et al., 2020; Li et al., 2020).

In this work, we propose a model that is governed by latent
dynamics defined by an expressive generic stochastic differ-
ential equation. Inspired by (Deng et al., 2020), we then use
dynamic normalizing flows to decode each latent trajectory
into a continuous observable process. Driven by different
trajectories of the latent stochastic process continuously
evolving with time, the dynamic normalizing flows can map
a simple base process to a diverse class of observable pro-
cesses. We illustrate this process in Fig. 1. This decoding is
critical for the model to generate continuous trajectories and
be trained to fit observations on irregular time grids using a
variational approximation. Good variational approximation
results rely on a variational posterior distribution close to the
true posterior conditioned on the observations. Therefore,
we also propose a method of defining and sampling from a
flexible variational posterior process that is not constrained
to be a Markov process based on a piecewise evaluation of
SDEs. The proposed model excels at fitting observations on
irregular time grids, generalizing to observations on more
dense time grids, and generating trajectories continuous in
time.
Contributions. In summary, we make the following con-
tributions: (1) We propose a flow-based decoding of a
generic SDE as a principled framework for continuous dy-
namics modeling of irregular time-series data. (2) We im-
prove the variational approximation of the observational
likelihood through a non-Markovian posterior process based
on a piecewise evaluation of the underlying SDE; (3) We
validate the effectiveness of our contributions in a series of
studies and comparisons to state-of-the-art time-series mod-
els on synthetic datasets generated from popular stochastic
processes.

2. Preliminaries
2.1. Stochastic Differential Equations

SDEs can be viewed as a stochastic analogue of ordinary
differential equations in the sense that dZt

dt = µ(Zt, t) +
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Figure 1: Overview. Our architecture uses a stochastic differential equation (SDE; left) to drive a time-dependent normalizing flow
(NF; right). At time t1, t2 (grey bars), the values of the SDE trajectories (colored markers) serve as conditioning information for the
decoding (grey lines; for clarity only shown for one latent trajectory) of a simple base process into a complex observable process. Since
all stochastic processes and mappings are time-continuous, we can model observed data as partial realizations of a continuous process,
enabling modelling of continuous dynamics and inference on irregular time grids.

random noise ·σ(Zt, t). LetZ be a variable which continu-
ously evolves with time. Anm-dimensional SDE describing
the stochastic dynamics of Z usually takes the form

dZt = µ(Zt, t) dt+ σ(Zt, t) dWt, (1)
where µ maps to an m-dimensional vector, σ is an m× k
matrix, and Wt is a k-dimensional Wiener process. The
solution of an SDE is a continuous-time stochastic pro-
cess Zt that satisfies the integral equation Zt = Z0 +∫ t
0
µ(Zs, s) ds +

∫ t
0
σ(Zs, s) dWs with initial condition

Z0, where the stochastic integral should be interpreted as a
traditional Itô integral (Oksendal, 2013, Chapter 3.1). For
each sample trajectory ω ∼Wt, the stochastic process Zt
maps ω to a different trajectory Zt(ω).
Latent Dynamics and Variational Bound. SDEs have
been used as models of latent dynamics in a variety of con-
texts (Li et al., 2020; Hasan et al., 2020; Archambeau et al.,
2007). As closed-form finite-dimensional solutions to SDEs
are rare, variational approximations are often used in prac-
tice. Li et al. propose a principled way of re-weighting the
trajectories of latent SDEs for variational approximations
using Girsanov’s theorem (Oksendal, 2013, Chapter 8.6).
Specifically, consider a prior process and a variational pos-
terior process in the interval [0, T ] defined by two stochastic
differential equations dZt = µ1(Zt, t) dt+ σ(Zt, t) dWt

and dẐt = µ2(Ẑt, t) dt+σ(Ẑt, t) dWt, respectively. Fur-
thermore, let p(x|Zt) denote the probability of observing x
conditioned on the trajectory of the latent process Zt in the
interval [0, T ]. If there exists a mapping u : Rm× [0, T ]→
Rk such that σ(z, t)u(z, t) = µ2(z, t) − µ1(z, t) and
u satisfies Novikov’s condition (Oksendal, 2013, Chapter
8.6), we obtain the variational lower bound log p(x) =

logE[p(x|Zt)] ≥ E[log p(x|Ẑt) + logMT ], with

MT = exp(−
∫ T
0

1
2

∣∣∣u(Ẑt, t)∣∣∣2 dt−
∫ T
0

u(Ẑt, t)
T dWt). See

(Li et al., 2020) for a formal proof.

2.2. Continuous Time Flow Process

Normalizing flows (Rezende & Mohamed, 2015; Dinh et al.,
2014; Kingma et al., 2016; Dinh et al., 2017; Papamakarios

et al., 2017; Kingma & Dhariwal, 2018; Behrmann et al.,
2019; Chen et al., 2019; Kobyzev et al., 2019; Papamakar-
ios et al., 2021) are bijective mappings f : Rd → Rd
that transform a random variable Y with a simple base
distribution pY to a random variable X with a complex
target distribution pX . We can sample from a normalizing
flow by first sampling y ∼ pY and then transforming it to
x = f(y). Normalizing flows can also be used for density
estimation. Using the change-of-variables formula, we have
log pX(x) = log pY (g(x)) + log

∣∣∣det( ∂g∂x)∣∣∣, where g is
the inverse of f .

Recently, the continuous-time flow process (CTFP; (Deng
et al., 2020)) was proposed to model irregular observations
of a continuous-time stochastic process by augmenting nor-
malizing flows with a continuous time index. Specifically,
CTFP transforms a simple d-dimensional Wiener process
Wt to another continuous stochastic processXt using the
transformation Xt = f(Wt, t), where f(w, t) is an in-
vertible mapping for each t. It has the benefits of exact
log-likelihood computation of arbitrary finite-dimensional
distributions and generating continuous trajectories.

A latent variant of CTFP is further augmented with a static
latent variable to introduce non-Markovian behavior. It mod-
els continuous stochastic processes as Xt = f(Wt, t;Z),
where Z is a latent variable with standard Gaussian dis-
tribution and f(·, ·; z) is a CTFP model that decodes each
sample z of Z into a stochastic processes with continuous
trajectories. Latent CTFP can be used to estimate finite-
dimensional distributions with a variational approximation.

3. Model
Let {(xti , ti)}ni=1 denote a sequence of d-dimensional ob-
servations sampled at arbitrary points in time, where xti
and ti denote the value and time stamp of the observation,
respectively. The observations are assumed to be partial re-
alizations of a continuous-time stochastic processXt. Our
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training objective is the maximization of the observational
log-likelihood induced byXt on a given time grid,

L = log pXt1
,...,Xtn

(xt1 , . . . ,xtn), (2)

for an inhomogeneous collection of sequences with vary-
ing lengths and time stamps. We model this challenging
scenario with Continuous Latent Process Flows (CLPF). In
Section 3.1, we present our model in more detail. Training
and inference methods will be discussed in Section 3.2.

3.1. Continuous Latent Process Flows

A Continuous Latent Process Flow consists of two major
components: an SDE describing the continuous latent dy-
namics of an observable stochastic process and a continu-
ously indexed normalizing flow serving as a time-dependent
decoder. The following paragraphs discuss the relationship
between these components in more detail.
Continuous Latent Dynamics. Analogous to our
overview in Section 2.1, we model the evolution of an
m-dimensional time-continuous latent state Zt in the
time interval [0, T ] using a flexible stochastic differential
equation driven by an m-dimensional Wiener ProcessWt,

dZt = µγ(Zt, t) dt+ σγ(Zt, t) dWt, (3)

where γ denotes the (shared) learnable parameters of the
drift function µ and variance function σ. In our experi-
ments, we implement µ and σ using deep neural networks.
Importantly, the latent state Zt exists for each t ∈ [0, T ]
and can be sampled on any given time grid, which can be
irregular and different for each sequence.
Time-Dependent Decoding. Latent variable models de-
code a latent state into an observable variable with com-
plex distribution. As an observed sequence {(xti , ti)}ni=1

is assumed to be a partial realization of a continuous-time
stochastic process, continuous trajectories of the latent pro-
cessZt should be decoded into continuous trajectories of the
observable processXt, and not discrete distributions. Fol-
lowing recent advances in dynamic normalizing flows (Deng
et al., 2020; Cornish et al., 2020; Caterini et al., 2020), we
modelXt as

Xt = Fθ(Ot;Zt, t), (4)
where Ot is a d-dimensional Ornstein–Uhlenbeck (OU)
process with closed-form transition density1 and Fθ( · ; zt, t)
is a normalizing flow parameterized by θ for any zt, t. The
transformation Fθ decodes each sample path of Zt into a
complex distribution over continuous trajectoriesXt if Fθ
is a continuous mapping and the sampled trajectories ofOt
are continuous with respect to time t. The OU process has a
stationary marginal distribution and bounded variance. As
a result, the variance of the observation process does not
increase due to the increase of variance in the base process.
Flow Architecture. The continuously indexed normaliz-
ing flow Fθ( · ; zt, t) can be implemented in multiple ways.

1pOti
|Otj

(oti |otj ) exists in closed form for any tj < ti.

We use an ANODE (Dupont et al., 2019), similar to Deng
et al.. The mapping Fθ is defined as the solution to the
initial value problem

d
dτ

(
h(τ)
a(τ)

)
=

(
fθ(h(τ),a(τ), τ)
gθ(a(τ), τ)

)
,

(
h(τ0)
a(τ0)

)
=

(
ot

(zt, t)
T

)
,

(5)
where τ ∈ [τ0, τ1], h(τ) ∈ Rd, a(τ) ∈ Rm+1, fθ : Rd ×
Rm+1 × [τ0, τ1] → Rd, gθ : Rm+1 × [t0, t1] → R, and
Fθ is defined as the solution of h(τ) at τ = τ1. Note the
difference between t and τ : while t ∈ [0, T ] describes the
continuous process dynamics, τ ∈ [τ0, τ1] describes the
continuous time-dependent decoding at each time step t.

3.2. Training and Inference

With the model fully specified, we can now focus our at-
tention on training and inference. Computing the observa-
tional log-likelihood (Eq.(2)) induced by a time-dependent
decoding of an SDE (Eq.(4)) on an arbitrary time grid is
challenging, because only few SDEs have closed-form tran-
sition densities. Consequently, variational approximations
are needed for flexible SDEs such as Eq.(3). We propose
a principled way of approximating the observational log-
likelihood with a variational lower bound based on a novel
piecewise construction of the posterior latent process.
Observational Log-Likelihood. The observational log-
likelihood can be written as an expectation over latent trajec-
tories of the conditional likelihood, which can be evaluated
in closed form,

L = logEWt

[
pXt1

,...,Xtn |Zt(xt1 , . . . ,xtn |Zt(ω))
]

= logEWt

[ n∏
i=1

pXti
|Xti−1

,Zti
,Zti−1

(xti |xti−1 ,Zti(ω),

Zti−1(ω))

]
,

(6)

where Zt(ω) denotes a sample trajectory of Zt driven by
ω ∼ Wt. For simplicity, we assume w.l.o.g. and in this
section only Z0,X0 to be given. As a result of invertibility,
the conditional likelihood terms pXti

|Xti−1
,Zti

,Zti−1
can

be computed using the change-of-variables formula,

log pXti
|Xti−1

,Zti
,Zti−1

(xti |xti−1 ,Zti(ω),Zti−1(ω))

= log pOti
|Oti−1

(oti |oti−1)− log

∣∣∣∣det ∂Fθ(oti ;Zti(ω), ti)∂oti

∣∣∣∣,
(7)

where oti = F−1θ (xti ;Zti(ω), ti).

Piecewise Construction of Variational Posterior. We
use a variational approximation of the observational
log-likelihood for both training and inference. Good
variational approximations rely on variational posteriors
that are close enough to the true posterior of the latent
trajectory conditioned on observations. We develop a
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method that naturally adapts to different time grids and
is not constrained by the Markov property of SDE solutions.

Our construction makes use of a further decomposition
of the observational log-likelihood based on the follow-
ing observations: {Ws+t − Ws}t>0 is also a Wiener
process ∀s > 0 and the solution to Eq. 3 is a Markov
process. Specifically, let {(Ω(i),F (i)

ti−ti−1
, P (i))}ni=1 be

a series of probability spaces on which n independent
m-dimensional Wiener processes W (i)

t are defined. We
can sample a complete trajectory of the Wiener process
Wt in the interval [0, T ] by sampling independent tra-
jectories ω(i) of length ti − ti−1 from Ω(i) and adding
them, i.e., ωt =

∑
{i:ti<t} ω

(i)
ti−ti−1

+ ω
(i∗)
t−ti∗−1

, where
i∗ = max{i : ti < t} + 1. As a result, we can solve
the latent stochastic differential equations in a piecewise
manner. Zti is obtained by solving the following stochastic
differential equation

dẐt = µγ(Ẑt, t+ti−1) dt+σγ(Ẑt, t+ti−1) dW (i)
t , (8)

with Zti−1 being the initial value. The log-likelihood of the
observations can thus be rewritten as

L = logE
W

(1)
t ×···×W

(n)
t

[
n∏
i=1

p(xti |xti−1 ,zti ,zti−1)

]
= logE

W
(1)
t

[
p(xt1 |xt0 ,zt1 ,zt0) . . .

E
W

(i)
t

[
p(xti |xti−1 ,zti ,zti−1)EW

(i+1)
t

. . .
]]
.

(9)

In preparation of our variational approximation, we can now
introduce one posterior SDE

dZ̃t = µφi(Z̃t, t+ ti−1) dt+ σγ(Z̃t, t+ ti−1) dW (i)
t

(10)
for each expectation E

W
(i)
t

[
p(xti |xti−1

, zti , zti−1
) . . .

]
in

Eq.(9).

Variational Lower Bound with Piecewise Reweighting.
The posterior SDEs in Eq.(10) form the basis for a varia-
tional approximation of the expectations in Eq.(9). Specifi-
cally, sampling z̃ from the posterior SDE, the expectation
can be rewritten as

E
W

(i)
t

[
p(xti |xti−1 , z̃ti ,zti−1 , ω

(i))M (i)(ω(i))E
W

(i+1)
t

. . .
]
,

(11)
where M (i) = exp(−

∫ ti−ti−1

0
1
2 |u(Z̃s, s)|

2 ds −∫ ti−ti−1

0
u(Z̃s, s)

T dW (i)
s ) serves as a re-weighting term

for the sampled trajectory between the prior latent SDE
(Eq.(8)) and posterior latent SDE (Eq.(10)), with u satisfy-
ing σγ(z, s+ ti−1)u(z, s) = µφi

(z, s+ ti−1)−µγ(z, s+
ti−1). By defining and sampling a latent state from the pos-
terior latent SDEs for each time interval, we obtain the fol-
lowing evidence lower bound (ELBO) of the log-likelihood:

Table 1: Quantitative Evaluation (Synthetic Data). We show
test negative log-likelihoods (NLLs) of four synthetic stochastic
processes across different models. [GBM: geometric Brownian
motion (ground truth NLLs: 0.388); LSDE: linear stochastic dif-
ferential equation; CAR: continuous autoregressive process]

Model GBM LSDE CAR

Latent ODE 2.139 0.900 5.030
CTFP 3.023 -0.474 372.557
Latent CTFP 1.502 -0.460 415.480
Latent SDE 1.233 -0.001 4.9342
CLPF (ours) 0.435 -0.826 1.325

L = logE
W

(1)
t

[
p(xt1 |xt0 , z̃t1 , z̃t0)M

(1)(ω(1)) . . .

E
W

(i)
t

[
p(xti |xti−1 , z̃ti , z̃ti−1)M

(i)(ω(i)) . . .
]
. . .
]

= logE
W

(1)
t ×···×W

(n)
t

[
n∏
i=1

p(xti |xti−1 , z̃ti , z̃ti−1)M
(i)(ω(i))

]

> E
W

(1)
t ×···×W

(n)
t

[
n∑
i=1

log p(xti |xti−1 , z̃ti , z̃ti−1)+

n∑
i=1

logM (i)(ω(i))

]
.

(12)

The bound above can be further extended into a tighter
bound in IWAE (Burda et al., 2016) form by drawing multi-
ple independent samples from eachW (i)

t . The variational
parameter φi is the output of an encoder RNN that takes
the sequence of observations up to ti, {Xt1 , . . . ,Xti},
and the sequence of previously sampled latent states,
{Zt1 , . . . ,Zti−1

}, as inputs.

4. Experiments
We compare our proposed architecture against several base-
line models with continuous dynamics including CTFP, la-
tent CTFP, latent SDE, and latent ODE to fit irregular time
series simulated from common continuous stochastic pro-
cesses including geometric Brownian motion (GBM), linear
stochastic differential equations (LSDE), and continuous
autoregressive process (CAR). We report negative log like-
lihood and the results are displayed in Table 1. We defer
more details to the supplementary material

5. Conclusion
We have presented Continuous Latent Process Flows
(CLPF), a generative model of continuous dynamics that
enables inference on arbitrary real time grids, a complex
operation for which we have also introduced a powerful
piecewise variational approximation. Our architecture is
built around the representation power of a flexible stochastic
differential equation driving a continuously indexed normal-
izing flow. A set of qualitative results on synthetic datasets
demonstrates the effectiveness of our model.
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A. Synthetic Dataset Specifications
We compare our model against the baseline models using
data simulated from three continuous stochastic processes:
geometric Brownian motion (GBM), linear SDE (LSDE),
and continuous auto-regressive process (CAR). We simulate
the observations of GBM, LSDE, and CAR in the time inter-
val [0, 30]. For each trajectory, we sample the observation
time stamps from an independent homogeneous Poisson
process with intensity 2 (i.e., the average interarrival time
of observations is 0.5). The observation values for geomet-
ric Brownian motion are sampled according to the exact
transition density. The observation values of the LSDE and
CAR processes are simulated using the Euler-Maruyama
method (Bayram et al., 2018) with a step size of 1e− 5. For
each process, we simulate 10000 sequences, of which 7000
are used for training, 1000 are used for validation and 2000
are used for evaluation.

In the remainder of this section we provide details about the
parameters of the stochastic processes:

Geometric Brownian Motion. The stochastic process can
be represented by the stochastic differential equation dXt =
0.2Xt dt+ 0.1Xt dWt, with an initial valueX0 = 1.

Linear SDE. The linear SDE we simulated has the form
dXt = (0.5 sin(t)Xt + 0.5 cos(t)) dt + 0.2

1+exp(−t) dWt.
The initial value was set to 0.

Continuous AR(4) Process. A CAR process Xt can be
obtained by projecting a high-dimensional process to a low
dimension. This process tests our model’s ability to capture
non-Markov processes:

Xt = [1, 0, 0, 0]Yt,

dYt = AYt dt+ e dWt,
, where A =

 0 1 0 0
0 0 1 0
0 0 0 1
a1 a2 a3 a4

 ,
e =[0, 0, 0, 1], [a1, a2, a3, a4] = [+0.002,+0.005,−0.003,−0.002].

(13)

B. Model Architectures
We keep the key hyperparameters of our model and the base-
line models in a similar range, including the dimensions of
the recurrent neural networks’ hidden states, the dimensions
of latent states, and the hidden dimensions of decoders. We
set the latent dimension to 2 for geometric Brownian motion
and linear SDE, and 4 for the continuous auto-regressive
process. For all models that use a recurrent neural network,
we use gated recurrent units (GRU) with a hidden state of
size 16.

Continuous Latent Process Flows (CLPF) We use two
fully-connected network with two hidden layers to imple-
ment the drift µ and variance σ networks, for both the prior
and posterior SDE. The hidden layer dimensions for (prior

SDE, posterior SDE) are (32, 32). We use a GRU as the
encoder of observationsXti and latent statesZti to produce
φi at each step i in Equation 10 in the main paper. The GRU
takes the observation Xti , the latent state Zti , the current
and previous time stamps ti and ti−1, and the difference
between the two time stamps as inputs. The updated hidden
state is projected to a context vector of size 16. The pro-
jected vector is concatenated withXti and ti as part of the
input to the drift function µφi of the posterior process in the
interval [ti−1, ti].

We use five blocks of the generative variant of augmented
neural ODE (ANODE) (Deng et al., 2020) to implement the
indexed normalizing flows in all experiments. In each AN-
ODE block, the function h in Equation 5 in the main paper
is implemented as a neural network with 4 hidden layers of
dimension [8, 32, 32, 8]; the funtion g is implemented as a
zero mapping.

Continuous Time Flow Process (CTFP) and Latent
CTFP For CTFP (Deng et al., 2020) and the decoder of its
latent variant, we also use 5 ANODE blocks with the same
number of hidden dimensions as CLPF. The encoder of the
latent CTFP model is an ODE-RNN (Rubanova et al., 2019).
The ODE-RNN model consists of a recurrent neural net-
work and a neural ODE module implemented by a network
with one hidden layer of dimension 100. The default values
in the official implementation2 of latent CTFP are adopted
for other hyperparameters of the model architecture.

Latent ODE For the latent ODE model (Rubanova et al.,
2019), we use the same encoder as latent CTFP. The latent
ODE decoder uses a neural ODE with one hidden layer of di-
mension 100 to propagate the latent state across a time inter-
val deterministically. The latent state propagated to each ob-
servation time stamp is mapped to the mean and variance of
a Gaussian observational distribution by a fully-connected
network with 4 hidden layers of dimension [16, 64, 64, 16].
We use the default values in the official implementation3 of
latent ODE for other hyperparameters of the model archi-
tecture.

Variational RNN (VRNN) The backbone of
VRNN (Chung et al., 2015) is a recurrent neural
network. A one-layer GRU is used to implement the
recurrent neural network. During inference, the hidden
state is projected to the mean and variance of a Gaussian
distribution of the latent state by a fully-connected network.
During generation, the hidden state is directly mapped
to the parameters of the latent distribution. The sample
of the latent state is decoded to the parameters of an
observational Gaussian distribution by a fully-connected

2https://github.com/BorealisAI/continuous-time-flow-process
3https://github.com/YuliaRubanova/latent_ode
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network with 4 hidden layers of dimension [16, 64, 64, 16].
In the recurrence operation, the GRU takes the latest latent
sample and observation as inputs. We also concatenate
the time stamp of the current observation as well as the
difference between the time stamps of the current and
previous observation to the input.

Experiment Settings For each process, we use 7000 se-
quences for training, 1000 sequences for validation and
2000 sequences for test. We train all the models with flat
learning rate of 1e-3 until convergence. We cap the number
of training epochs to 100 for GBM and LSDE and 200 for
CAR. For models optimized with IWAE bound, we use 3
samples of latent state (trajectory) for training, 25 samples
for validation and 125 samples for evaluation. To solve
the latent stochastic process in the continuous latent process
flow model, we used Euler-Maruyama scheme with adaptive
step size. The automatic differentiation engine of PyTorch
is used for backpropagation.


