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Abstract
Changepoint Detection methods aim to find loca-
tions where a time series shows abrupt changes
in properties, such as level and trend, which per-
sist with time. Traditional parametric approaches
assume specific generative models for each seg-
ment of the time series, but often, the complex-
ities of real time series data are hard to capture
with such models. To address these issues, in this
paper, we propose VAE-CP, which uses a varia-
tional autoencoder with self supervised loss func-
tions to learn informative latent representations of
time series segments. We use traditional hypoth-
esis test based and Bayesian changepoint meth-
ods in this latent space of normally distributed
latent variables, thus combining the strength of
self-supervised representation learning, with para-
metric changepoint modeling. This proposed ap-
proach outperforms traditional and previous deep
learning based changepoint detection methods
in synthetic and real datasets containing trend
changes.

1. Introduction
The problem of detecting abrupt changes in a sequence
of observations, known as the changepoint detection prob-
lem, has application in a number of domains, such as cli-
mate modeling(Manogaran & Lopez, 2018), human activity
recognition(Cleland et al., 2014), speech recognition(Panda
& Nayak, 2016), finance(Lavielle & Teyssiere, 2007) etc.
Such algorithms find particular applications in monitoring
internet infrastructure, such as regressions in large code-
bases(Valdez-Vivas et al., 2018)and network traffic(Kurt
et al., 2018). Changepoint Detection is also useful in the
context of time series forecasting(Taylor & Letham, 2018).

A number of parametric changepoint detection methods
are used in practice, which compare past and future time
series intervals using a dissimilarity metric. Burg and
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Williams(van den Burg & Williams, 2020) presents an eval-
uation of traditional changepoint detection methods on a
wide variety of real life time series. Many of these change-
point detection algorithms assume that the data in a segment
of the time series, is generated from a parametric model,
and attempt to detect changes in the model parameters, as
evidence of changepoint.

For instance, Bayesian Online Changepoint Detec-
tion(BOCPD)(Adams & MacKay, 2007) algorithm assumes
a Bayesian predictive model for a segment. Many imple-
mentations(Pagotto, 2019) assume that the data in a seg-
ment comes from a normal distribution, a condition that
is violated by many real life time series(van den Burg &
Williams, 2020).Other predictive models for BOCPD have
also been explored , such as Gaussian processes(Saatçi et al.,
2010; Han et al., 2019), Bayesian LSTM(Detommaso et al.,
2019). Similarly, Prophet(Taylor & Letham, 2018) mod-
els each segment using a Bayesian linear regression, and
CUSUM(Page, 1954) uses various hypothesis tests(Flynn &
Yoo, 2019; Li et al., 2010; Healy, 1987) to detect dissimari-
ties between segments. However, these methods are unable
to capture the complexities of time series data, such as (mul-
tiple)seasonalities, autocorrelations etc. They also need
to be specifically tuned for each time series, using expert
knowledge, to guess the generative model for a particular
time series.

Deep learning based approaches have been very successful
in learning informative latent representations of sequential
data, in natural language processing(Devlin et al., 2018)
using self-supervision. Predicting neighboring time series
segments, have also resulted in similarly powerful embed-
dings for time series clustering tasks(Franceschi et al., 2019).
Similar approaches have recently been applied to the change-
point detection problem. KL-CPD(Chang et al., 2019) uses
deep kernel based hypothesis tests. The approaches closest
to our approach are TIRE(De Ryck et al., 2020) which uses
autoencoders and TS − CP 2(Deldari et al., 2020), which
uses contrastive learning, to learn latent representations, and
find dissimilarities. However, the success of these algo-
rithms are limited to large, multivariate time series, in which
their efficacies are demonstrated. While these algorithms
attempt to learn good latent representations, they fail to
combine them with the strength of parametric changepoint
detection algorithms.
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In the paper, we propose a self-supervised learning approach,
VAE-CP that combines the power of deep learning archi-
tectures to learn informative latent representations, with the
application of parametric changepoint detection methods,
which have been very successful in settings, where their
model assumptions are strictly satisfied. In particular, we
consider the Variational AutoEncoder(Kingma & Welling,
2013), where the latent variables are drawn from a nor-
mal distribution. Hypothesis tests based algorithms, such
as CUSUM(Page, 1954) and bayesian algorithms such as
BOCPD(Adams & MacKay, 2007) are well known algo-
rithms when the data in a segment comes from a normal
distribution, and hence we can easily run changepoint detec-
tion algorithms in the latent space. We specifically concen-
trate on identifying trend changes, but the methods can be
expanded to other changes in future.

2. Method
2.1. Problem Formulation

Given an time-series X = (x1, x2, x3.....xT ), xi ∈ R, we
are interested in finding changepoints τ1, τ2.....τk, such that
τ1 < τ2 < ...τk. We assume that a segment of the time
series xτi , xτi+1, xτi+2......xτi+1 has some common char-
acteristic, such as the same seasonality, trend, and level.
However, unlike conventional time series models, we will
refrain from assuming a known distribution for the segment.

We will work with windows of size w. At the current time t,
we consider the window Xw

t = {xt−w, xt−w+1, .....xt−1}.
We aim to find changepoints based on dissimilarities be-
tween consecutive windows in the latent space.

2.2. Self Supervised VAE

One of the main contributions of the paper is, to learn a
latent representation using a Variational AutoEncoder, and
use self-supervision as a signal. While previous studies on
changepoint detection have used various encoding architec-
tures(De Ryck et al., 2020; Deldari et al., 2020), we use
VAEs since VAEs are a stochastic generative model, which
produces calibrated probabilities. The latent variables come
from a normal distribution, and this is the setting, for which
parametric changepoint algorithms are designed for. Hence,
our contribution, is to create embeddings, which can be
easily fed to powerful parametric changepoint detection
algorithms.

We wish to learn an encoder, from an windowXw
t , to its cor-

responding latent value zt, in a continuous space, such that
the encoding is informative of the segment of the time series
Xw
t belongs to. We assume that zt ∼ N(µt, diag(σ2

t )),
where [µt, σt] ∼ φencoder(Xw

t ).

The decoder produces a time series window of identical

Figure 1. (a) The original time series, with 3 changepoints, at 125,
250 and 375. Original/negative/neighboring windows are passed
through a VAE. (b) The VAE tries to minimize a reconstruction loss,
a regularization loss and a triplet loss. (c) shows the distributions
of latent variables, qualitatively demonstrating the separation of
the different segments. Colors represent the four segments, same
as the numbers marked on the original time series.

length, X̂w
t = ψdecoder(zt). To encourage a representation

of zt that contains information about the segment it belongs
to, we train latent representation to be similar to a nearby
”neighbor” window. For each window Xw

t , we randomly
sample another window Xw

t′ , such that the windows are
nearby, i.e. |t − t′| ≤ L, where L is an user defined limit,
which determines the smoothing. This helps us obtain la-
tent representations that are independent of local effects
within the segment, Although VAEs are trained to minimize
reconstruction error traditionally, similar self-supervised ap-
proaches have been explored(Zhu et al., 2020) for sequential
data.

We optimize the ELBO loss of the VAE,

LV AE = Ezt∼q[−p(Xw
t′ |zt) + γDKL(q(zt)||p(z))] (1)

where γ is a factor that determines the strength of regular-
ization.

In addition to LV AE , we also optimize a triplet loss Ltriplet,
used commonly in self-supervised learning(Wang & Gupta,
2015). We add a random trend to the the values in Xw

t , to
construct a negative sample, and obtain its corresponding
latent variable znegt . To encourage windows with dissimilar
trends to be separated in the latent space, we define

Ltriplet = max(D(zt, z
neighbor
t )−D(zt, z

neg
t ) +m, 0)

(2)

where m is a margin, and D is an Euclidean distance. Neg-
ative sampling techniques have been used in the past in
self-supervised learning for time series, in changepoint de-
tection(Deldari et al., 2020) and clustering(Franceschi et al.,
2019).
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The architecture of the encoder φencoder consists of a fully
connected layer, followed by RELU activation, to generate
a hidden state. We then use two separate fully connected
layers to generate µt and log(σt). The decoder ψdecoder
similarly consists of an MLP with a single hidden layer and
RELU activation.

To train the algorithm, we sample minibatches correspond-
ing to multiple (Xw

t , X
w
t′ , X

w
t−neg). Drawing multiple ran-

dom samples corresponding to the same Xw
t is helpful in

practice. Once the algorithm is trained, we generate the the
corresponding latent representations zi∀i ∈ [w, T ]. To qual-
itatively evaluate the quality of the embeddings, in Figure 1,
we visualize the latent space for an example synthetic time
series with three changepoints. We color the four segments
with different colors, and we can observe the partial separa-
tion of the latent variables, in this space. This separation is
further clear in Figure 2, where we plot the time series of
the latent variables.

2.3. Changepoint Detection

Figure 2. Original TimeSeries(above) with detected changepoints
(black), and ground truth(red). Time series of each dimension of
the 2D latent variable(below).

We use multivariate changepoint detection tech-
niques in the low dimensional latent space
Z = {zw, zw+1, zw+2, .....zT }. We rely on two con-
ventional changepoint detection techniques, hypothesis
tests and Bayesian Online Changepoint Detection(BOCPD).
We have used the techniques with some modification, since
in our case, as seen in Figure 2, we observe a more gradual
change, rather than an abrupt change, that the algorithms
are designed for. This is because there are w windows
around a changepoint, which contain data points from the
previous and current segments.

Once we obtain the changepoints from these two meth-
ods, our final result is obtained by taking an union of the
changepoints from both the methods. If two changepoints
are within a margin, we take their average as the result.
Algorithm 1 sketches the full implementation of VAE-CP.

Hypothesis Test Following reasoning similar to the
CUSUM algorithm(Page, 1954; Flynn & Yoo, 2019; Li
et al., 2010; Healy, 1987), we sequentially perform hy-
pothesis tests at every time point t, over windows of
the latent variable. Defining wH as the window size,
for hypothesis test, we define the left and right win-
dows as Zlt = {zt−wH

, zt−wH+1, ....zt−1} and Zrt =
{zt, zt+1, zt+2, .....zt+wH−1}.

Since zt ∼ N(µt, diag(σ2
t )), we use the Hoteling’s T2 test,

and obtain the test statistic and p-values from the test. Dur-
ing post-processing, we identify regions in the time series,
where the p-value is below a threshold for a duration larger
than the original window size w.This region correspond to
windows which contain data points from before and after
changepoint. We then find the peak of the test statistic inside
this region and assign this as the changepoint.

Multivariate BOCPD Bayesian Online Changepoint De-
tection(BOCPD)(Adams & MacKay, 2007) works by find-
ing the posterior distribution of the run length rt, given the
data. rt corresponds to the number of time points since the
last changepoint. The basic idea of BOCPD is to define a
recursive equation for the joint distribution

P (rt, z1:t) =
∑
rt−1

P (rt−1, z1:t−1)P (zt|rt−1, z1:t−1)P (rt|rt−1)

(3)
See Adams and McKay(Adams & MacKay, 2007) for a
more detailed description of BOCPD. Key to implement-
ing BOCPD is the specification of a Bayesian ”predic-
tive model”, which tells us the probability of the next
point, when we consider only the data points since the last
changepoint, i,e. P (zt|rt−1, z1:t−1). We assume a constant
P (rt|rt−1), and can hence solve the equations recursively,
once a predictive model is specified. Since zt comes from a
Multivariate Normal distribution, we assume a multivariate
normal predictive model. We use a Normal-Wishart prior
on the parameters of the normal distribution.

z ∼ N(µ,Λ) (4)

p(µ,Λ) = N(µ|µ0, (κΛ)−1)Wiν(Λ|T ) (5)

To modify this for our gradual change use case, we sub-
sample the time series(uniform subsampling), so that the
change is more abrupt. The tradeoff is greater uncertainty
in determining the location of the changepoint.
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Algorithm 1 VAE-CP
Input: data X = (x1, x2....xT ), window size w
Xw

1 , X
w
2 ... = createWindows(X)

for i = 1 to Nepoch do
Sample a minibatch (Xw

t , X
w
t′ , X

w
t−neg)

L = LV AE(Xw
t , X

w
t′ ) + Ltriplet(Xw

t , X
w
t′ , X

w
t−neg)

Update φencoder and ψdecoder
end for
for t = w to T do
zt = φencoder(X

w
t )

end for
CPHoteling = runHoteling(z)
CPBOCPD = runBOCPD(z)
CPFinal = Union( CPHoteling , CPBOCPD)

3. Experiments
Each segment of our synthetic data contains trend, seasonal-
ity and Gaussian noise, characteristics of many real world
business time series(Taylor & Letham, 2018).

xt = βst+ cs +Asin(ωt) +N(0, σ2) (6)

where the slope βs and the intercept cs are specific to the
segment. Slope changes are drawn from a normal distribu-
tion, and intervals between changepoints are drawn from a
geometric distribution, assuming changepoints as indepen-
dent events. See Appendix for a more detailed description
of the synthetic data.

A huge challenge for us, is to find real datasets with reliable
changepoint labeling. Burg and Williams(van den Burg &
Williams, 2020) evaluate changepoint methods using man-
ual labels from multiple annotators.We choose three datasets
from their collection, which contain changepoints in trend,
and have trend and complex seasonal patterns. Construction
reports monthly data on the total private construction spend-
ing in USA, and JFK and LGA datasets contain monthly data
on number of passengers departing the respective airports.
We choose these datasets since they contain changepoints
in trend, and have trend and complex seasonal patterns.

Our evaluation procedure exactly follows Burg and
Williams(van den Burg & Williams, 2020), who modify
the definition of precision and recall, to accomodate the
margin of error around the true changepoint(Killick et al.,
2012; van den Burg & Williams, 2020), and then calculate
precision, recall and F-score. They also calculate F-scores
averaging labels from multiple annotators.

4. Results
A summary of our results can be found in Table 1. We com-
pare VAE-CP with three baseline methods, Prophet(Taylor
& Letham, 2018), BOCPD(Adams & MacKay, 2007) as

Method Synthetic Construction JFK LGA
BOCPD 0.233 0.547 0.394 0.598
Prophet 0.384 0.324 0.279 0.251
TIRE 0.194 0.669 0.437 0.34

VAE-CP 0.499 0.707 0.531 0.369

Table 1. Comparison of VAE-CP with baseline methods on syn-
thetic and real datasets

implemented by the OCP package(Pagotto, 2019) in R and
TIRE(De Ryck et al., 2020). We choose Prophet for compar-
ison, since we are focused on trend changes, and Prophet’s
generative model is identical to the synthetic data generation
process (linear regression with trend changes, specified by
changepoints). We choose BOCPD since it is one of the best
models empirically, in an evaluation of real world change-
points(van den Burg & Williams, 2020). TIRE(De Ryck
et al., 2020), using autoencoders to learn latent representa-
tions, is the closest deep learning approach to ours.

We observe that VAE-CP consistently beats Prophet,
BOCPD and TIRE in both the synthetic and real datasets,
except LGA Passengers, where it is the second best per-
forming algorithm. We also notice that, even though the
synthetic data generating mechanism mimics the model
of Prophet, it tends to have too many false positives near
changepoints, and even in this case VAE-CP has a higher F-
score. Although BOCPD is designed to detect level changes,
it shows the best performance in LGA passengers data, con-
sistent with its good empirical performance on real world
data(van den Burg & Williams, 2020).

5. Conclusion
In this work, we proposed a novel time series changepoint
detection algorithm, VAE-CP, which combines parametric
changepoint detection and self supervised representation
learning approaches. We showed that VAE-CP is able to
out-perform baseline parametric and deep learning methods
on synthetic and real datasets for trend changes.

In future, we would like to study the effect of parameters,
such as window size on VAE-CP performance, as well as an
ablation study of the various algorithmic choices we have
made. We would like to explore VAE-CP on different kinds
of changepoints, such as level shifts, and on a larger set
of real life datasets, including multivariate timeseries. We
hope that VAE-CP, due to its flexibility, is able to perform
well, across a large number of different synthetic and real
life changepoint detection problems.
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A. Datasets
A.1. Synthetic Data

Ten Synthetic Datasets are generated, with segments con-
taining trend and seasonality as described in the main sec-
tion. The seasonality is always weekly. The trends changes
between segments are drawn from a normal distribution.

βs = βs−1 +N(0, σ2) (7)

The length of the timeseries is 500, and the intervals between
changepoints are drawn from a geometric distribution, with
an average interval length of τdist = 125.

τs = τs−1 +G(
1

τdist
) (8)

The intercept cs is adjusted to keep the segments continuous.

We report the average F-score, for the ten synthetic datasets
in the results.

A.2. Real Datasets

We use three real datasets, which have been used in Burg and
Williams(van den Burg & Williams, 2020) and open sourced
in the TCPD package in github(https://github.
com/alan-turing-institute/TCPD). We use the
manual annotations and evaluation method in the TCPD
package. For the construction dataset, all of the annotations
miss the obvious sharp movement in trend (from increase
to decrease), around 150. Hence, we add another manual
annotation of our own, in addition to the existing ones([95,
120, 155, 215]. For the other datasets, we use the existing
annotations. For evaluation, we exactly follow Burg and
Williams(van den Burg & Williams, 2020).

B. Baseline Methods
BOCPD We use the implementation of BOCPD, in the
OCP package in R(Pagotto, 2019). Our parameters and
results are exactly identical with Burg and Williams(van den
Burg & Williams, 2020) (default F-score), who evaluate
multiple datasets using OCP.

Prophet We use the open source python implementa-
tion of Prophet(https://github.com/facebook/
prophet). Again, we use arguments exactly the same as
Burg and Williams(van den Burg & Williams, 2020)(there
are some minor differences in results, because they use the
R implementation), with all the seasonalities set to ”auto”
and changepoint range to 1.0. We have experimented with
reducing the changepoint prior scale parameter, but this has
not helped. For the synthetic data, we give Prophet an ad-
vantage, by setting weekly seasonality as True, since we
know this data has weekly seasonality.

TIRE We implement TIRE(De Ryck et al., 2020) with
the exact parameters specified in the example notebook,
from the open source package(https://github.com/
deryckt/TIRE).

C. Architecture Choices
We use a window size w = 20. We also set L = 20,
which is the region in which we search for a neighboring
window. This parameter is critical, and choosing it to be
higher than the seasonality helps in erasing the effects of
seasonality. Our goal is to learn a latent representation, that
is representative of the segment, and controlling L helps us
achieve that.

Both for our encoder and decoder, we use a fully connected
layer, with 64 units in the hidden layer. We have also
experimented with RNNs in the encoder, similar to KL-
CPD(Chang et al., 2019), but this has not worked well for
us.We train the network for 300 epochs.
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