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Abstract
We derive tight probabilistic bounds on the first
hitting time of general classes of contractive non-
linear time series models that can be linked to
mean reverting processes. As an application to
finance, we translate our results to a pairs trad-
ing strategy with probabilistic guarantees on its
returns.

1. Introduction
The proliferation of learning-based time series estimation
techniques increases the need for widely applicable theo-
retical tools for understanding generic nonlinear time series
models. Here, first hitting time guarantees and mean re-
version of learning-based nonlinear time series models are
properties of particular importance in a great many appli-
cation domains, including in finance, econometrics, control
and dynamical systems.

In time series analysis, first hitting times and contractive
dynamical systems have been extensively studied in a di-
verse range of contexts. For discrete time series, usual
approaches involve either fitting an autoregressive AR(p)
model or assuming underlying dynamics that are linear and
stationary. The first hitting time probabilities are then com-
puted numerically (Basak and Ho, 2004) (Di Nardo, 2008)
or can be lower bounded analytically in the case of the
AR(1) model (Novikov, 1991). This approach has been
explored in various domains; in statistical arbitrage and
quantitative finance for optimal thresholds setting (Krauss,
2017)(Puspaningrum et al., 2010), for predicting popula-
tion extinction and time to extinction in ecology (Fergu-
son and Ponciano, 2014), signal detection and surveillance
analysis (Frisén and Sonesson, 2006) or structural health
monitoring (Mollineaux and Rajagopal, 2015) (Noh et al.,
2009). For continuous time series, dynamics are usually
assumed to follow the Ornstein-Uhlenbeck (OU) dynam-
ics in which case the first hitting time probabilities can be
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obtained semi-analytically (Lipton and Kaushansky, 2018)
(Martin et al., 2019) (and references therein) under some
additional assumptions. Applications are numerous and in-
volve, for example, hydrology (Fisher et al., 2014), neuro-
science (Lánskỳ and Smith, 1989) or quantitative finance
(Bertram, 2010)(Zeng and Lee, 2014). Note that, even
though in aforementioned works specific forms of dynamic
models were presupposed, the computation of the first hit-
ting time probabilities had to rely on numerical approxima-
tion.

What unifies these threads of works is that they provide
an understanding of hitting times for time series whose
transition functions conform to a specific structure. How-
ever, when those functions are identified by black-box ma-
chine learning algorithms, existing results are not appli-
cable. What is needed are theoretical bounds that can be
computed for time series models whose transition functions
have been black-box identified with general classes of pop-
ular machine learning methods, such as neural networks or
non-parametric models.

In this work, we provide such bounds. In particular, we
derive (contractive) Lipschitz conditions on the transition
function sufficient to calculate our probabilistic hitting time
bounds. As we explain, the conditions can be readily cal-
culated for some of the most popular machine learning
models. Our hitting time bounds are shown to be tight.
While they involve a non-analytic definite integral, this can
be computed numerically offline and its solutions could be
stored in a look-up table.

Moreover, we show how our results can be directly applied
to inform trading decisions. Our hitting time bounds are
shown to translate to probabilistic bounds on the return of
the ensuing trading strategy, provided the time series of the
asset pair satisfies the required contractive Lipschitz condi-
tions.

2. Model assumptions
Time series model. Let d ∈ N, ψ : Rd → R and a ∈ Rd.
We assume our time series is modelled by the (stochastic)
nonlinear auto-regressive (NAR) process (yt)t∈N with tran-
sition function ψ and initial conditions a ∈ Rd defined as
follows:
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yt+1 :=
{
ψ(yt, ..., yt−(d−2), yt−(d−1)) + εt+1 for t > d

yi = ai, ai ∈ R ∀i ∈ {1, ..., d}. (1)

Here, the noise process (εt)t∈N is a stochastic process (s.p.)
satisfying :

Assumption 2.1. The joint distribution of any finite se-
quence of consecutive noise variables; ε1:T := (ε1, ..., εT )
has a probability density function denoted by fε1:T .

Note, the commonly encountered white noise process
would satisfy our assumption.

Assumption on contractive transition maps. To estab-
lish our bounds in subsequent sections, we need to assume
the transition function ψ to be a contraction relative to a
weighted norm we introduce next:

Definition 2.2 (α∗-norm). Let α∗ ∈ Rd≥0, The α∗-norm
‖·‖α∗ : Rd → R is defined as the following weighted l1
norm ‖x‖α∗ =

∑d
i=1 α

∗
i |xi| ∀x ∈ Rd.

We rehearse the definition of Lipschitz continuity;
Definition 2.3 (Lipschitz continuity). For a domain D ⊆
Rd constant, norm ‖·‖ and L̄ ∈ R+ we define the space of
L̄-Lipschitz continuous functions as

LL̄(D, ‖·‖)
:=
{
f : D → R|∀x, x′ ∈ D :

∣∣f(x)− f(x′)
∣∣ ≤ L̄∥∥x− x′∥∥}

where ‖·‖ denotes an arbitrary norm on Rd. Constant L̄
is called a Lipschitz constant of any f ∈ LL̄(D, ‖·‖). Fur-
thermore, the smallest L∗ > 0 such that f is L∗− Lipschitz
continuous is called the best Lipschitz constant of f .

Definition 2.4 (α∗-contracting process). Let D ⊆ Rd. An
auto-regressive process is called an α∗-contracting pro-
cess on D if its transition function ψ is contained in
L1(D, ‖·‖α∗ ) and α∗ ∈ 4+ := {x ∈ Rd≥0|

∑d
i=1 xi < 1}.

Assumption 2.5. Our time series (yt)t∈N is an α∗ con-
tracting process , i.e.

ψ ∈ Lα
∗
(D) := L1(D, ‖·‖α∗)

for some α∗ ∈ 4+ and D = Rd.

3. First hitting time guarantees
We will now state bounds on first hitting times of our time
series. We assume all definitions and assumptions intro-
duced in Sec. 2 hold.

Appealing to Banach’s fixed point theorem one can show
the existence of a unique fixed point y∗ = ψ(y∗, . . . , y∗).

As we will see, the contractive properties of the time series
result in a generalisation of mean-reverting behavior where

the fixed point serves as the level to which the time series
will tend to revert to in the long run after being exposed to
a shock.

Definition 3.1 (First hitting time (f.h.t.) ). For a ∈ Rd with
ad > y∗ and γ ∈ [0, ad − y∗[, we define the upper first
hitting time of (yt)t∈N:

τ+
γ := inf{t ∈ N|yt+d − y∗ < γ} .

Similarly, for ad < y∗ and γ ∈ [ad − y∗, 0[, we define the
lower first hitting time of (yt)t∈N:

τ−γ := inf{t ∈ N|yt+d − y∗ > γ} .

Initial value ad can be seen as having resulted from a
”shock” in the time series and γ as a return barrier that
indicates proximity to the long-run “mean” y∗. The first
hitting times τ+

γ and τ−γ are linked to the speed of mean
reversion measured at various levels (γ).

By conditioning on past hitting times and the last result of
(Wise, 1955), one can show our first first principal result:

Theorem 3.2. For T ∈ N, define

I+
(α∗,y∗)(T ) :=

∫ ∞
−b1

...

∫ ∞
−bT

fε1:T (A(T )x)dx

whereA(T ) is defined in (4), fε1:T is defined in Assumption
2.1 and bi :=

(
Bi(a−y∗1d)

)
1
−γ for i = 1, . . . , T where

B is defined in (5). We have:

(i) P
(
τ+
γ > T

)
≤ I+

(α∗,y∗)(T ) < 1 and

(ii) E[τ+
γ ] ≤ 1 +

∞∑
T=1

I+
(α∗,y∗)(T ).

Remark 3.3. Analogous bounds can be derived for
P
(
τ−γ > T

)
and E[τ−γ ].

Remark 3.4. Some comments on the behaviour
I+

(α∗,y∗)(T ):

(1) ∀T ∈ N, I+
(α∗,y∗)(T ) is decreasing in γ.

(2) If ∀ i, α∗i < β∗i then I+
(α∗,y∗)(T ) < I+

(β∗,y∗)(T ).
(3) ∀T ∈ N : lim‖α∗‖1→0 I

+
(α∗,y∗)(T ) = 1

2T .

The integral stated in I+
(α∗,y∗)(T ) corresponds to the com-

putation of orthant probabilities and can be done numeri-
cally. The following result gives a condition under which
E[τ+

γ ] is finite.

Proposition 3.5. If instead of Assumption 2.1, (εt)t∈N is
assumed to be a white noise process then E[τ+

γ ] <∞.

Remark 3.6. Prop. 3.5 implies that P
(
τ+
γ <∞) = 1.
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[a] [b] [c]
Figure 1: [a]:Blue columns represent empirical estimate of CDF of f.h.t. of time series generated by a neural network (4-layers, Relu
activation); P

(
τ+
γ ≤ T

)
. Red line is computed from 1 − I+

(α∗,y∗)(T ) in Theorem 3.2. Here, α∗ = (0.7, 0.15, 0.1) is computed using
the approach described in subsection 3.1. [b]: Illustration of statistical arbitrage thresholds for the short position. Positions are opened
(green circles) when the time series hits U (green line) and closed (red circles) when it subsequently hits L (red line). The dashed black
line represents the ”fixed point” y∗. [c]: Cumulative realised P&L of the trading strategy applied in Figure 1[b] .

Prop. 3.5 implies that the α∗-contracting stochastic process
is mean reverting in the sense that it will eventually hit any
barrier between the shock and y∗ of the time series with
probability 1. In particular, since γ can be chosen to be 0,
we have that the stochastic process eventually hits y∗ with
probability 1. A result on the tightness of the bounds given
in Theorem 3.2 can also be shown:

Proposition 3.7 (Tightness). The upper bounds in Theo-
rem 3.2 are tight for all α∗ ∈ 4+.

3.1. Estimation of α∗ from machine learning models

A main benefit of the theoretical results obtained in the pre-
vious section is the intuitive formulation of the Lipschitz
type conditions used. In particular, if ψ is differentiable,
we have the following result;

Proposition 3.8. If D ⊆ Rd is convex and ψ ∈ C1(D)
then ψ ∈ Lα∗

(D) with α∗i = maxx∈D | ∂f∂xi
(x)|.

From Prop. 3.8, we have that if there exists {λi}i∈{1,...,d}
such that maxx∈D | ∂f∂xi

(x)| ≤ λi for all i ∈ {1, ..., d} and∑d
i=1 λi < 1 then Theorem 3.2 can be applied. While

the computation of Lipschitz constants of machine learn-
ing models is difficult (with the exception of some non-
parametric frameworks (Calliess et al., 2020)), computing
gradients of the learned model is generally straightforward.

For nonlinear autoregressive models that rely on neu-
ral networks, backpropagation can be used to compute
the partial derivatives and existing deep learning libraries
(eg. Pytorch or Tensorflow) can be leveraged (see
torch.autograd/tf.GradientTape). Alternatively, for several
nonparametric machine learning model choices, it is pos-
sible to incorporate gradient learning into the model fitting
process. This would offer a more direct way of estimating
the {λi}i∈{1,...,d} coefficients. The robustness of the es-
timation of the {λi}i∈{1,...,d} coefficients is not discussed
in this paper as it is dependent on the choice of the time

series forecasting framework. For some of the modelling
frameworks mentioned above, research on robust estima-
tion of the gradient/partial derivatives relative to the in-
put of the model can be found (Cardaliaguet and Euvrard,
1992) (Wang et al., 2019).

4. Application to pairs trading
In this section, we apply our theoretical results to statisti-
cal arbitrage. In particular, we consider the popular case
of pairs trading. Here, one trades a synthetic asset whose
price series Z is computed as the difference of two other
assets X , Y . That is, one trades Zt = Xt − βYt. Hedg-
ing coefficient β is tuned to render Z mean reverting. A
pairs trading strategy then aims to profit by leveraging the
mean reverting behavior of the synthetic asset. It enters a
long trade whenever the price of the synthetic asset reaches
a threshold level that is far below the mean. It closes the
long trade whenever the asset price has reverted back to
the mean level by selling it. Conversely, the strategy goes
short trade is initiated the price of Z reaches a level that
is far above the mean by short-selling the synthetic asset
and closes out the position upon reaching the mean. Typi-
cally, the thresholds U,L are found heuristically, or based
on restrictive assumptions on the time series model such as
being an OU model (Bertram, 2010).

In contrast, we can harness our theoretical results to in-
form a pairs trading strategy for wide classes of nonlinear
models. For example, we can learn the time series dynam-
ics with an artificial neural network (ANN) or by tuning
any econometric model and then inspect the bounds on the
partial derivatives to determine whether the synthetic asset
is mean reverting in the sense of being α∗-contracting (cf.
Prop. 3.8). If it is, we can use our f.h.t. bounds1 on first hit-
ting times to determine the entry and exit levels U,L such

1Of course, the validity of the f.h.t. bounds inferred using the
results of this paper depend on the accuracy of the α∗ estimate.
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[a] [b] [c]
Figure 2: [a,b]: Illustration of the dependence of the f.h.t. lower bound guarantee and the expected return lower bound guarantee (Eq. 3)
on the entry threshold (U) and exit threshold (L). Here, α∗ = (0.7, 0.15, 0.05) and U,L are given in units of noise standard deviation.
[c]: Setting thresholds U = 4.4, L = 2.2 and utilising a lower bound on the return r(U,L, c) ≥ U − L, the lower bound on the avg.
return for various confidence levels is illustrated empirically by computing the return of 5000 opened positions at thresholds (U,L).

that we get a probabilistic guarantee on the return from the
trade within a certain time.

An illustrative example is given in Figure 1[b,c]. Here we
traded a simulated synthetic asset employing our strategy.

To tune U,L and understand the profitability properties of
the trades of the strategy, we are interested in bounds in-
volving the following variables:

Definition 4.1 (Informal definition of trading variables).

• r(U,L, c): return of a single trade at thresholds
(U,L) and transaction cost c.

• T (U,L): time taken to close positions once they have
been opened (with threshold (U,L)).

• RTrade(U,L, c) := r(U,L,c)
T (U,L) : average return of a sin-

gle trade per unit of time with thresholds (U,L).

Under common noise assumptions (Gaussian or t-student
with finite standard deviation of σ), we can utilise The-
orem 3.2 to obtain an upper bound on T (U,L, c) that
holds with high probability; T(α∗,σ)(U,L, p) := min{T ∈
N| I+

(α∗,y∗)(T ) ≥ p} where I+
(α∗,y∗) depends on the choice

of U,L and σ. This upper bound can then be used to set a
probabilistic guarantee on the avg. return per unit of time;

P
(
RTrade(U,L) ≥ r(U,L, c)

T(α∗,σ)(U,L, p)

)
≥ p (2)

where p ∈ [0, 1] is a chosen confidence level. Furthermore,
we also have that

E[RTrade(U,L)] ≥ r(U,L, c)∑∞
T=1 I

+
(α∗,y∗)(T )

. (3)

This result follows from Theorem 3.2 and Jensen’s inequal-
ity. (2) and (3) can be used to determine trading thresholds
that guarantee, either in expectation or with high probabil-
ity, a sufficiently high average return per unit time. The
final optimisation of the trading thresholds will then also
depend on the number of times the position entry threshold

U is hit (ie. the number of times a position in the under-
lying securities can be opened), the desired duration of the
trade and the average return per unit of time of other trading
opportunities in the portfolio.

Figures 2[a] and 2[b] provide an illustration of the be-
haviour of the lower bound guarantees on E[T (U,L)] and
E[RTrade(U,L)] stated in (3) for various values of U and
L. These lower bounds were computed in the context of a
simple case of pairs trading (r(U,L, c) ≥ U − L) when
the dynamics of the synthetic asset were assumed to be
α∗-Lipschitz contracting with α∗ = (0.7, 0.15, 0.05). For
a specific choice of U,L, Figure 2[c] illustrates the lower
bound stated in (2). As expected, for each confidence level
p the curve representing the lower bound given in (2) is
beneath the curve representing the empirically estimated
(1− p)-th quantile of the average return per unit of time.

5. Conclusions
In this work, we have derived novel first hitting time
bounds derivable for general classes of nonlinear time se-
ries models. In contrast to existing work, we did not need to
impose strong requirements on the functional form of the
transition function. Instead, our bounds rested on condi-
tions on contraction conditions relative to a weighted norm.
Such conditions can be readily verified for a great many
machine learning models such as neural networks (e.g. via
partial gradients automatically derived by popular pack-
ages such as tensorflow.) We have also provided a syn-
thetic example of a trading application of where our hitting
time bounds can be leveraged to inform a strategy’s posi-
tion changes such that risk bounds on the returns can be
provided. Future work will investigate how successful this
approach can be when applied to learning-based trading of
real financial assets under risk constraints. Of course the
generality of our results might suggest they could be em-
ployed in a wide range of other disciplines where hitting
times are of interest, such as in econometrics, ecology and
control.
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A. Appendix
A.1. Relevant matrices

For any α∗ ∈ 4+ := {x ∈ Rd≥0|
∑d
i=1 xi < 1} and

T ∈ N, we define the associated matrices A(T ) ∈ RT×T
and B ∈ Rd×d. Here, A(T ) is a lower triangular banded
matrix where the entries are given by

A(T )ij :=


1, if i− j = 0

−α∗(i−j), if 0 < i− j ≤ d
0, otherwise.

(4)

for all i, j ∈ {1, ..., T}. B is a sparse matrix whose entries
are given by:

Bij :=


1, if i− j = 1

α∗j , if i = 1 and 1 ≤ j ≤ d
0, otherwise

(5)

for all i, j ∈ {1, ..., T}.
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