
A Study of Joint Graph Inference and Forecasting

Daniel Zügner 1 2 François-Xavier Aubet 3 Victor Garcia Satorras 4 2 Tim Januschowski 3

Stephan Günnemann 1 Jan Gasthaus 3

Abstract
We study a recent class of models which uses
graph neural networks (GNNs) to improve fore-
casting in multivariate time series. The core as-
sumption behind these models is that there is a
latent graph between the time series (nodes) that
governs the evolution of the multivariate time se-
ries. By parameterizing a graph in a differentiable
way, the models aim to improve forecasting qual-
ity. We compare four recent models of this class
on the forecasting task. Further, we perform abla-
tions to study their behavior under changing con-
ditions, e.g., when disabling the graph-learning
modules and providing the ground-truth relations
instead. Based on our findings, we propose novel
ways of combining the existing architectures.

1. Introduction
Forecasting multivariate time series is a core machine learn-
ing task both in science and in industry [19]. Between
the individual time series (nodes), rich dependencies and
interactions (edges) govern how the time series evolves.
In the simplest case these could be (linear) correlations;
other examples include the road network underlying traffic
flows [25, 22], or physical relations such as attraction or
repulsion affecting trajectories of objects in space [11].

Knowledge of the ‘true’ relations can be used to make more
accurate predictions of how the time series evolves in the
future, e.g., by using graph neural networks (GNNs) (e.g.,
[12, 23, 8, 6, 20, 13, 3, 2]) . Even more, the graph can reveal
fundamental insights into the system described by the time
series, and may thus be of value in itself, independent of an
improvement in the forecasting quality. Therefore, recent
works aim at jointly inferring relations between the time
series and learn to forecast in an end-to-end manner, some-
times without any prior information about the graph [25, 5].

1Technical University of Munich 2Work done while being an
intern at AWS AI Labs, Amazon Web Services 3AWS AI Labs,
Amazon Web Services 4University of Amsterdam. Correspon-
dence to: Daniel Zügner <zuegnerd@in.tum.de>.

Time Series Workshop @ ICML 2021. Copyright by the author(s).

Besides potential benefits in forecasting quality, inferring
a graph among N time series comes at an inherent com-
putational complexity of O(N2), which needs to be taken
into account when deciding whether to leverage joint graph
inference and forecasting. Hence, we consider the following
research questions in this paper.

(R1) In which scenarios do joint graph inference and fore-
casting improve forecasting accuracy? Given the diverse
domains and settings of multivariate time series forecasting
(e.g., underlying spatial relations of sensors in traffic fore-
casting, sets of sensors measuring different properties of the
same system, etc.) it is possible that graph inference helps
the forecasting task more in some use cases.

(R2) How do the existing architectures compare in forecast-
ing performance? Are there certain architectural choices
that appear beneficial for forecasting?

(R3) What are properties of the inferred graphs by the
model? Specifically, how consistent are the inferred graphs
across different training runs? How (dis-)similar are the in-
ferred graphs to the “ground-truth” graphs (when known)?

2. Background
Forecasting with Multivariate Time Series

In time series forecasting we are interested in estimating a
future series zt+1:T given its past zt0:t and some context
information about the past xt0:t where variables t0 < t < T
index over time. For the multivariate case, we can consider
N time series at a time zt0:T = {z1,t0:T , . . . , zN,t0:T } ∈
RN×T−t0 . We model the following conditional distribution:

p(zi,t+1:T |zt0:t,xt0,t), 1 ≤ i ≤ N, (1)

where i indexes over time series. Notice that we are condi-
tioning on all N series in order to estimate the series i.

Time Series Forecasting for graph structured data

When conditioning over multivariate time series as in
Eq. (1), we may benefit from modelling the relations be-
tween different multivariate time series. An expressive struc-
ture to capture such relations are graphs. We can define a
graph as a set of nodes vi ∈ V and edges eij ∈ E that
relate the nodes. In our case each zi is associated to a graph

A Study of Joint Graph Inference and Forecasting

node vi. Edges eij may be given or unkown depending
on the dataset, in cases where the underlying graph is la-
tent/unkown we may jointly infer the graph while estimating
a forecasting model. In this work we study the performance
of a variety of algorithms under different assumptions of the
graph structure (known, unkown, partially known). Note
that even in the cases where we have “ground-truth” knowl-
edge (e.g., of spatial relations), there may still be additional
latent relations which could be discovered by the models.

3. Literature Review
Recent models perform joint graph learning and forecasting
in multivariate timeseries. These models are GTS (“graph
for timeseries”) [22], Graph Deviation Network (GDN) [5],
MTS forecasting with GNNs (MTGNN) [25], and Neural
Relational Inference (NRI) [11]. Here, we briefly introduce
these four methods and their differences and commonalities;
for a more detailed overview, see Appendix B.

All models can be decomposed into two main components:
the graph learning and the forecasting modules. The for-
mer outputs an adjacency matrix describing a graph between
the nodes (i.e., timeseries). The latter takes this graph as
well as the input timeseries window to forecast the next
timestep(s). Once the adjacency matrix has been obtained
from the graph learning module, there are many ways of
how to leverage it for forecasting the timeseries. The core
idea of the models of this study is that the adjacency matrix
construction step is differentiable and jointly learned with
the forecasting module. Thus, the intuition is that the model
will learn graphs which help the forecasting task.

3.1. Graph learning

The goal of the graph learning module is to output an adja-
cency matrix A ∈ [0, 1]N×N , where each entry Aij denotes
the edge weight between nodes (i, j). Typically, we aim for
A to be sparse, which reflects the intuition that there are
only relatively few useful relations in the latent graph. Each
model first represents each node i by a fixed-size vector hi,
followed by a pairwise similarity computation of any pair
hi and hj , e.g., by using a fully connected neural network
or simply by taking the dot product.

Next, the models obtain the adjacency matrix from the pair-
wise scores. MTGNN and GDN do so by taking theK high-
est scores per node. An advantage of this is that by choosing
K appropriately A is guaranteed to be sparse. On the other
hand, the top-K operation is not continuously differentiable,
which may pose challenges to end-to-end learning.

NRI and GTS first map the pairwise scores into range [0, 1]
(e.g., via softmax or sigmoid). The models use the Gumbel
softmax trick [15, 10] to sample a discrete adjacency matrix
from the edge probabilities in a differentiable way (though

gradients are biased); a downside is that we have to take
extra steps to obtain a sparse graph, e.g., by regularization.

Moreover, the models can can be broadly split into two
groups according to how they compute the fixed-size rep-
resentations hi per node: MTGNN and GDN simply learn
these representations as node embeddings; on the other hand,
NRI and GTS compute the vectors hi based on the time
series itself. That is, they apply some (shared) function to
each timeseries to map it into a fixed-size vector. While
NRI dynamically produces the representations per individ-
ual window, GTS uses the whole training timeseries for
each node. The former has the advantage of being more
flexible, though more expensive, since we need to compute
a [B×N×N] tensor to store the individual adjacency matri-
ces, where B is the batch size. On the other hand, the graph
learned by GTS is global, i.e., shared for all time series. It
is thus more efficient yet less flexible, as the model cannot
adjust the graph for changing inputs during inference time.
Moreover, in its current implementation, this leads to GTS’s
number of parameters growing linearly with the length of
the training time series (though this could in principle be
resolved via dilated convolutions or pooling).

3.2. Graph-based forecasting

There are many existing models to incorpo-
rate graph structure in the forecasting task (e.g.,
[14, 21, 4, 26, 27, 7, 18, 24]). Each of the models
in this study has its own way of forecasting the time series
given the input timeseries window and the adjacency matrix
constructed by the graph learning module. For instance,
MTGNN interchanges temporal convolution layers with
graph convolution layers, and GTS uses a Diffusion-
Convolutional Recurrent Neural Network (DCRNN) [14],
where the hidden states of each node are diffused via graph
convolutions at each timestep. Again, the core idea is that
the adjacency matrix used in the graph-based forecasting
is itself constructed in a differentiable way and can thus be
adjusted by the model to improve forecasting results.

4. Experiments
To address our research questions (R1)-(R3), we perform
experiments on real-world and synthetic datasets. We repeat
all runs five times and report the average; error bars are
provided in Table 4 (Appendix).

4.1. Datasets

We briefly describe here the datasets that we use; more
details can be found in appendix section C. We scale each
timeseries to have zero mean and unit variance or to have
range [0, 1] (only SWaT and WADI, as in [5]). For training
and evaluation we compute MAE on the original scale.

A Study of Joint Graph Inference and Forecasting

GTS MTGNN NRI GDN
MAE@12 ∆ MAE@12 ∆ MAE@12 ∆ MAE@12 ∆

METR-LA 3.74 +3.27% 3.89 −9.85% 7.8 −7.69% 4.1 +4.87%
PEMS-BAY 1.91 +5.56% 1.97 −6.38% 2.13 - 2.12 −2.31%
Diffusion 0.0684 +3.92% 0.117 −5.24% 0.0614 −44.97% 0.122 −7.88%
DAG 0.695 −0.48% 0.697 −0.40% 0.702 −0.25% 0.692 −3.25%

Table 1. Average forecasting MAE (over five runs) when disabling the graph-learning and forcing the model to use the ground-truth graph.
We also show the percentage change of the MAE (∆); e.g., −4% means error is reduced by 4% over the base scenario.

Random graph No graph

GTS MTGNN NRI GDN GTS MTGNN
MAE@12 ∆ MAE@12 ∆ MAE@12 ∆ MAE@12 ∆ MAE@12 ∆ MAE@12 ∆

METR-LA 3.77 +4.10% 4.31 −0.03% 7.95 −5.90% 4.05 +3.68% 4.43 +22.20% 4.35 +0.61%
PEMS-BAY 1.86 +2.86% 2.1 +0.02% 2.12 - 2.14 −1.29% 2.15 +18.93% 2.11 +0.51%
WADI 5.97 +0.80% 6.27 −0.09% 7.87 +3.94% 7.2 −4.32% 6.09 +2.89% 6.23 −1.37%
SWaT 0.372 +24.20% 0.684 −4.81% 0.398 −37.94% 0.897 −17.06% 0.574 +91.76% 0.722 +1.26%
Electricity 201.0 +0.71% 185.0 −1.08% - - 270.0 −3.70% 205.0 +2.87% 198.0 +5.79%
Solar Energy 2.74 +3.03% 2.71 +0.83% - - 2.9 +1.53% 3.01 +13.10% 2.78 +2.96%
Traffic - - - - - - 0.014 +1.92% - - 0.0103 −23.51%
Exchange Rate 0.0108 +9.59% 0.0149 +2.99% 0.0121 +16.37% 0.0956 +11.53% 0.0101 +2.14% 0.0145 −15.75%
DAG 0.697 −0.22% 0.7 −0.08% - - 0.697 −2.59% 0.698 −0.02% 0.7 −0.11%
Diffusion 0.0703 +6.83% 0.124 +0.43% - - 0.132 −0.16% 0.126 +91.70% 0.128 +4.09%

Table 2. Average forecasting MAE (averaged over five runs) when forcing the model to use a (sparse) random graph (left) or when not
using a graph at all in the forecasting (right). Relative performance (∆) as explained in Fig. 1. ‘-’ indicates OOM/timeout after 24 hours.

PEMS-BAY and METR-LA [14] are widely used traffic
datasets where we do have knowledge about the underlying
graph. To construct the sensor graph, we computed the
pairwise road network distances between sensors and build
the adjacency matrix using a thresholded Gaussian kernel.

We use a range of other multi-variate datasets for which no
graph structure is known: Electricity,1,2 Solar-energy,3,2

Exchange-rate2 and Traffic.4,2 Further, SWaT[16] and
WADI [1] are datasets of sensors measuring water-treatment
plants. In the test split there are annotated anomalies where
the creators tampered with the water treatment systems.
Therefore, SWaT and WADI were originally proposed as
anomaly detection datasets (and e.g., used in the GDN pa-
per); however, since the respective training sets are free of
anomalies, we use them for our forecasting experiments.

Synthetic datasets. To enhance the real world datasets,
we create two synthetic datasets starting with a graph and
making sure that the graph has an impact on the connec-
tion between the time series. This allows us to speculate
that the graph will be of importance for the forecasting of
the time series. We create the Diffusion dataset by using
Personalized PageRank (PPR) [17] to diffuse the multivari-
ate timeseries. We create the DAG dataset using a directed
acyclic graph (DAG) and making all the children dimensions
be a weighted combination of its parents dimensions.

1
archive.ics.uci.edu/ml/datasets/

ElectricityLoadDiagrams20112014
2
github.com/laiguokun/multivariate-time-series-data

3
www.nrel.gov/grid/solar-power-data.html

4
https://pems.dot.ca.gov

4.2. Results

(R1). Here we analyze the forecasting results on the dif-
ferent datasets at horizons 3, 6, and 12, respectively. For
reference, we also add a vanilla LSTM [9] baseline that
jointly forecasts all timeseries, as well LSTM-U, which
consists of N univariate LSTMs. Essentially, the LSTM
uses information from all timeseries, though lacks typical
GNN properties such as permutation equivariance and does
not leverage sparsity. LSTM-U is on the other end of the
spectrum and simply views all timeseries as completely
independent. In Table 4 (appendix) we present the results.

On the popular traffic datasets METR-LA and PEMS-BAY,
the GNN models generally dominate the LSTMs. These
datasets have known spatial spatial relations among the
timeseries, thus this comes as no surprise. NRI’s results on
METR-LA is quite poor, which we attribute to the relatively
large number of nodes and to the fact that the underlying
relations are static, while NRI predicts a graph per window.

On WADI, interestingly, LSTM-U performs on par with
MTGNN. The remaining gap to GTS is relatively small and
can potentially be explained by GTS’s more sophisticated
forecasting procedure. This indicates that on WADI, where
we do not have a “straightforward” spatial graph between
the nodes, the GNN-based models struggle to find useful re-
lations in the data – or that there are no useful relations in the
data to begin with. Similarly, on SWaT, LSTM outperforms
all GNN-based models except GTS.

In the synthetic diffusion-based dataset, GTS achieves
roughly 50% lower mean absolute error than LSTM. We

archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
github.com/laiguokun/multivariate-time-series-data
www.nrel.gov/grid/solar-power-data.html
https://pems.dot.ca.gov

A Study of Joint Graph Inference and Forecasting

attribute this to the fact that the data-generating process
(graph diffusion) matches well with the DC-RNN architec-
ture used by GTS in the forecasting module. Further, note
that on Traffic, GTS ran OOM on a 16GB VRAM GPU
for batch size larger than 1, and therefore did not finish
within 24 hours. NRI, which is even more computationally
expensive, has additional missing values.

In summary, the GNN-based models’ edge over the non-
graph baselines tends to be largest for datasets with an un-
derlying spatial graph (traffic datasets, Electricity, Solar
Energy), and smaller for the datasets where the relations are
expected to be more subtle (WADI, SWaT). Future work
could compare the GNN-based models to state-of-the-art
non-graph forecasting methods in a benchmark study.

(R2). Next we perform ablation experiments on the GNN-
based models to study their behavior when removing their
graph-learning module. For the forecasting modules, we ei-
ther provide the ground-truth graph (where known); provide
a sparse random graph; or provide no graph. We compare
results to the “vanilla” settings of the models, computing
the relative change in MAE at horizon 12 in percent.

In Table 1 we show the results for providing the ground-truth
graph to the forecasting modules. Strikingly, MTGNN’s
performance substantially increases, leading to almost 10%
less MAE on METR-LA. On PEMS-BAY and METR-LA,
MTGNN’s results are on par with GTS’s. This suggests
that MTGNN’s forecasting module performs well, and that
GTS’s graph-learning module may be advantageous. GDN
also benefits from ground truth, though the effect is not
as pronounced. Interestingly, providing the “true” graph
to GTS leads to a slight performance drop on all but one
datasets, indicating that the model’s graph-learning module
is effective at improving forecasting.

In Table 2, we see the results for providing a (sparse) ran-
dom Erdős Renyi graph to the models (left), or completely
disabling the graph processing in the forecasting modules
(right). For the random graphs we set the edge probabil-
ity p such that the expected degree is 30 (N ≥ 100), 10
(20 ≤ N < 100), or 3 (N < 20). An interesting insight is
that for GTS, using a random graph has little or moderate ef-
fect on most datasets; and that using no graph at all leads to
strong performance drop, indicating that GTS’s forecasting
module greatly benefits from the sparsity of graphs.

Remarkably, for MTGNN we see relatively little effect when
using a random graph or even no graph at all. We hypothe-
size that this is due to MTGNN’s way of constructing the
adjacency matrix. It uses kNN-style approach, which has
sparse gradients. Further, the edge weights are the result of
applying tanh to the pairwise scores, which may lead to van-
ishing gradients. Thus, the node embeddings may receive
only very little training signal. In contrast, GDN, which also

Avg. corr. Avg. corr. GT

METR-LA GDN 0.356 0.212
MTGNN -0.001 -0.015
GTS 0.264 -0.046
GTS w/ reg. 0.493 0.523

PEMS-BAY GDN 0.287 0.185
MTGNN 0.000 -0.008
GTS 0.164 -0.010
GTS w/ reg. 0.704 0.684

Table 3. Average correlation of edge scores across different train-
ing runs (left), and with the ground-truth graph (right).

uses node embeddings in the graph learning module, utilizes
the node embeddings also in the forecasting task. This may
be a way to address the issue of MTGNN. Another approach
may be to replace the kNN graph construction with differen-
tiable sampling via the Gumbel softmax trick (as in GTS and
NRI). This is an interesting experiment to further investigate
whether the strategy of parameterizing the graph based on
the time series, employed by NRI and GTS, is generally
advantageous over node-embedding-based approaches.

(R3). Finally, we measure how consistent the learned edge
scores are across training runs as well as how similar the
learned adjacency matrices are to the ground truth adjacency
matrices. For this we measure the correlation of edge scores
among re-runs and with the ground-truth graph. Intuitively,
high correlation means that the model assigns large/small
scores to the same node pairs. A subset of the results is
shown in Table 3; see Table 5 (app.) for more details. We
can see that (i) for GDN and GTS, the learned adjacency
matrices tend to be moderately similar across training runs.
Interestingly, only GDN’s learned graphs have a nontrivial
correlation with the ground truth. This indicates that the
models learn a graph which is useful for forecasting, which
need not have much in common with the “true” (e.g., spatial)
graph. Note that for these experiments we have disabled
GTS’s regularization on the ground-truth graph. When en-
abling the loss (GTS w/ reg.) we find that, as expected, the
learned graphs strongly correlate with the input graph.

5. Conclusion
We present a study of recent models performing joint graph
inference and forecasting. We highlight key commonalities
and differences among the architectures. In our experi-
ments, we compare the forecasting results of the models
and study properties of the different graph-learning mod-
ules. For instance, we find MTGNN to be insensitive as to
whether the graph-learning module is active or not; though
it greatly benefits from access to a ground-truth graph. In
general, learning a latent graph is a challenging problem;
improvements in terms of expressiveness and computational
efficiency could lead to broader applicability. We highlight
potential ways of combining the existing architectures.

A Study of Joint Graph Inference and Forecasting

References
[1] Ahmed, C. M., Palleti, V. R., and Mathur, A. P. Wadi:

A water distribution testbed for research in the design
of secure cyber physical systems. In Proceedings of
the 3rd International Workshop on Cyber-Physical
Systems for Smart Water Networks, CySWATER ’17,
pp. 25–28, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450349758. doi:
10.1145/3055366.3055375.

[2] Bojchevski, A., Shchur, O., Zügner, D., and
Günnemann, S. Netgan: Generating graphs via ran-
dom walks. In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018,
pp. 609–618, 2018.

[3] Bojchevski, A., Klicpera, J., Perozzi, B., Kapoor,
A., Blais, M., Rózemberczki, B., Lukasik, M., and
Günnemann, S. Scaling graph neural networks with ap-
proximate pagerank. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, New York, NY, USA, 2020.
ACM.

[4] Chen, J., Xu, X., Wu, Y., and Zheng, H. Gc-lstm:
Graph convolution embedded lstm for dynamic link
prediction. arXiv preprint arXiv:1812.04206, 2018.

[5] Deng, A. and Hooi, B. Graph neural network-based
anomaly detection in multivariate time series. In Pro-
ceedings of the 35th AAAI Conference on Artificial
Intelligence, Vancouver, BC, Canada, pp. 2–9, 2021.

[6] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O.,
and Dahl, G. E. Neural message passing for quantum
chemistry. In Precup, D. and Teh, Y. W. (eds.), Pro-
ceedings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 1263–1272. PMLR, 06–11
Aug 2017.

[7] Guo, S., Lin, Y., Feng, N., Song, C., and Wan, H.
Attention based spatial-temporal graph convolutional
networks for traffic flow forecasting. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 33, pp. 922–929, 2019.

[8] Hamilton, W., Ying, Z., and Leskovec, J. Inductive
representation learning on large graphs. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

[9] Hochreiter, S. and Schmidhuber, J. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[10] Jang, E., Gu, S., and Poole, B. Categorical reparame-
terization with gumbel-softmax. 2017.

[11] Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and
Zemel, R. Neural relational inference for interacting
systems. In International Conference on Machine
Learning, pp. 2688–2697. PMLR, 2018.

[12] Kipf, T. N. and Welling, M. Semi-supervised clas-
sification with graph convolutional networks. In In-
ternational Conference on Learning Representations
(ICLR), 2017.

[13] Klicpera, J., Bojchevski, A., and Günnemann, S. Pre-
dict then propagate: Graph neural networks meet per-
sonalized pagerank. In International Conference on
Learning Representations (ICLR), 2019.

[14] Li, Y., Yu, R., Shahabi, C., and Liu, Y. Diffusion
convolutional recurrent neural network: Data-driven
traffic forecasting. In International Conference on
Learning Representations, 2018.

[15] Maddison, C. J., Mnih, A., and Teh, Y. W. The con-
crete distribution: A continuous relaxation of discrete
random variables. International Conference on Learn-
ing Representations, 2017.

[16] Mathur, A. P. and Tippenhauer, N. O. Swat: a wa-
ter treatment testbed for research and training on ics
security. In 2016 International Workshop on Cyber-
physical Systems for Smart Water Networks (CySWa-
ter), pp. 31–36, 2016. doi: 10.1109/CySWater.2016.
7469060.

[17] Page, L., Brin, S., Motwani, R., and Winograd, T. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford InfoLab, 1999.

[18] Panagopoulos, G., Nikolentzos, G., and Vazirgiannis,
M. Transfer graph neural networks for pandemic fore-
casting. 2020.

[19] Petropoulos, F., Apiletti, D., Assimakopoulos, V.,
Babai, M. Z., Barrow, D. K., Bergmeir, C., Bessa, R. J.,
Boylan, J. E., Browell, J., Carnevale, C., Castle, J. L.,
Cirillo, P., Clements, M. P., Cordeiro, C., Oliveira,
F. L. C., Baets, S. D., Dokumentov, A., Fiszeder, P.,
Franses, P. H., Gilliland, M., Gönül, M. S., Goodwin,
P., Grossi, L., Grushka-Cockayne, Y., Guidolin, M.,
Guidolin, M., Gunter, U., Guo, X., Guseo, R., Harvey,
N., Hendry, D. F., Hollyman, R., Januschowski, T.,
Jeon, J., Jose, V. R. R., Kang, Y., Koehler, A. B., Ko-
lassa, S., Kourentzes, N., Leva, S., Li, F., Litsiou, K.,
Makridakis, S., Martinez, A. B., Meeran, S., Modis,

A Study of Joint Graph Inference and Forecasting

T., Nikolopoulos, K., Önkal, D., Paccagnini, A., Pana-
pakidis, I., Pavı́a, J. M., Pedio, M., Pedregal, D. J., Pin-
son, P., Ramos, P., Rapach, D. E., Reade, J. J., Rostami-
Tabar, B., Rubaszek, M., Sermpinis, G., Shang, H. L.,
Spiliotis, E., Syntetos, A. A., Talagala, P. D., Talagala,
T. S., Tashman, L., Thomakos, D., Thorarinsdottir, T.,
Todini, E., Arenas, J. R. T., Wang, X., Winkler, R. L.,
Yusupova, A., and Ziel, F. Forecasting: theory and
practice. arXiv preprint arXiv:2012.03854, 2020.

[20] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M.,
and Monfardini, G. The graph neural network model.
IEEE Transactions on Neural Networks, 20(1):61–80,
2009. doi: 10.1109/TNN.2008.2005605.

[21] Seo, Y., Defferrard, M., Vandergheynst, P., and Bres-
son, X. Structured sequence modeling with graph con-
volutional recurrent networks. In International Con-
ference on Neural Information Processing (ICONIP),
2017.

[22] Shang, C., Chen, J., and Bi, J. Discrete graph structure
learning for forecasting multiple time series. In In-
ternational Conference on Learning Representations,
2021.

[23] Veličković, P., Cucurull, G., Casanova, A., Romero,
A., Liò, P., and Bengio, Y. Graph attention networks.
In International Conference on Learning Representa-
tions, 2018.

[24] Wang, B., Luo, X., Zhang, F., Yuan, B., Bertozzi, A. L.,
and Brantingham, P. J. Graph-Based Deep Modeling
and Real Time Forecasting of Sparse Spatio-Temporal
Data. arXiv e-prints, April 2018.

[25] Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., and
Zhang, C. Connecting the dots: Multivariate time
series forecasting with graph neural networks. In Pro-
ceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pp.
753–763, 2020.

[26] Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin,
T., Deng, M., and Li, H. T-gcn: A temporal graph con-
volutional network for traffic prediction. IEEE Trans-
actions on Intelligent Transportation Systems, 21(9):
3848–3858, 2020. doi: 10.1109/TITS.2019.2935152.

[27] Zhu, J., Song, Y., Zhao, L., and Li, H. A3t-gcn: atten-
tion temporal graph convolutional network for traffic
forecasting. arXiv preprint arXiv:2006.11583, 2020.

A Study of Joint Graph Inference and Forecasting

Dataset Model MAE @ 3 MAE @ 6 MAE @ 12

METR-LA LSTM 3.4950± 0.0104 3.7121± 0.0117 4.1049± 0.0113
LSTM-U 3.4164±− 4.0916±− 5.1411±−
NRI 4.6802± 0.0813 6.3878± 0.0873 8.4661± 0.0985
GDN 3.1490± 0.0165 3.4818± 0.0144 3.9096± 0.0123
MTGNN 3.0160± 0.0044 3.5738± 0.0047 4.3076± 0.0057
GTS 2.8840± 0.0052 3.2695± 0.0062 3.7013± 0.0055

PEMS-BAY LSTM 2.0428± 0.0045 2.1110± 0.0045 2.2425± 0.0071
GDN 1.8900± 0.0095 2.0214± 0.0097 2.1722± 0.0119
MTGNN 1.3189± 0.0017 1.6904± 0.0020 2.1007± 0.0039
GTS 1.2677± 0.0002 1.5551± 0.0012 1.8133± 0.0034

WADI LSTM 6.6584± 0.0558 6.7547± 0.0651 6.7887± 0.0406
LSTM-U 5.9805± 0.0362 6.1059± 0.0230 6.3512± 0.0524
NRI 6.8025±− 7.0759±− 7.5703±−
GDN 7.4096± 0.3068 7.4425± 0.2210 7.5232± 0.2815
MTGNN 5.9537± 0.0381 6.1083± 0.0417 6.2535± 0.0293
GTS 5.4742± 0.0072 5.5754± 0.0094 5.7715± 0.0080

SWaT LSTM 0.3000± 0.0133 0.3296± 0.0105 0.4324± 0.0163
LSTM-U 0.2869± 0.0012 0.4868± 0.0008 0.8826± 0.0011
NRI 0.4147± 0.0139 0.4798± 0.0142 0.6408± 0.0110
GDN 0.8029± 0.0447 0.8537± 0.0689 1.0812± 0.1495
MTGNN 0.4878± 0.0105 0.5371± 0.0161 0.7040± 0.0247
GTS 0.2420± 0.0382 0.2792± 0.0391 0.3874± 0.0435

Electricity LSTM 323.3455± 3.8540 384.2395± 10.7886 352.4884± 4.2168
LSTM-U 710.9171± 0.7324 1079.3943± 2.9989 849.2502± 1.8949
GDN 265.1665± 3.0810 269.2244± 2.3668 280.4004± 1.4468
MTGNN 170.1549± 2.9775 186.0044± 4.7505 193.4988± 4.4654
GTS 175.8778± 1.0221 185.7905± 0.9314 199.5826± 1.3747

Solar Energy LSTM 1.9820± 0.0157 2.6776± 0.0213 4.2408± 0.0239
LSTM-U 2.7603± 0.0071 4.3665± 0.0027 6.2828± 0.0024
GDN 2.0953± 0.0181 2.3299± 0.0212 2.8556± 0.0403
MTGNN 1.5117± 0.0049 2.0513± 0.0076 2.6889± 0.0133
GTS 1.4199± 0.0040 1.9260± 0.0128 2.6577± 0.0329

Traffic LSTM 0.0157± 0.0002 0.0178± 0.0003 0.0173± 0.0003
LSTM-U 0.0285± 0.0001 0.0332± 0.0002 0.0289± 0.0001
GDN 0.0132± 0.0001 0.0134± 0.0001 0.0137± 0.0001
MTGNN 0.0102± 0.0003 0.0107± 0.0004 0.0108± 0.0003

Exchange Rate LSTM 0.0141± 0.0013 0.0187± 0.0020 0.0190± 0.0018
LSTM-U 0.0057± 0.0002 0.0076± 0.0001 0.0102± 0.0001
NRI 0.0047± 0.0001 0.0073± 0.0002 0.0111± 0.0005
MTGNN 0.0109± 0.0023 0.0146± 0.0033 0.0136± 0.0013
GTS 0.0047± 0.0000 0.0070± 0.0000 0.0099± 0.0000

DAG LSTM 0.6976± 0.0028 0.7079± 0.0030 0.7507± 0.0026
LSTM-U 0.7154± 0.0007 0.7278± 0.0007 0.7816± 0.0007
NRI 0.6132± 0.0005 0.6297± 0.0009 0.7034± 0.0013
GDN 0.6363± 0.0015 0.6519± 0.0014 0.7154± 0.0011
MTGNN 0.6107± 0.0005 0.6277± 0.0009 0.6999± 0.0010
GTS 0.6088± 0.0003 0.6254± 0.0004 0.6960± 0.0004

Diffusion LSTM 0.1064± 0.0001 0.1355± 0.0002 0.1405± 0.0003
LSTM-U 0.0986± 0.0000 0.1333± 0.0000 0.1393± 0.0001
NRI 0.0704±− 0.0894±− 0.1120±−
GDN 0.0890± 0.0005 0.1109± 0.0003 0.1325± 0.0003
MTGNN 0.0739± 0.0002 0.0969± 0.0003 0.1239± 0.0008
GTS 0.0620± 0.0001 0.0655± 0.0002 0.0706± 0.0003

Table 4. Results overview. ± indicates standard error of the mean (SEM) over five runs. Missing rows indicate OOM/timeout after 24
hours. ‘−’ for SEM means that only one run finished witin 24 hours.

A Study of Joint Graph Inference and Forecasting

A. Additional results
In Table 4, we provide the results on the forecasting task.
In Table 5, we provide additional correlation results of the
learned graphs.

B. Model details
B.1. Graph for Time Series (GTS)

GTS (“graph for time series”) [22] is a recent model aiming
to jointly learn a latent graph in the time series and use
it for MTS forecasting. The model consists of two main
components: graph learning, and graph-based forecasting.

Graph learning. The graph learning module first maps the
training partition of each time series zi to a fixed-size vector
representation hi via a 1D-convolutional neural network.
Then, all pairs (hi,hj) are processed by an MLP to output
the probability of an edge between i and j.

hi = fFC (Vec (fconv(zi))) , θij = σ(gFC ([hi||hj])),

where σ(·) denotes the logistic sigmoid function and || de-
notes vector concatenation. Finally, a discrete adjacency
matrix A is obtained via element-wise, differentiable sam-
pling, i.e., Aij ∼ Ber(θij), using the Gumbel softmax trick
[10, 15]. Note that GTS uses the complete training partition
to parameterize the adjacency matrix at each batch. This
means that (i) the model can use information from the whole
(training) time series at training time; (ii) the model can-
not adjust the learned graph at test time; (iii) the number
of parameters grows linearly with the length of the input
timeseries, which could be improved by adding dilation or
pooling to the convolutional encoder.

Forecasting. The forecasting module uses the graph
produced by the graph learning module, a Diffusion-
Convolutional RNN (DCRNN) [14]. A DCRNN essentially
updates hidden states collectively for all series via a graph
convolution, which replaces the usual multiplication with a
weight matrix. Thus, at each time step, the RNN uses the
learnt graph to locally average the hidden representation of
timeseries in their graph neighborhood:

Rt = σ (GNNR ([Zt||Ht−1];A) + bR)

Ct = tanh (GNNC ([Zt||Rt �Ht−1];A) +bC)

Ut = σ (GNNU ([Zt||Ht−1];A) + bU)

Ht = Ut �Ht−1 + (1−Ut)�Ct

GNN(Z;A) =

K∑
k=1

(
D−1O A

)k
ZW

(k)
O +

(
D−1I A

)k
ZW

(k)
I

where DO and DI are diagonal matrices whose entries are
the out- and in-degrees of the nodes in A, respectively;
W

(k)
O and W

(k)
I , 1 ≤ k ≤ K are learnable weight matrices.

GTS uses K = 2.

Model Dataset Avg. corr. Avg. corr. GT

NRI METR-LA 0.44 -0.24
WADI -0.11 n/a
SWaT 0.10 n/a
Exchange Rate 0.68 n/a
DAG 0.64 -0.00
Diffusion 0.85 0.02

GDN METR-LA 0.36 0.21
PEMS-BAY 0.29 0.19
WADI 0.13 n/a
SWaT 0.25 n/a
Electricity 0.17 n/a
Solar Energy 0.15 n/a
Traffic 0.10 n/a
Exchange Rate 0.44 n/a
DAG 0.22 0.04
Diffusion 0.68 0.00

MTGNN METR-LA -0.00 -0.01
PEMS-BAY -0.00 -0.01
WADI 0.00 n/a
SWaT 0.01 n/a
Electricity 0.00 n/a
Solar Energy 0.00 n/a
Traffic -0.00 n/a
Exchange Rate 0.15 n/a
DAG 0.00 0.00
Diffusion -0.00 0.00

GTS METR-LA 0.26 -0.05
PEMS-BAY 0.16 -0.01
WADI 0.46 n/a
SWaT 0.51 n/a
Solar Energy 0.02 n/a
Exchange Rate 0.38 n/a
DAG 0.46 0.02
Diffusion 0.01 -0.00

Table 5. Average correlation of edge scores among different train-
ing runs (left), and average correlation of the resulting edge scores
with the ground-truth graph (where available).

A Study of Joint Graph Inference and Forecasting

Regularization. The authors propose to incorporate poten-
tial a-priori knowledge about the ground-truth graph via a
regularization loss in the form of element-wise binary cross
entropy loss between the learned and prior graph.

B.2. MTS Forecasting with GNNs (MTGNN)

Like GTS, MTGNN [25] also consists of a graph learning
and forecasting module, though the implementations of
these modules are different.

Graph learning. In contrast to GTS, which parameterizes
the representation hi of a timeseries using a neural network
based on the input timeseries, MTGNN learns two embed-
ding vectors per node (i.e., timeseries), i.e., two embedding
matrices E1, E2. Pairwise scores Aij are computed as

M1 = tanh(αE1W1)

M2 = tanh(αE2W2)

A = ReLU
(
tanh

(
α
(
M1M

T
2 −M2M

T
1

)))
,

where the formulation of A ensures that it is asymmetric,
i.e., if Aij is positive, Aji is zero. Finally, only the top
K scores per row Ai are kept to ensure sparsity of the
adjacency matrix. The node embeddings are trained in an
end-to-end fashion on the forecasting task.

Forecasting. The main difference to the RNN-based fore-
casting module in GTS is that MTGNN uses temporal convo-
lutions combined with graph convolution layers. MTGNN
stacks three blocks of interchanging inception-style tem-
poral convolution layers and graph convolution layers to
predict the next timestep(s) of the timeseries.

B.3. Graph Deviation Network (GDN)

Graph Deviation Network (GDN) [5] is a recent model
aimed at anomaly detection in multivariate timeseries. The
model is trained on MTS forecasting, and anomalies are
flagged when the predicted value deviates strongly from the
observed value. Since the model is essentially a forecasting
method by construction, we chose to include it as a baseline
in this work.

Graph learning. Similar to MTGNN, GDN infers the
graph by learning a node embedding vi per node. Specifi-
cally, the model builds a k-NN graph where the similarity
metric is the cosine of a pair of embeddings.

Forecasting. The forecasting module is based on the Graph
Attention Network (GAT) [23] architecture.

hi = ReLU

 ∑
j∈N (i)∪{i}

αijWzj

 ,

where zj ∈ Rw is the input timeseries window of node j,
W is a learned weight matrix, and αij are attention scores,

computed as follows.

αij = softmaxj
(
LeakyReLU

(
aT [gi||gj]

))
,

where gi = [vi||Wzi], and a is a learned vector. The next
predicted value(s) for all nodes are predicted jointly by a
stack of fully connected layers fMLP:

ŝ ∈ RN×T̂ = fMLP ([v1 � h1||v2 � h2|| . . . ||vN � hN]) ,

where T̂ is the number of predicted timesteps.

B.4. Neural Relational Inference (NRI)

The Neural Relational Inference (NRI) [11] model assumes
a slightly different setting than GTS, MTGNN, and GDN.
Instead of learning a global, static graph over the whole
time series, NRI infers a graph per input window. While
this setting is more flexible, it comes at the drawback of
having inherent O(B ×N2) memory complexity, where B
is the batch size. Thus, NRI can only realistically scale to
small graphs, i.e. at most N ≈ 50. NRI is a VAE-based
architecture consisting of an encoder module predicting
edge probabilities and a decoder module performing the
forecasting.

Graph learning. The encoder module interchanges neural
networks on the node and edge representations, respectively:

h
(1)
j = femb(zj) h

(1)
(i,j) = f (1)e ([h

(1)
i ||h

(1)
j])

h
(2)
j = f (1)v (

∑
i6=j

h
(1)
(i,j)) h

(2)
(i,j) = f (2)e ([h

(2)
i ||h

(2)
j])

Finally, the edge type posterior is qφ(z(i,j)|zt0:t) =

softmax(h
(2)
(i,j)), where one edge type can be hard-coded to

denote ‘no edge’. Similar to GTS, NRI samples a discrete
graph using the Gumbel softmax trick.

Forecasting. The decoder module is similar to the encoder.
It has a fully connected neural network per edge type, which
processes the respective input pairs of nodes connected by
the specific edge type. Finally, for each node, the represen-
tations of incoming edges are aggregated, and a final neural
network predicts the value of the next timestep. For the de-
coder, the authors propose an MLP-based and a RNN-based
variant.

C. Datasets
We describe here more in details the characteristics of the
datasets used.

In Table 6 we summarize the real-world datasets used in
this work. SWaT[16] and WADI [1] are datasets of sensors
measuring water-treatment plants. In the test split there
are annotated anoalies where the creators tampered with

A Study of Joint Graph Inference and Forecasting

Dataset # Samples N Ground truth?

PEMS-BAY [14] 52,116 325 Yes
METR-LA [14] 34,272 207 Yes

WADI5] [1] 1,187,951 122 No
SWAT5 [16] 475,200 51 No
Electricity6,7 26,304 321 No
Solar-energy8,7 52,560 137 No
Exchange-rate7 7,588 8 No
Traffic9,7 17,544 862 No

Table 6. Real-world dataset summary.

the water treatment systems. Therefore, SWaT and WADI
were originally proposed as anomaly detection datasets (and
e.g., used in the GDN paper); however, since the respective
training sets are free of anomalies, we use them for our
forecasting experiments.

PEMS-BAY and METR-LA [14] are widely used traffic
datasets where we do have knowledge about the underlying
graph. To construct the sensor graph, the computed the
pairwise road network distances between sensors and build
the adjacency matrix using a thresholded Gaussian kernel.

C.1. Synthetic datasets

One drawback about real-world datasets – even the traffic
datasets for which we have some knowledge about the re-
lations – is that we do not know the true data-generating
process and how the graph interacts with it. To address
this, we generated two synthetic datasets where relations
between nodes are handcrafted. An advantage of this is that
we know in advance the true dependencies between nodes.

Diffusion-based dataset. For each of the N timeseries, we
first randomly sample parameters of a sinusoidal function,
i.e., its frequency, amplitude, horizontal, and vertical shift.
Next, we partition the nodes into K clusters and generate
an undirected graph from a Stochastic Blockmodel (SBM),
such that nodes within a cluster are more densely connected
than between clusters. We use Personalized PageRank
(PPR) [17] to diffuse the multivariate timeseries, i.e., com-
pute for each timeseries the weighted combination of itself
and the other nodes in its vicinity. For each node, we add
independent Gaussian noise to the other nodes before aver-
aging. Thus far we have induced correlation between nodes

5As proposed by [5], we subsample SWaT and WADI by a
factor of 10 in the time dimension using the median operation.

6archive.ics.uci.edu/ml/datasets/
ElectricityLoadDiagrams20112014

7github.com/laiguokun/
multivariate-time-series-data

8www.nrel.gov/grid/solar-power-data.html
9https://pems.dot.ca.gov

in the same cluster. Finally, we perform a weighted combi-
nation of the timeseries before and after diffusion, where the
diffused timeseries is lagged by C timesteps. This means,
each timestep zt = α · z̃t+ (1−α) · ẑt−C . This way, know-
ing the value of i’s neighbors C steps is useful to predict
its current value, rewarding models which have correctly
identified the relations.

DAG-based dataset. As an alternative, we generate a
dataset based on a directed acyclic graph (DAG). We in-
duce an arbitrary topological order defined by the node IDs,
i.e., 1, . . . , N . We iterate over nodes in increasing topologi-
cal order. For node i, we randomly sample incoming edges
from all nodes j < i with uniform probability p. If no in-
coming edges were sampled for i, we generate its timeseries
as a random sinusoidal function as described above and add
Gaussian noise. Otherwise, i’s timeseries is a randomly
weighted combination of modified timeseries j for which
(i, j) is an edge and j < i. We modify the input timeseries
by applying random horizontal and vertical shift and stretch,
and add some noise again. Thus, i’s values are directly
determined by its incoming edges (except for some noise),
and we expect models which correctly identify the relations
to perform well in the forecasting task.

For the diffusion dataset we set α = 0.75, C = 10, and
the restart probability in the PPR computation to 0.15. We
choose K = 5 clusters; the edge probability within clusters
is 0.5, and between clusters we have 0.05.

For DAG, the edge probability p = 0.1. For both synthetic
datasets, we set N = 100.

D. Training details
Generally, we use the hyperparameters provided by the
authors of the respective papers. We train all models on
a horizon of 12 timesteps, where the training loss is the
mean absolute error of all 12 time steps. For all datasets
except SWaT and WADI, we ignore targets with value zero
(as in [22, 25]), as these correspond to missing values. We
train models for a maximum of 200 epochs and use early
stopping with patience of 20 epochs. We use the validation
MAE for early stopping. For SWaT and WADI as well as
DAG and Diffusion, we fix the window length to 20. For
METR-LA and PEMS-BAY, we set the window length to
12, as proposed by [25, 22]. For Electricity, Solar Energy,
Traffic, and Exchange Rate, window size is 168 as in [25].

archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
github.com/laiguokun/multivariate-time-series-data
github.com/laiguokun/multivariate-time-series-data
www.nrel.gov/grid/solar-power-data.html
https://pems.dot.ca.gov

