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Abstract

Explanation methods applied to sequential models
for multivariate time series prediction are receiv-
ing more attention in machine learning literature.
While current methods perform well at provid-
ing instance-wise explanations, they struggle to
efficiently and accurately make attributions over
long periods of time and with complex feature
interactions. We propose WinIT, a framework
for evaluating feature importance in time series
prediction settings by quantifying the shift in pre-
dictive distribution over multiple instances in a
windowed setting. Comprehensive empirical evi-
dence shows our method improves on the previous
state-of-the-art, FIT, by capturing temporal depen-
dencies in feature importance. We also demon-
strate how the solution improves the appropriate
attribution of features within time steps, which
existing interpretability methods often fail to do.
We compare with baselines on simulated and real-
world clinical data. WinIT achieves 2.47× bet-
ter performance than FIT and other feature im-
portance methods on real-world clinical MIMIC-
mortality task. The code for this work is available
at https://github.com/layer6ai-labs/WinIT.

1. Introduction
Explaining model predictions is important for transparency,
accountability, and for motivating users to act on data. Good
methods for generating explanations are particularly useful
in domains like healthcare and finance, where explanations
are an ethical and legal requirement (Amann et al., 2020).
However, the field of time series explainability for deep
neural networks has only recently seen attention, with the
discovery that traditional explainability methods underper-
form on deep learning models applied in the time series
domain (Ismail et al., 2020). Recent methods such as Fea-
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Figure 1. Saliency maps for FIT and WinIT explainability methods
on Delayed Spike data (d=2) are compared with the data, per-time
step labels and ground truth feature importance. Here it can be
seen that WinIT captures the important observation despite a delay
between the observation and the label change, unlike FIT, which
also overweights all features in the time step with the label change.

ture Importance in Time (FIT) (Tonekaboni et al., 2020) and
Temporal Saliency Rescaling (TSR) (Ismail et al., 2020)
have improved performance and defined initial benchmarks
but face challenges in the breadth of their application in
real-world scenarios.

In this work we explore time series explainability in the
domain where there may be a delay between important fea-
ture shifts and a change in the predictive distribution. This
type of temporal dependency can be important in real-world
settings, where changes in input features may not instan-
taneously change model predictions. We demonstrate ex-
perimentally that existing state-of-the-art method FIT fails
to extend to the delayed label setting via experiments on a
new synthetic dataset. We propose a new approach, WinIT,
to address this challenge by quantifying the impact of fea-
tures on the predictive distribution over multiple instances
in a windowed setting. WinIT utilizes a modification of the
instance-wise importance score introduced in FIT, which
we refer to as Inverse FIT, that performs better in the win-
dowed setting. We evaluate WinIT on real-world clinical
data and find that it outperforms FIT by a significant margin.
In summary, our main contributions are:

• Extending FIT to work with lookback-windows that
improve performance on datasets where there is some
time delay between the observation of important fea-
tures and a corresponding shift in label. We show how
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to evaluate performance on the label delay problem
with a new synthetic dataset.

• Reformulating the counterfactual explanation method
of FIT in a more efficient manner, suitable for use in a
windowed setting.

• Our results show that combining these methods leads
to a 2.47× improvement in explanation performance
on the real-world clinical MIMIC-mortality task.

2. Background
Traditional perturbation-based and model-based methods
have shown limited success in the time series domain. Gra-
dients, Integrated Gradients, GradientSHAP, Deep-LIFT
(Shrikumar et al., 2017), and DeepSHAP (Lundberg & Lee,
2017) all leverage model gradients to generate feature im-
portance, but do not directly consider the temporal nature of
the problem. Perturbation-based methods like feature occlu-
sion (Zeiler & Fergus, 2014) and feature ablation (Suresh
et al., 2017) are model-agnostic methods which measure
how changes to the input features relate to changes in model
prediction. RETAIN learns attention scores over the input
features (Choi et al., 2016). LIME learns explainable mod-
els locally around a prediction, applied at every time step in
the time series domain (Ribeiro et al., 2016).

Recent benchmarks (Ismail et al., 2020; Tonekaboni et al.,
2020) evaluate these traditional explainability methods on
time series problems in both simulated and real-world ex-
periments. By separating the importance calculation in both
the time and feature input dimensions (Ismail et al., 2020)
finds that the performance of the existing methods can be im-
proved. In contrast (Tonekaboni et al., 2020) proposes a new
method, FIT, that measures each observation’s contribution
to the predictive distribution shift of the model over time in
order to provide better explanations in certain settings. How-
ever, FIT is limited to measuring the importance of instan-
taneous shifts in the predictive distribution. We define an
instantaneous shift as one where the important observations
from the input change the model prediction immediately.
As in, the important data and the prediction change occur
on the same time step. The assumption that feature shift
and prediction shift occur simultaneously does not always
hold in practice. In real world applications there can be a
delay between an important feature shift and a change in
outcome. It is important for explanation methods for time
series predictions to be able to perform well given such
temporal dependencies. For this reason we present a new
method, WinIT, which reformulates the FIT algorithm to
make it more efficient, while also attributing correct feature
importance for non-instantaneous changes in the predictive
distribution.

3. Notation
Let X ∈ RD×T be a sample of a multi-variate time series
with D features and T time steps. We denote [N ] to be
the set {1, . . . , N}. We also let xt := X·,t ∈ RD be the
set of all observations at a particular time t ∈ [T ] and
X1:t := [x1;x2; . . . ;xt] ∈ RD×t. Let yt ∈ [K] be the label
at each time step for a classification task with K classes. Let
S ⊆ [D] be a subset of features of interest and xS,t be the
observations of that subset at time t. We also define Sc as
the set complement of the features of interest. For a model,
fθ, that estimates the conditional distribution p(yt|X1:t) at
each time step, we aim to provide a feature importance score
for each set of observations xS,t using the observations up
to that time step, X1:t ∈ RD×t.

For feature importance methods that calculate scores over a
set of time steps, we let n ∈ [N ] be the lookback window
up to a maximum window size of N . Then XS,t−n:t rep-
resents the set of observations of the subset of features of
interest over a set of time steps of length n and X1:t−n−1
represents the historical observations for all features before
that window. We also refer to the absmax function which in
our implementation finds the maximum absolute value, but
then returns the actual value, not the absolute value.

4. Methods
In this section we introduce our approach WinIT. We first
review the FIT importance score in Section 4.1. We then
present Inverse FIT, a modified version of the importance
score in Section 4.2. In Section 4.3 we present WinIT, which
extends Inverse FIT using a windowed approach to comput-
ing feature importance for non-instantaneous changes in the
predictive distribution.

4.1. FIT

Proposed by (Tonekaboni et al., 2020), FIT defines an im-
portance score for a subset of features S at time t, given by
a set of observations xS,t. It measures how well the partial
conditional distribution, where only a subset of features are
observed at time t, p(y|X1:t−1, xS,t), approximates the full
predicted distribution p(y|X1:t). This is characterized by
the KL divergence between these two distributions and is
referred to as the “unexplained” predictive distribution shift.
It is measured with respect to the total “temporal” shift from
time t−1 to time t, given by the KL divergence between the
model prediction at time t and the model prediction at time
t − 1, KL(p(y|X1:t)||p(y|X1:t−1)). The FIT importance
score for a set of observations S at time t is then given by
the difference between the “temporal” distribution shift and
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the “unexplained” distribution shift:

IFIT (xS , t) = KL(p(y|X1:t)||p(y|X1:t−1))−
KL(p(y|X1:t)||p(y|X1:t−1, xS,t)) (1)

To compute the partial predictive distribution
p(y|X1:t−1, xS,t), FIT marginalizes over the comple-
ment feature set at time t, xSc,t, by sampling from
the counterfactual distribution p(xSc,t|X1:t−1, xS,t)
approximated by a generative model G.

4.2. Inverse FIT

The FIT algorithm quantifies the predictive distribution shift
explained by an observation xS,t by calculating the differ-
ence between the unexplained distribution shift and the
total temporal distribution shift. An alternative approach is
to directly compute the explained distribution shift. We
can measure the importance of features S at time t by
quantifying how well the partial conditional distribution,
p(y|X1:t−1, xSc,t), where only the complement set of fea-
tures, Sc, are observed at time t, approximates the true
predictive distribution p(y|X1:t). We call this modification
Inverse FIT (IFIT). The new formulation of an instance-wise
feature importance score is:

IIFIT (xS , t) = KL(p(y|X1:t)||p(y|X1:t−1, xSc,t)) (2)

Similar to FIT, we compute the partial predictive distribu-
tion p(y|X1:t−1, xSc,t) by using Monte-Carlo integration to
marginalize over xS,t by sampling from a generator G that
approximates the distribution p(xS,t|X1:t−1, xSc,t). This
approach is outlined in Algorithm 1.

It is important to note that the Inverse Fit importance score,
Equation 2 is not equivalent to the FIT score. In particular
Inverse FIT does not consider the overall shift in the predic-
tive distribution from t − 1 to t. This approach performs
well when extended to calculating feature importance over a
window of time steps, as shown in Section 5. Furthermore,
we find that Inverse FIT achieves similar performance to
FIT, but is faster as seen in Table 1. This is due to the differ-
ent generator that can be used (per-feature, rather than joint)
and is relevant in the case where |S| = 1 as evaluated in our
experiments. For larger set sizes the runtime may vary.

FIT is limited to measuring instantaneous changes in the
predictive distribution, because only the most recent time
step of input is considered when computing importance
for a given prediction. The importance score IFIT (xS , t)
in Equation 1 is equal to the predictive distribution shift
from time step t− 1 to t explained by the observation xS,t.
However, for sequential models, the observation xS,t could
also influence any of the predictive distributions from time
t+ 1 onwards. This importance is not captured in the FIT

Algorithm 1 IFIT
Input: fθ: Trained Black-box predictor model, G: Trained
generative model, X1:T ∈ RD×T : Time series where T is
the max time and D is the number of features, S: a subset
of features of interest, L: number of Monte Carlo samples
Output: Importance score matrix I ∈ RT×D

Train G using X1:T

for all t ∈ [T ] do
p(y|X1:t) = fθ(X1:t)
p(xt|X1:t−1) ≈ G(X1:t−1)
for all l ∈ [L] do

Sample x̂(l)
S,t ∼ p(xS,t|X1:t−1, xSc,t)

p(ŷ(l)) = fθ(X1:t−1, xSc,t, x̂(l)S,t)
end for
p(y|X1:t−1, xSc,t) ≈ 1

L

∑L
l=1 p(ŷ

(l))
I(xS , t) = KL(p(y|X1:t)||p(y|X1:t−1, xSc,t))

end for

algorithm. In the next section we extend the IFIT method to
address this limitation.

4.3. WinIT

We formulate an extension of IFIT with a window of past
observations when attributing importance for a given pre-
diction and call this WinIT. For a prediction at time t, with
a window size of N , we compute importance scores for the
observations XS,t−N :t. For a set of observations xS,t−n the
sum of the IIFIT importance scores for all remaining time
steps t− n+ 1 to t is subtracted from the total importance
score for time steps t− n to t, to get the observation score
at time t − n. When n = 1 the importance score for re-
maining time steps is zero. Because the KL divergences in
a sequence of n windows cancel out in subsequent scores
this can be rewritten as the difference between the current
time step and the following time step as seen in in Equation
3. Here W represents the importance of the feature subset
S at time step t− n that affects the prediction at time step t.

Since WinIT generates N scores for each time step, but
the explainability methods were evaluated based on single
importance score for each observation on individual fea-
tures (no subsets), the final scores must be aggregated. To
generate a single observation score, the absolute maximum
value across all of the n ∈ [N ] windows is computed as
shown in Equation 4. This is used in order to capture the
most important contribution of each observation in the final
importance score. In the benchmark experiments, important
contributions tend to be sparse; a different aggregation met-
ric like an average would not properly capture infrequent
but important contributions.
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Algorithm 2 WinIT
Input: fθ: Trained Black-box predictor model, G: Trained
generative model, X1:T ∈ RD×T : Time series where T is
the max time and D is the number of features, N : feature
importance lookback window size, S: a subset of features
of interest, L: number of Monte Carlo samples
Output: Importance score matrix I ∈ RT×D×N

Train G using X1:T

for all t ∈ [T ] do
p(y|X1:t) = fθ(X1:t)
KL0 = 0
for all n ∈ [N ] do
p(xt−n:t|X1:t−n−1) ≈ G(X1:t−n−1)
for all l ∈ [L] do

Sample X̂
(l)

S,t−n:t ∼
p(XS,t−n:t|X1:t−n−1,XSc,t−n:t)

p(ŷ(l)) = fθ(X1:t−n−1,XSc,t−n:t, X̂
(l)

S,t−n:t)
end for
p(y|X1:t−n−1,XSc,t−n:t) ≈ 1

L

∑L
l=1 p(ŷ

(l))
KLn = KL(p(y|X1:t)||p(y|X1:t−n−1,XSc,t−n:t))
W (xS , t− n, n) = KLn −KLn−1
KLn−1 = KLn

end for
end for
IWinIT (xS , t) = absmaxn∈[N ]W (xS , t, n)
Return I

W (xS , t, n) =
KL(p(y|X1:t)||p(y|X1:t−n−1,XSc,t−n:t))−

KL(p(y|X1:t)||p(y|X1:t−n,XSc,t−n+1:t)) (3)

IWinIT (xS , t) = absmaxn∈[N ]W (xS , t, n) (4)

This leads to a new formulation of a instance-wise feature
importance score now taken over multiple overlapping win-
dows described in Algorithm 2.

5. Experiments
For the following experiments, an RNN-based predictor
is trained on the training dataset, and the explainability
methods are evaluated on the test dataset. A recurrent latent
variable generator (Chung et al., 2015) is trained on the
training dataset for the FIT and WinIT models.

To evaluate the explainability methods on experiments with
simulated data ground truth importance scores are defined.
An observation is given a ground truth importance score of 1
if it causes the label to change. All other observations have a
ground truth importance score of 0. Explainability methods

Table 1. Explanation performance on Spike, and Delayed Spike
(d=2) datasets. For WinIT we use a window size of 8. All evalua-
tions are conducted over 5 random seeds and averaged.

SPIKE

METHOD AUROC AUPRC TIME (S)

FIT 0.994 ± 0.002 0.852 ± 0.098 394.78
IFIT 0.954 ± 0.006 0.844 ± 0.081 70.91
WINIT 0.965 ± 0.002 0.905 ± 0.048 449.41

DELAYED SPIKE (D=2)

METHOD AUROC AUPRC TIME (S)

FIT 0.516 ± 0.035 0.002 ± 0.001 340.00
WINIT 0.970 ± 0.006 0.909 ± 0.029 455.03

are evaluated against the ground truth using AUROC and
AUPRC, where the ranking score is calculated per-sample
by ranking all the feature instances by importance and then
averaged over the entire dataset. For the real-world clin-
ical data, no ground truth feature importance is available.
Instead, the explainability methods are evaluated based on
AUROC drop after the Top K=50, or Top 5%, of observa-
tions with the highest importance score is removed from the
test dataset by carrying forward the previous values.

5.1. Simulated Data

Spike is a benchmark experiment presented in (Tonekaboni
et al., 2020) which uses a multivariate dataset composed
of 3 random NARMA time series with random ‘spikes’,
immediate large increases, added to the samples. The label
is 0 until a spike occurs in the first feature, at which point
it changes to 1 for the rest of the sample. As shown in
Table 1, WinIT shows similar performance to FIT on the
Spike benchmark, with FIT having the highest AUROC, and
the AUPRC of the two methods being the same within one
standard deviation.

To demonstrate the temporal dependency effect, we present
a simple experiment using simulated data as a modification
of the Spike data. Three independent NARMA sequences
are generated and two of the features add linear trends.
Spikes are then added following the same procedure as
the Spike data. However, the time step at which the label
changes is different. In the Spike data the label changes
immediately to 1 after encountering the first spike. In the
Delayed Spike data the label changes after d = 2 time steps.
To measure the accuracy of the explainability methods, we
define the ground truth importance score as 1 for the first
spike and 0 for all other observations. As shown in Table 1,
since FIT only considers the observations from time steps
t− 1 to t as they relate to the prediction at t, it is unable to
assign importance to the correct observation, which occurs
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(a) (b)

Figure 2. WinIT performance on the MIMIC-mortality task im-
proves as the window size increases from 1 to 15 for AUC Drop
(Top 5%) (a) and AUC Drop (K=50) (b).

at time step t − d. However, since the spike falls in the
window Xt−N :t, WinIT is able to assign importance to the
correct observation.

We also show performance of the IFIT and WinIT models
as an ablation study in Table 1. This reveals some of the
tradeoffs between runtime and performance for the different
methods, with IFIT-based methods taking less time than
FIT. Methods that do not use a lookback window achieve
poor results on the Delayed Spike data, reflected in the low
AUPRC of both IFIT and FIT.

5.2. Clinical Data

MIMIC III is a multivariate time series clinical dataset with
a number of vital and lab measurements taken over time for
around 40000 patients at the Beth Israel Deaconess Medical
Center in Boston, MA (Johnson et al., 2016). MIMIC III
is used in the FIT paper to construct the MIMIC-mortality
experiment, which uses 8 vital and 20 lab measurements
hourly over a 48 hour period to predict patient mortality.
As shown in Table 2, the WinIT method is a significant
improvement over FIT and other explainability methods
on the MIMIC-mortality experiment. In fact, we see a
2.47× improvement over FIT when calculating AUC Drop
in the top 5% of features and a 1.36× improvement when
calculating AUC Drop in the top 50 features.

Adjusting the window size can lead to different performance
in all settings. WinIT with different lookback windows of
size 1, 5, 10, and 15 shows improving performance in AUC
Drop (Top 5%) in the real-world setting of the MIMIC-
mortality task as seen in Figure 2. AUC Drop (Top 50),
while outperforming all other methods, does exhibit more
variance and does not improve with window size. This may
be because only a few features benefit from the additional
information related to delays between feature changes and
label changes. It may also be that globally important fea-
tures from the Top 5% display more temporal dependence
than other features.

Table 2. Explanation performance on MIMIC-mortality task.
WinIT uses a window size of 10. At the bottom we show per-
formance improvement against the second-best method (FIT). †
indicates results are from (Tonekaboni et al., 2020).

METHOD AUC DROP (95-PC) AUC DROP (K=50)

AFO† 0.023 ± 0.003 0.068 ± 0.003
FO† 0.028 ± 0.006 0.095 ± 0.042
DEEP-LIFT† 0.045 ± 0.004 0.067 ± 0.038
IG† 0.036 ± 0.003 0.056 ± 0.014
RETAIN† 0.020 ± 0.014 0.032 ± 0.019
LIME† 0.028 ± 0.000 0.032 ± 0.019
GRADSHAP† 0.036 ± 0.000 0.065 ± 0.062

FIT 0.038 ± 0.005 0.138 ± 0.037
WINIT 0.094 ± 0.003 0.188 ± 0.015
(VS. FIT) 2.47× 1.36×

Figure 3. Saliency maps for FIT and WinIT methods on the Spike
dataset. Here it can be seen that both methods capture the im-
portant observation, but FIT also overweights the importance of
all features in the important time step and other time steps for all
features, while WinIT only overweights a few other time steps in
the important feature.

5.3. Saliency Maps

As a sanity check on the explanations provided by WinIT
we show saliency maps from instances in the Spike and
Delayed Spike datasets in Figure 1 and Figure 3. In the De-
layed Spike example it is clear how FIT fails to identify the
important observations, instead providing a higher average
score to all observations. FIT also suffers from a common
problem in time series explanations, where it overweights
features that occur in the same time step as an important
observation. This can be seen in both figures. WinIT, on
the other hand, sees failure cases for the Spike dataset when
multiple spikes appear close together.

We also show comparisons of FIT and WinIT saliency maps
for an instance from the MIMIC-mortality task in Figure 4.
In this case the overweighting of time steps is even more
apparent with the FIT explanation due to the larger number
of features.
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6. Conclusion
In this work we propose WinIT, a method for time series ex-
plainability that allows for attributing correct importance to
observations for non-instantaneous changes in a time series
model’s predictive distribution. WinIT uses a windowed
approach to computing the feature importance and is based
on a modification of the FIT importance score that performs
well in the windowed setting. WinIT is comparable to FIT
on the Spike benchmark, and significantly outperforms FIT
on the proposed Delayed Spike data,where changes in the
model’s predictive distribution are not instantaneous, as well
as on the real-world MIMIC-mortality task.

In the future, we hope to evaluate WinIT on the other bench-
mark experiments, as well as new simulated and real-world
experiments to help better understand where temporal depen-
dencies make the greatest impact. The methods we present
can be further optimized through selection and tuning of the
generative methods used and their application to different
kinds of real-world data.

Figure 4. Saliency maps for FIT and WinIT methods on an instance
from the MIMIC-mortality task. Here the features identified as
most important by WinIT have stronger correlation with the under-
lying features while FIT shows an over weighting of a single time
step.
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