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Abstract
At Walmart, our core mission is to help people
save money so that they can live better.We accom-
plish this is by applying downward pressure on
our prices in order to increase traffic and sales
in our stores. Prior work has developed an auto-
mated process for optimal price recommendation
(Linsey Pang et al.) including Bayesian Struc-
tured Time Series demand forecasting compo-
nent.In this paper, we seek to extend the previ-
ous approach by incorporating robust optimiza-
tion and an improved demand forecasting scheme
with time-series clustering. The improved system
is called Robust Price Recommendation System,
or PRS+.

1. Demand Forecasting via Bayesian
Structured Time Series

An essential component of quantitative price optimization
is a model of the relationship between price changes and
future demand volume. However, the demand of a particular
item in a given price market depends not solely on its price,
but also on other factors such as competitor prices, the dif-
ference between Walmart’s prices and those of the overall
market, sales, number of units sold in rest of the market, etc.
Seasonality features also play an important role in influenc-
ing item demand.To generate the demand-volume forecasts
as well as uncertainty estimates, we use Bayesian Structural
Time Series (BSTS) (Scott & Varian, 2014),often used for
feature selection, time series forecasting, and causal impact
inference. In our model, we also impose a Spike-and-Slab
prior on our regression coefficients, which enables auto-
matic feature selection via parameter shrinkage (Ishwaran
& Rao, 2005). We impose an inclusion probability of 1 on

*Equal contribution 1WalmartLabs, India 2WalmartLabs,
Sunnyvale, USA. Correspondence to: Ketki Gupte
< Ketki.Gupte@walmart.com>, Linsey Pang <
linsey.pang@walmart.com>, Avinash Thangali <
Avinash.Thangali@walmartlabs.com>, Prakhar Mehrotra
< Prakhar.Mehrotra@walmart.com>, Harshada Vuyyuri <
Harshada.Vuyyuri@walmart.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

the price feature and 0.5 on all others. Additionally we set
the elements of the prior mean vector to ±0.5, with the sign
of each element determined by the assumed directionality
of the relationship between the corresponding feature and
demand volume.Modeling was done at the item-week level.
The details of this model can be found in (Linsey Pang et al.).
For this improved version (PRS+), we also include time se-
ries clustering and cross-price elasticity features directly in
our demand forecast model.

2. Time Series Product Clustering
Different product categories within our suite exhibit differ-
ent demand structures over time. Figures 1(a)-1(d) show
some examples of different temporal structures observed in
different products, illustrating the need for specific tailoring
of model formulations to different types of products. De-
veloping a separate model for every product category we
maintain would be intractable, so in order to accommodate
these variations within our forecasts while also maintain-
ing manageability, we group our categories into clusters
based on the behavior of their demand series structure, and
develop our BSTS demand forecasting models on a cluster-
wide basis, although they are fit individually to each product.
We assume that products within the same category (and by
extension, each category cluster) will behave similarly. We
make use of the k-means clustering algorithm utilizing a
Dynamic Time Warp similarity metric (Giorgino, 2009).

3. Robust Optimization
Despite the success of the traditional optimization frame-
works with regression models, in this work, we seek to
extend our previous approach by incorporating recent de-
velopments in robust optimization(Akihiro Yabe, 2017), re-
placing our previous formulation of the utility maximization
step with a robust equivalent along with a robust quadratic
optimization scheme discussed in (Akihiro Yabe, 2017).

Let us have M products with data available for T time
series data points. Let Ym = (y1, y2, ....yt) be the time
series of historical units sold of product m ∈ M and
Xm = (x1, x2, ....xt) be the historical price-series of the
same products. We use our BSTS model to forecast the
unit demand within given time period. Here we use the ma-
trix form of BSTS with local linear trend and price related
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(a) Quadratic trend with season-
ality

(b) Linear trend with seasonality

(c) Local level with holiday
spikes

(d) Local level trend with sea-
sonality

Figure 1. Examples of Different UPC Demand-Series Structures

features as an example to represent demand model:

yt = Ztαt + εt =
[
1 0 xt

] µtδt
β

+ εt (1)

αt+1 = Ttαt +Rtηt =

[
µt+1

δt+1

]
(2)

=

[
1 1
0 1

] [
µt
δt

]
+

[
1 0
0 1

] [
ηµ,t
ηδ,t

]
(3)

where Zt = (1 0 xt)T ,αt = (µt, δt,βt ), Tt =
[
1 1
0 1

]
Rt=

[
1 0
0 1

]
and ηt = (ηµ,t, ηδ,t)T , β is the coefficient of re-

gressor, and for generality, we assume it is constant through
time xt (Scott & Varian, 2014) (Kev).

For a given time t , we subtract out the time-series effect
by letting y∗t = yt − Ztαt while keeping price related
regressors xt. In the following, we focus on modelling the
uncertainty occurring in estimation of regressor coefficients
(i.e. β). We take data points (xt, y

∗
t ) ∈ (XT , Y ∗T ) with

one given single time step to illustrate our robust solution.
For simplicity, we omit t in the following formulations.

In the demand forecasting model, conditional on spike
and slab prior, the posterior distribution of the true coef-
ficient β of the regressor component X is given in the form
(Scott & Varian, 2014): β ∼ N (β̂, σ2

ε (V −1)−1), where
matrix V −1 = XTX . At given time t, we can express
the forecast of y∗ as a linear regression where A is a ma-
trix composed of regressor coefficient β which relates the

X = (x1, x2...xm)T ∈ Rm prices of M products at given
time t.

Similar to (Ito & Fujimaki, 2017), suppose we have training
points with size d ∈ D for each product m ∈ M such
that X = (X1, X2, ..., Xd) ∈ Rm×d with sales units as
Yt = (y1, y2, ...ym)T ∈Rm. The regression formulation is
expressed as:Y ∗ = AX we replace true A by it’s estimator.

This can in turn be simplified as Â := arg min
A

D∑
d=1

yd −Axd.

From Proposition 1 in (Ito & Fujimaki, 2017), we obtain Â
which follows matrix normal distribution as in the following:
Â = A∗ + Σ∗

1
2UM,M+1V

1
2 Where UM,M+1 is random

matrix over Rm×(m+1) and each entry ui,j ∼ N (0, 1). To
derive a formulation for robust price optimization, Cλ, the
confidence interval of Â is determined by the estimator of
Σ as Σ̂ and derived as: Σ̂ := 1

D (Y − ÂV )(Y − ÂV )T and
Cλ := {A|Â+ Σ̂

1
2UM,M+1V

1
2 , U ≤ λ}.

Therefore, we define the robust price optimization
problem at given time t with matrix normal uncer-
tainty as minimizing the uncertainty while maximiz-
ing the revenue as (Ito & Fujimaki, 2017): f(x) =
max
x∈X

min
Cλ

xTAx ⇔ min
x∈X

max
Cλ

xTQx , where Q̂ :=(
−Â
0

)
L1 :=

(
Σ̂ 0
0 0

)
L2 := V 1/2

Using proposition 4 in (Ito & Fujimaki, 2017), for any
x ∈ X and γ > 0, it holds that f(x) ≤ g(x, γ)

where g(x, γ) := xT
(
Q̂+ λγM1+M2/γ

2

)
x and M1 :=

LT1 L1, M2 := LT2 L2, γL1X = L2X

To solve equation above,the overall process can be summa-
rized as:

• Extract observation matrix Zt transition matrix Tt, σ ε,
for example for a local linear trend model as in eqn(2)

• Generate next state αt+1 of bsts at time t+ 1

• Generate prediction of yt at t+ 1 using state at t

• Generate model intercept and coefficient of regression
β from the state αt and prediction yt+1 using matrix
form of above equation

β(i, j) =

{
model coefficient of cross elasticity for i,j , if i 6= j

model coefficient of self price, if i = j
(4)

After we obtain obtain intercept and coefficient of re-
gression β from the model we generate Generate V =
XXT , Σ̂ as described in section above). We also gener-
ate L1, L2,M1,M2, Q̂ as described in equations Next step
is to check Check γ > 0, and initialize r ← ∞ ,γ̃ ← γ0
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, x̃ ← arg minxg(x, γ̃). We then perform coordinate de-
scent by checking condition r−g(x, γ) > δ and γ /∈ {0,∞}
and updating as

r ← g(x̃, γ̃)

x̃← argminxg(x, γ̃)

γ̃ ← argminγg(x̃, γ)

We perform the robust optimization step at each given time-
step and update the optimal price obtained at time t to fore-
cast the demand for time t + 1, thereby improving our
forecast. We perform a set of experiments to determine the
value of λ in equation which maximizes our revenue.

4. Performance Evaluation
4.1. Forecast Evaluation

We first evaluate our system by demonstrating the accuracy
of our forecasting step, augmented with a clustering prepro-
cessing step. Table 1 displays the out-of-sample accuracy
of our suite of models applied to 7 different categories and
Fig. 2 contains plotsshowing the backtests of our model
suite applied to two categoriesin particular within ourFood
Consumablesdepartmen. Our models are not only numeri-
cally accurate but also capture well the seasonal and holiday
effects that drive product sales.

(a) Backtest 1 (b) Backtest 2

Figure 2. Forecasting Performance

Anonymized Accuracy Mape ModelError Cluster

Category A 93.2% 6.80% 4 − 7% Linear Trend
Category B 91.9% 8.10% 5 − 9% Local Level
Category C 91.2% 8.80% 7 − 10% Holiday Spike
Category D 90.3% 9.7% 9 − 11% Local Level
Category E 89.5% 10.5% 8 − 11% Local Level
Category F 88.4% 11.6% 10 − 13% Linear Trend
Category G 87.2% 12.8% 11 − 13% Local Level

Table 1. Forecast Performance on Price Market 11 for Anonymized
Categories in Food and Consumables Department

4.2. Simulation Study

We applied a similar simulated data generation process as
that of (Ito & Fujimaki, 2017)(Akihiro Yabe, 2017) to val-
idate robust approach. Fig. 3 a shows experiments result,

Figure 3. (a)Simulation study (b) Vacuum cleaner sales study

we randomly generated M true demand models with train-
ing datasets of {10M, 20M, 30M, 40M, } with M = 5.
The top horizontal line is the actual revenue yielded from
our true data simulation, robust optimization model is exe-
cuted for 4 different independent groups of products with
λ ∈ {1, 2, ..., 20}. These results from Fig. 3(a) validate
the effectiveness of robust approach: (1) The uncertainty of
model error decreases when number of training data points
increases. (2) Robust solution generates lower model error.
(3) Solution also shows λ ∈ {2, 3} resulting in much better
performance comparing non-robust solution i.e(λ = 0)

4.3. Vacuum Cleaners Sales Evaluation

The fineline which we analyze is Upright Vacuum Clean-
ers, which consists of 15 different products from different
brands.We display the revenues yielded in 5 separate opti-
mization runs on different groups of 15 products each, based
on discount levels from their current prices. The values are
plotted 3(b) for various values of λ, and their means and
95% confidence intervals are displayed. These charts illus-
trate how an optimal revenue is yielded with λ = 2. Table
2 shows the self-price and cross-price elasticities of indi-
vidual upright vacuum cleaner among 15 products; notice
that some products have a high cross price elasticity indicat-
ing that consumers view these as easily substitutable, while
other with 0 elasticity are not sensitive to price changes.
Table 3 illustrates the optimal prices obtained for these prod-
ucts with robust optimization solution. We observe that for
λ values of 2 and 3 we take a deeper price cut on some
products while keeping the existing prices for most other
products. This suggests that we are close to optimal with our
original PRS system recommendations but applying a price
cut on some products gives higher revenues, illustrating the
advantage of our improvements over the old framework.

5. Conclusion
In this paper, we extend our previous price recommendation
approach (PRS) by incorporating a robust optimization step,
as well as an improved demand forecasting scheme and we
call it PRS+. PRS+ is able to take in as input a predeter-
mined strategy aggressiveness parameter, λ, and generate a
corresponding set of price recommendations for each item,
in accordance with the risk tolerance encoded by λ. To our
knowledge, our approach improves upon previous robust
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Vacuum Cleaners p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15

Elasticity p1 −0.878 0 0.425 0 −0.334 0 1.206 −0.211 0.056 −1.034 0 −0.202 0 −1.066 −0.045
p2 0 −1.598 0.201 0 0.02 0 0.368 0.86 0.09 1.296 0 0.582 0 −0.785 1.66
p3 0 0 −0.605 0 0.345 0 0.97 0.015 0.231 −0.003 0 0.977 0 −0.903 0.298
p4 0 0 0.846 −0.217 0.263 0 0.086 −0.625 0.42 0.666 0 1.938 0 −1.892 1.12
p5 0 0 1.154 0 −0.745 0 0.779 −0.028 −0.446 0.586 0 −0.367 0 −1.137 −0.348
p6 0 0 1.241 0 0.119 −2.284 0.546 0.134 1.296 −1.936 0 −0.427 0 0.548 0.106
p7 0 0 0.103 0 0.701 0 −0.237 −0.196 −0.063 −0.138 0 0.869 0 0.098 −0.143
p8 0 0 2.437 0 1.075 0 1.049 0.202 0.634 −1.34 0 −2.072 0 0.355 −0.276
p9 0 0 1.72 0 1.46 0 1.104 1.264 −2.44 1.494 0 0.858 0 −0.714 0.086
p10 0 0 0.198 0 0.018 0 0.462 −1.154 1.05 −0.558 0 0.898 0 0.252 0.396
p11 0 0 −0.561 0 0.022 0 0.572 0.766 0.027 0.874 −0.589 0.371 0 −1.746 1.334
p12 0 0 1.598 0 −1.16 0 1.641 −0.506 0.242 −0.968 0 0.603 0 0.304 −0.446
p13 0 0 0.19 0 0.747 0 0.674 0.337 0.791 0.268 0 2.311 −0.642 1.074 −0.458
p14 0 0 0.77 0 0.225 0 1.559 −0.328 1.259 0.555 0 1.899 0 −1.115 −0.118
p15 0 0 0.549 0 0.033 0 −0.184 0.144 0.11 −0.367 0 0.677 0 1.979 −0.086

Table 2. Vacuum Cleaners: Evaluation of the Robust output and price elasticity

Product Discount p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15

λ values λ = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.6 1
λ = 2 0.817 1 1 1 1 1 1 1 1 1 1 1 1 0.6 1
λ = 3 0.656 1 1 1 1 0.848 1 1 1 1 1 1 1 0.6 1
λ = 4 0.6 1 1 1 1 0.683 1 1 1 1 1 1 1 0.6 1
λ = 5 0.6 1 1 1 1 0.6 1 1 1 1 1 1 1 0.6 1
λ = 6 0.6 0.951 1 1 1 0.6 1 1 1 1 1 1 1 0.6 0.926

Table 3. Vaccum Cleaners: Optimal product discounts at λ values

price optimization efforts (Akihiro Yabe, 2017) by better
accounting for product substitution and retail demand com-
plexities with a Bayesian Structual Time Series forecasting
stage, rather than traditional regression methods used in
similar robust optimization contexts.
References
State-space modelling. https://kevinkotze.
github.io/ts-4-state-space/.

Akihiro Yabe, Shinji Ito, R. F. Robust quadratic program-
ming for price optimization. Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelli-
gence Main track, pp. 4648–465, 2017.

Giorgino, T. Computing and visualizing dynamic time warp-
ing alignments in R: The dtw package. Journal of Statis-
tical Software, 31(7):1–24, 2009. doi: 10.18637/jss.v031.
i07.

Ishwaran, H. and Rao, J. S. Spike and slab vari-
able selection: Frequentist and bayesian strategies.
Ann. Statist., 33(2):730–773, 04 2005. doi: 10.
1214/009053604000001147. https://doi.org/10.
1214/009053604000001147.

Ito, S. and Fujimaki, R. Optimization beyond prediction:
Prescriptive price optimization. KDD ’17: Proceedings
of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1833–1841,
2017.

Linsey Pang, K. G., Thangali, A., and Vuyyui, H. Price in-
vestment using. prescriptive analytics and optimization in
retail. KDD ’20: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 3136–3144.

Scott, S. L. and Varian, H. Predicting the present with
bayesian structural time series. International Journal of
Mathematical Modelling and Numerical Optimisation, 5:
4–23, 2014.

https://kevinkotze.github.io/ts-4-state-space/
https://kevinkotze.github.io/ts-4-state-space/
https://doi.org/10.1214/009053604000001147
https://doi.org/10.1214/009053604000001147

