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Abstract

We use a Neural Ordinary Differential Equation to
model and predict the seasonal to interannual vari-
ability of El Nifio Southern Oscillation (ENSO).
We train our neural network model using partial
observations involving only sea surface tempera-
ture data. Our approach is computationally inex-
pensive, it reproduces the main seasonal features
of ENSO, and exhibits robust predictions skills.

1. Introduction

El Nifio Southern Oscillation (ENSO) is the largest inter-
annual variability phenomenon in the tropical Pacific and its
influence extends beyond the tropics to higher latitudes via
atmospheric and oceanic teleconnections. Therefore, it has
significant impacts on global climate predictions. However,
because of the intricate interplay between the stochastic
forcing from atmospheric transients and the nonlinear air-
sea interactions that drive ENSO phenomena (1; 2), building
models that are capable of skillful ENSO forecasts remains
a major challenge in climate science.

Here we use a Neural Ordinary Differential Equation
(NODE) (3) approach to model ENSO phenomena. Our
NODE model successfully captures the essential features
of ENSO, the two most important features of which are (i)
“phase locking” to the seasonal cycle (4), which is the con-
centration of abnormal ENSO events during November and
December, and (ii) the predictability barrier (5), which is
related to the increase of model uncertainties during spring.
Finally, our model exhibits robust short-term prediction
skills, outperforming more complex and computationally
expensive models on the same tasks.
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2. Data

We assume that only a single time series, the Nino3.4 sea
surface temperature (SST) index data, is available for the
entire training procedure of the neural network (NN). The
data consists of monthly SST anomalies ! derived from the
temperature analyses of the Bureau National Operations
Centre (BNOC) at the Australian Bureau of Meteorology
(10). These data are measurement values averaged over
the Nino3.4 region (SN-5S, 170W-120W), starting from the
pre-industrial era and spanning the entire period 1870-2016.

3. Methods

We assume that the temporal evolution of ENSO can be
represented by an autonomous continuous-time dynamical
system of the form

#(t) = F(x(t)), (1)

where z : [0,T] — RP, T > 0 is the state of the system
and F : RP — RP a deterministic force field.

It was shown in (6) that ENSO exhibits chaotic behavior
and evolves inside a strange attractor (7). We denote v < D
as the box counting dimension of such attractor A. Because
of Whitney’s embedding theorem (8), A can be embedded
in an Euclidean space with dimension m > 2v. The diffeo-
morphism ¢ that maps A — R™ can be chosen, according
to the Takens theorem (9), as

d(x(t)) = [2a(t), 2o (t—AT), ..., 20 (t—(m—1)AT)] (2)

for every a € {1,..., D} This means that for each o we
can construct a function G® : R™ — R such that

g = G2 (t), 20t — AT),...,xq(t — (m — 1)AT))g
3)

'The SST anomalies are defined as the difference between
the monthly sea surface temperature data and the average monthly
temperature. Let 7'(¢) be the temperature relative to the i-th month,
with ¢ € 12N and N the total number of years in which the sea
surface temperature data are available. The average temperature
corresponding to each month is then

N
_ 1
To = ;Tmmi m € [1,12],

and hence we define the SST anomalies as x; = T; — T mod[12]+1-
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for every o, 8 € {1, ..., D}. Using Eq. (3) for a« = (3, we
can write the temporal evolution of this process y : [0, 7] —
Ras

y(t) = Gy(t), y(t — A7), ...,y(t — (m = 1)A7)), (4)
where we have dropped the indices.

We represent the mapping G as a neural network parameter-
ized by a learnable vector #. Because the optimal choice of
the embedding dimension m and the time interval A7 are un-
known, we take them to be learnable parameters. Given an
observed discrete time series y = (y°?*(At), ...y°** (N At))
of length N, where At = %AT with ¢ € N, our aim is to

find é(n), defined as

6(n) = argmin L7 (5, y5™), )

where

Ly, g

1 N
:{N—n—(m—l)q Z (6)

i=n+(m—1)q

iAt ’ %
(yobs(iAt) _ / ds Gy (5; yo(jAt))> } ’
(i—n)At

is the loss function measuring the discrepancy between
the observed time series and model predictions, which are
obtained by numerically integrating Eq. (4) for n time
steps. In the above, yo(jAt) = (y°**(jAt), y°*s (jAt —
AT), ..,y (jAt — (m — 1)AT), and we use the forward
Euler scheme for the numerical integration.

4. Results

We consider three training settings corresponding to mini-
mizing the loss function £", with n = 20, 40, 48. Each of
these setting corresponds to fixing a timescale where the
parameters € are optimized.

For each setting, we train our NN, varying the values of the
embedding dimension m and time interval A7. We measure
the predictive performance of the model in terms of the pat-
tern correlation and the root mean square error, normalized
with respect to the standard deviation of the SST anomalies
and subtracted to one (we shall call this quantity RMSE),
between predictions and observations. We repeat this pro-
cedure using two different values of the hyperparameter n:
n = 20 and n = 40 (see Fig. (1)). The goal of this test
is to tune the hyperparameter n to improve the predictive
performance of the algorithm and gain insight into the dy-
namical characteristics of ENSO. Note that the embedding
dimension m provides an upper bound for the dimension v
of the underlying system (v < 7). Fig. (1) shows that the

optimal embedding dimension is relatively low (less than
5 for the case of n = 20 and less than 7 for the case of
n = 40). This shows that ENSO is effectively a low dimen-
sional system (see e.g. (11) and references therein). For a
given n, the optimal value for the time delay as a function of
the embedding dimension reveals the dominant time scale
for reliable predictions.

Fig. (2) shows the correlation and RMSE between obser-
vations and predictions, in terms of the lead and starting
months. For comparison, we consider three different mod-
els (n=20, 40 and 48), shown in the first, second and third
rows respectively. All three models exhibit the characteristic
features of ENSO described above. First, the correlation
exhibits an abrupt reduction for predictions starting during
the boreal spring due to the observed lowering of the signal
to noise ratio in the boreal summer. Second, the RMSE
exhibits maximal values for predictions in the boreal winter,
during which the signal to noise ratio reaches its maximal
value.

In the first column of Fig. (3) we show the correlation and
the RMSE as a function of the delay between predictions
and observations. The second column of Fig. (3) shows
the predictions for different values of the time delay. For
the first three panels we use the parameters trained with
n = 20, and for the last panel we use the parameters trained
with n = 40. We compare the predictive performance of
our model to that obtained using kernel analog forecast-
ing (KAF) (13), the linear inverse model (LIM) (12), the
General Circulation Models (GCMs) and the convolutional
neural network (CNN) model of (14).

In panel (a) of Fig. (3) we show the correlation and RMSE as
a function of time delay for the three NNs trained using n =
20, n = 40 and n = 48, corresponding to a training period
of 6, 10 and 12 months respectively. If we use each of these
models for predictions, included in the time range where the
NN is trained, we see clearly that our models considerably
outperform the LIM model and increase the time horizon
for skillful forecasts by approximately 5 months. This is
represented by the correlation threshold of 0.5. Our models
significantly outperform the KAF model for predictions of
less than 6 months. The KAF model exhibits a performance
similar to that of the LIM; for longer-term predictions the
improvement is only marginal.

The NN model trained with n = 20 outperforms much more
advanced and computationally expensive models, such as
the GCMs and the CNN of (14), for predictions 6 months
into the future (see Fig.(3)(b)). For longer-term predictions,
which means prediction beyond the spring predictability
barrier, the performance of our model degrades noticeably
when compared with that of the other two models. This is
due the fact that our NN are trained using only the data from
the Nino3.4 region instead of the data from the entire Pacific
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Figure 1. Correlation and RMSE between predictions and obser-
vations for different values of the embedding dimension and time
interval for two values of the hyperparameter; n = 20 for panels
(a,b) and n = 40 for panels (c,d).
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as used by the other models. The lack of the more extensive
data limits the ability of our NN to learn correlation patterns
spanning broad regions of the Pacific, thereby significantly
impacting prediction on long timescales.

5. Conclusions

In this paper we have developed a Neural Ordinary Differ-
ential Equation (NODE) framework to accurately model
the El Nifio Southern Oscillation (ENSO). By learning the
optimal embedding dimension and the associated time de-
lay in our approach, we have reproduced the key seasonal
features of ENSO. When compared to other methods, our
method is computationally less costly and yet exhibits robust
short-term predictive performance. Our work demonstrates
the promising potential of using the NODE framework for
climate modeling.
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Figure 2. Pattern correlation and RMSE in function of the lead
(expressed in months) for different starting months. Three different
NN have been used for the comparison, n = 20 for panels (a,b),
n = 40 for panels (c,d) and n = 48 for panels (e,f).
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Figure 3. Left column: prediction performances of our Neural ODE (NODE 20,40,48, corresponding to n = 20, 40 and 48) compared
to predictions using kernel methods (panel a) and different GCMs and a CNN model (panel b). The correlation and RMSE have been
obtained using 1995-2016 as the verification period in the first figure and 1985-2016 for the correlation in the second figure. Right
column: comparison of the predicted time series of the Nino3.4 SST index with observations.



