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Abstract

We present a flexible, scalable, and interpretable
framework for automated forecasting of multivari-
ate time-series, building off of the Bayesian Vec-
tor Autoregression (BVAR) literature in macroe-
conometrics. Our algorithm allows for full poste-
rior estimates of hundreds of interaction parame-
ters, with minimal hand-tuning or hyperparameter
specification required. The model can be eas-
ily extended to account for non-stationary breaks
such as the COVID-19 pandemic. In experiments
our model outperforms comparably-flexible time-
series models at forecasting inflation.

1. Introduction
Time-series forecasts can often be substantially improved
by modeling multiple related time-series jointly. However,
relative to univariate forecasting problems, there are few au-
tomated methods available for producing joint distributional
forecasts of time-series data without substantial manual fine-
tuning. Additionally, existing methods for multivariate fore-
casting, such as vector auto-regressions, produce forecasts
which are black-box convolutions of the joint distribution of
all modeled series and are often difficult to understand and
analyze.

We propose a Bayesian approach to estimating a vector auto-
regression (VAR) with time-varying means, and present
prior specifications that can be used to make estimation and
forecasting effectively automatic given a sample of appro-
priate length. Our model uses strong priors, which can be
automatically, estimated from a pre-sample, to regularize
coefficient estimation. The use of Bayesian estimation au-
tomates much of the parameter selection and fine-tuning
that is necessary when estimating standard VARs. The time-
varying mean component of our model allows for highly
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interpretable medium and long-term forecasts that can be op-
tionally specified as a factor structure, while the VAR com-
ponent allows for short-term reactions to high-frequency
shocks.

Our model builds off of a variety of VAR models in the
macroeconometric literature, which have been specialized
for the analysis of specific macroeconomic scenarios, e.g.,
(Bańbura et al., 2010), (Del Negro et al., 2019) (Christiano
et al., 1999). Relative to these models, in which the model
structure is tightly connected to the statistical likelihood
function, we present a fully general framework that can be
immediately and automatically applied to a wide variety
of time series. We generalize the estimation procedure for
VARs by expressing our model in state-space form, and
developing an estimation algorithm that nests the Kalman
simulation smoother within a Gibbs Sampler to produce pos-
terior estimates that can be easily parallelized and efficiently
computed.

Most methods for multivariate forecasting require that the
input data be transformed into stationary time-series before
estimation. For many time-series encountered in applied
forecasting applications, such as macroeconomic variables,
or product demand data, a common approach is to take year-
on-year growth rates or one-year log differences. However,
these transformations fail when confronted with sudden
level shifts such as those generated by the COVID-19 pan-
demic. Because such level shifts affect both the numerator
and the denominator of a year-on-year growth calculation
they can cause ”baseline effects” which make forecasting
difficult in the year following a shift. We propose a simple
extension of our model in which a (potentially time-varying)
level shift is integrated into the state-space, so that the model
can jointly estimate the effect of the shift on both the numer-
ator and denominator of realized growth rates.

We apply our model to the task of forecasting core CPI, the
most commonly-tracked measure of headline inflation, in
the United States. We show that our model, which models
the joint evolution of core CPI with its components out-
performs a variety of off-the-shelf competitor forecasting
methods in backtests, with minimal manual specification
required. We additionally show that our adjustment for
level shifts during the COVID-19 period is able to account
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for baseline effects, and predict the realized year-over-year
increase in core CPI that surprised many macroeconomic
forecasters in April 2021.

2. The statistical model
Let yt be an n-dimensional vector of observables which
have been transformed into stationarity; in practice, we usu-
ally work with year-on-year growth rates or log-differences.
Our basic estimation equation separates the observable data
into a time-varying mean ȳt and a VAR component, ỹt:

yt = ȳt + ỹt (1)

We allow the time-varying mean component to be driven by
a k-dimensional unobserved factor structure, γt, with the
factor loadings captured in an n× k dimensional matrix Λ,
and the factors themselves evolving according to a random
walk:

ȳt = Λγt (2)

γt = γt−1 + ut (3)

with ut ∼ N (0,Σu). The factor specification is fully op-
tional, and can be trivialized by setting Λ = In×n. Setting
Λ to be a loading matrix, estimated within the Gibbs sam-
pler, with k < n, will allow for dimensionality reduction,
whereas setting Λ to a set of deterministic loadings (e.g.,
0s and 1s) with k ≥ n allows for an overidentified factor
structure that can ease interpretation and prior specification.

ỹt captures the high-frequency fluctuation of each part of
yt around its low-frequency mean. These fluctuations will
have an unconditional mean of zero, and evolve according to
a VAR with lag length p. Specifically, for each i = 1, . . . , n
we will have

ỹi,t =

[
n∑
k=1

p∑
s=1

βi,k,s · ỹk,t−s

]
+ εi,t (4)

where (ε1,t, . . . , εn,t) ≡ εt ∼ N (0,Σε)

2.1. Estimating the model

For estimation, we express our model in an unobserved-
components state-space framework. We then use the
simulation smoother of (Carter & Kohn, 1994) or (Durbin
& Koopman, 2002) to sample the trend and transitory
components from their posterior distribution conditional on
the observed data and hypothesized values for the model
parameters, β, Σu, and Σε. Then, given these samples, we
can use standard Bayesian VAR estimation techniques to
sample the parameters from their posterior given the states.
Building off of the approach of (Bańbura et al., 2010) we
use the Gibbs Sampler approach of (Chib & Greenberg,
1994) to generate a chain of draws from the full joint

posterior.

To describe our algorithm, let γ(j)t and ỹ
(j)
t be the j-th

samples of the unobserved states, and let β(j), Σ
(j)
u , and

Σ
(j)
ε be the j-th samples of the model parameters. Let φγ

and φu be vectors collecting the parameters for the priors
of the low-frequency factors’ initial state and innovation
variances respectively. To derive the j + 1-th samples, we
apply the following algorithm:

1. Apply the Kalman simulation smoother to the observed
data, yt, with the j-th draw parameters encoded in the
system matrices, to produce a new draw of the trend
and transitory components from their posterior:

γ
(j+1)
t , ỹ

(j+1)
t ∼ P (γt, ỹt|yt, β(j),Σ(j)

u ,Σ(j)
ε , φγ)

(5)

2. Produce estimates of the random-walk innovation term
for the trend, u(j+1)

t , and use these estimates to sample
from the posterior of the variance-covariance matrix of
the trend innovations:

u
(j+1)
t ≡ γ(j+1)

t − γ(j+1)
t−1 (6)

Σ(j+1)
u ∼ P (Σu|u(j+1)

t , φu) (7)

3. Sample the VAR parameters from their posterior. This
requires two steps. First, we estimate a Bayesian VAR,
with a Minnesota prior as described in (Litterman,
1986), to sample proposals of the VAR parameters
from their posterior given the transitory components:

β̂(j+1), Σ̂(j+1)
ε ∼ P (β,Σ|ỹt) (8)

These sampled parameters will reflect the likelihood of
each observation ỹt conditional on its p predecessors
ỹt−1, . . . , ỹt−p. However, they do not incorporate
the likelihood that we observe the first p terms,
ỹ−p+1, . . . , ỹ0 given the model’s implied steady state.

To account for this, we first derive the steady state
variance-covariance matrix of the transitory terms,
V̂ (j+1) as the solution to the Lyapunov forward equa-
tion:

V̂ (j+1) = C(j+1) · V̂ (j+1) · C(j+1)T + Σ(j+1)
ε (9)

where C(j+1) is the transitory term’s transition matrix
which is defined as a function of β(j+1). We use the
likelihood of the initial conditions, conditional on this
steady-state covariance matrix to perform a Metropolis-
Hastings step. This has the effect of rejecting parameter
estimates which imply initial conditions that are very
far away from steady-state.
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2.2. Extension to non-stationary level shifts

In most applications the transformed stationary variables
contained in yt will be some form of year-on-year growth
rate. This type of modeling normally works very well for a
variety of economic series, but encounters problems when
faced with sudden level shifts. The presence of such level
shifts in both the numerator and the denominator of the
year-on-year growth calculation causes non-stationarity.

For example, during the COVID-19 pandemic a variety of
macroeconomic series saw sudden shocks to their year-on-
year growth rates during the spring of 2020, offset by shocks
of the opposite sign in spring 2021.The generality of our
state-space setting allows us to extend our model to allow
for such level shifts, given knowledge of their location.

Let xt be the log-level of all variables under consideration,
and let xt−l be the one-year lag; for example, for monthly
data we will have l = 12. Then we extend the state space
model to allow for a time-varying level shift, St, in the
factor structure, with an indicator variable ξt used to mark
the periods in which the shift is active:

xt = Λ · St · ξt + yt + xt−l (10)

The ”normal-times” growth component, yt evolves exactly
as specified in the previous section. In our baseline specifica-
tion, level shift evolves according to a random walk without
drift. In experiments, we have found that this restriction can
be relaxed by sampling the autoregressive parameter from
a discrete proposal distribution, and applying a Metropolis-
Hastings step based on the likelihood of the full model. This
will estimate a mixture model across discrete scenarios for
the dynamics of the shift. A similar approach can be applied
to estimating the size of the shocks to the level shift, relative
to the size of the shocks to the baseline drift terms.

3. Empirical Application
We use our model to produce forecasts of the Consumer
Price Index for All Urban Consumers ex food and energy,
commonly denoted core CPI, which is one of the most
commonly-tracked measures of macroeconomic inflation.
To showcase the multi-variate capabilities of our method,
we jointly model year-over-year changes in core CPI along
with year-over-year changes in its seven primary compo-
nents. We retrieve all data from the FRED macroeconomic
database maintained by the Federal Reserve Bank of St.
Louis. With 8 variables and 3 monthly lags, our model has
264 parameters to estimate with 15 years of data, highlight-
ing the importance of strong priors for regularization.

Figure 1 shows the model-implied decomposition of year-
over-year changes in CPI into persistent and transitory vari-
ation for Core CPI as well as the housing component of
CPI from the model estimated through January of 2012.

The persistent components of each series are clearly very
high correlated, but the housing component shows stronger
price growth during the boom years of 2006-2007 followed
by price declines during the house crash that accompanied
the Great Recession. The uncertainty attributable to persis-
tent variation grows over time, following the random walk
specification, whereas the uncertainty due to the transitory
component stays of constant width.
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Figure 1. Model decomposition of year-over-year inflation in Core
CPI and housing CPI from data through January of 2012, with
forecast window through the end of 2013.

To compare our model’s out-of-sample forecast performance
with that of other ”plug and play” models, we perform
a horse-race backtest of Core CPI prediction against the
Prophet model described in (Taylor & Letham, 2018), as
well as a standard vector autoregression implemented using
the vars package. Our proposed model is denoted BVAR-
SSM. For each month between January of 2008 and January
of 2019 we estimate each model on all available data, and
forecast forward 12 months. As Table 1 shows, our proposed
model shows substantially lower mean average percentage
error than its competitors when compared across a variety
of horizons. A key advantage of our proposed model is
that it can match the short-horizon predictive performance
of a ”standard” vector auto-regression, without the long-
horizon overreaction that tends to characterize such models.
This is due to the BVAR-SSM model’s slowly time-varying
intercept, as well as the regularization that the Minnesota
Prior applies to the cross-variable autocorrelation terms.

To test the performance of our extended state-space model
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Table 1. Mean Average Percentage Error, in basis points, for pro-
posed model vs. competitors on CPI backtest, by forecast horizon
in months. The degradation in performance at 12-months is due to
difficulties in forecasting year-on-year growth rates more than one
year ahead.

HORIZON BVAR-SSM PROPHET VAR

1 15.85 36.95 15.96
2 19.66 38.29 22.84
3 22.86 39.72 30.37
4 26.06 41.16 35.54
5 29.33 42.64 38.44
6 30.21 43.96 40.66
7 34.34 45.12 42.89
8 38.10 46.25 44.96
9 40.16 47.26 47.79

10 42.94 48.24 51.42
11 45.21 49.15 53.98
12 54.37 50.29 57.93

for non-stationary level shifts, as described in 2.4, we apply
it to recent data through the COVID-19 pandemic period.
We specify that the level shift begins in April of 2020, but
give the model no additional guidance about its size or evo-
lution. As Figure 2 shows, the level shift term captures most
of the pandemic-driven variation in realized CPI inflation,
allowing the low-frequency estimate of underlying inflation
to remain stable. The shift also captures differential sectoral
effects: while core CPI decreased slightly, prices for food
and beverages actually increased.

The benefit of adjusting for non-stationary level shifts is
apparent when comparing forecasts for April 2021. April
2020 marked the start of the COVID-19 pandemic’s impact
on the US economy, causing a sudden sharp decline in the
consumer price index. This implies a predictable increase in
year-over-year inflation 12 months later. As Figure 3 shows,
the BVAR-SSM model with level shifts is able to account
for these dynamics, whereas the Prophet and VAR models
cannot.

4. Conclusion
We have presented a flexible statistical model for Bayesian
multivariate time-series forecasting. Our model preserves
the conceptual simplicity and interpretability of a low-
frequency random-walk model, while allowing for com-
plex cross-variable interactions through a high-frequency
vector autoregression. We specify strong priors, derived
from a large literature in applied macroeconometrics where
they have proved suitable for a wide variety of time se-
ries, to discipline estimation and prevent overfitting. We
show that our model can be easily extended to accommodate
non-stationary level shifts, such as those seen during the
COVID-19 pandemic, using state-space methods.
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Figure 2. Model decomposition of year-over-year inflation in Core
CPI and food/beverage CPI from data through 2020.
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Figure 3. Forecast performance for models trained through Decem-
ber of 2020. Actuals are in black, and actuals after the training
vintage are dashed.

In an empirical application, we find that our model outper-
forms competitor models at the task of forecasting inflation.
Our model generates interpretable insights into the mul-
tidimensional factor structure of low-frequency trends in
inflation, while outperforming more black-box models at
short horizons. With its state-space extension our model
is able to account for the baseline effects caused by the
COVID-19 pandemic.
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