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Abstract

We present a novel variational bayesian ap-
proach for time series forecasting following from
a state-space representation, named VIKING
(Variational BayesIan Variance TracKING). The
method is illustrated with the procedure used to
win a recent competition on post-covid electricity
load forecasting.

1. Introduction

Electricity demand forecasting is a crucial task for grid
operators. Indeed the production must balance the consump-
tion as storage capacities are still negligible compared to
the load. Time series methods have been applied to ad-
dress that problem, relying on calendar information and
lags of the electricity consumption. Statistical and machine
learning models have been designed to use exogenous infor-
mation such as meteorological forecasts (the load usually
depends on the temperature for instance, due to electric heat-
ing and cooling). However the behavior of the consumption
changed abruptly during the coronavirus crisis, especially
during lockdowns imposed by many governments. These
changes of consumption mode have been challenging for
electricity grid operators as historical forecasting procedures
performed poorly. Therefore designing new forecasting
strategies to take that evolution into account is important
to reduce the cost of forecasting errors and to ensure the
stability of the network in the future.

Our methodology extends a previous work on the French
electricity load (Obst et al., 2021). We present a state-space
approach to adapt statistical and machine learning methods.
After applying a standard Kalman Filter we present a novel
approach to adaptively estimate the observation and state
noise variances based on the Variational Bayes approach
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as in (Huang et al., 2020). Our procedure resulted in the
winning strategy in a competition on post-covid day-ahead
electricity demand forecasting1. In Section 2 we present the
competition along with classical forecasting methods, then
in Section 3 we present a generic way to adapt these methods.
Finally we present numerical experiments in Section 4. For
clarity we apply some pruning compared to the winning
submissions with very little performance degradation, and
we focus on adaptation methods as it is the core of our
strategy.

2. Competition presentation

The objective of the competition was to predict the electric-
ity load of an undisclosed location of average consumption
1.1 GW, that is of the order of one million people in western
countries. We had access to the historical load starting from
March 18th 2017 and the evaluation was based on the Mean
Average Error (MAE) on the period ranging from January
18th to February 16th 2021. The break in the electricity
consumption due to coronavirus is presented in Figure 1.

The competition’s setting was to forecast the hourly load 16
to 40 hours ahead, precisely during the 30-day evaluation
period, we predicted day d with at our disposal the data
updated up to day d-1 at 8AM.

2.1. The dataset

To forecast the load, meteorological forecasts are provided
(as well as historical realized meteorology): temperature,
cloud cover, pressure, wind direction and speed. From the
statistical properties of the meteorological residuals, we
gather that the forecasts come from physical models that
need to be statistically corrected. We thus correct the mete-
orological forecasts via autoregressive models on the resid-
uals. Finally we use the following explanatory variables:

• calendar variables: the day of the week, the time of
year (Toy) growing linearly from 0 on January 1st to
1 on December 31st, and a variable growing linearly
with time to account for a trend,

1https://ieee-dataport.org/competitions/day-ahead-electricity-
demand-forecasting-post-covid-paradigm

https://ieee-dataport.org/competitions/day-ahead-electricity-demand-forecasting-post-covid-paradigm
https://ieee-dataport.org/competitions/day-ahead-electricity-demand-forecasting-post-covid-paradigm
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Figure 1. Electricity load from March 18th 2017 to February 16th

2021.

• meteorological forecasts after statistical correction: the
temperature along with an exponential smoothing vari-
ant of parameter 0.95 (Temps95), the cloud cover, the
pressure, the wind direction and speed,

• lags of the electricity load: the load a week ago
LoadW and the last load available LoadD (a day ago
for the forecast before 8AM and two days ago after
8AM, due to the availability of the online data during
the competition).

2.2. Statistical and Machine Learning methods

We apply a few classical predictive models. It is usual in
electricity load forecasting to define independent models
for the different hours of the day. For each model we use
the same structure for the different hours but we learn the
model parameters independently for each hour of the day.
However the correlation between different hours is impor-
tant and therefore to capture intraday information we fit on
the residuals of each model an autoregressive model incor-
porating lags of the 24 last available hours and optimized
for each forecast horizon.

Autoregressive. We consider a seasonal autoregressive
model based on the daily and weekly lags of the load.

Linear regression. We use a linear model with the fol-
lowing variables: temperature, cloud cover, pressure, wind
direction and speed, day type (7 booleans), the linear trend
parameter, Toy, LoadW and LoadD.

Generalized additive model (GAM). We propose a Gaus-
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Figure 2. Evolution of the forecasting error for the different models
introduced in Section 2.2 trained on the data up to January 1st 2020.

sian generalized additive model (Wood, 2017):

yt = ↵t+
6X

i=1

�i1DayTypet=i + �Temps95t + f1(Toyt)

+ f2(LoadDt) + f3(LoadWt) + �0 + "t ,

where yt is the load, f1 is obtained by penalized regression
on cubic cyclic splines, f2, f3 on cubic regression splines.

Multi-Layer Perceptron (MLP). Finally we test a multi-
layer perceptron with 2 hidden layers of 15 and 10 neurons,
taking as input the linear trend parameter, Toy, DayType,
LoadD, LoadW , Temps95t.

3. Model adaptation

Due to the lockdowns the behaviour of the load changed
abruptly and therefore the models presented in Section 2.2
perform poorly during Spring 2020 and afterwards, see
Figure 2. To adapt the models in time, we rely on linear
gaussian state-space models, summarized as

✓t � ✓t�1 ⇠ N (0, Qt) ,

yt � ✓
>
t xt ⇠ N (0,�2

t ) ,

where �2
t is the observation variance and Qt the process

noise covariance matrix.

This state-space representation is natural for linear regres-
sion for which xt is the vector containing the explanatory
variables detailed in Section 2.2. Autoregressive and linear
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models fit directly in that framework. To adapt GAM and
MLP we linearize the models and xt is just another feature
representation. We freeze the non-linear effects in the GAM
as in (Obst et al., 2021), and xt contains the different effects,
linear and non-linear. We apply a similar approach for the
MLP, for which we freeze the deepest layers and we learn
the last one, that is, xt is the final hidden state.

3.1. Kalman Filter

The estimation ✓̂t of the state in linear gaussian state-space
model and the associated variance Pt is well-understood as-
suming that ✓̂1, P1,�

2
t , Qt are known. The best estimator is

obtained by the well known Kalman Filter (Kalman & Bucy,
1961). However there is no consensus in the literature as to
how to tune the hyper-parameters, see for instance (Brock-
well et al., 1991; Durbin & Koopman, 2012; Fahrmeir,
1992). The widely used Expectation-Maximization algo-
rithm is an iterative algorithm that guarantees to converge
to a local maximum of the likelihood. However there is no
global guarantee and in our case it performs poorly. We
propose instead the following settings, building on (Obst
et al., 2021):

Static. We consider the degenerate setting where Qt = 0
and ✓̂1 = 0, P1 = I,�

2
t = 1.

Static break. We consider a break at March 1st 2020 by
setting ✓̂1 = 0, P1 = I,�

2
t = 1, Qt = 0 except QT = I

where T is March 1st 2020.

Dynamic. We approximate the maximum-likelihood for
constant �2

t , Qt. We set P1 = �
2
I and we observe that

for a given Q/�
2 we have closed-form solutions for ✓̂1,�2.

Then we restrict ourselves to diagonal matrices Q/�
2 whose

nonzero coefficients are in {2j ,�30  j  0} and we apply
a greedy procedure: starting from Q/�

2 = 0 we change at
each step the coefficient improving the most the likelihood.
That procedure is designed to optimize Q on the training
data (up to January 1st 2020).

Dynamic break. We use similar ✓̂1, P1,�
2
t = �

2
, Qt = Q

as in the dynamic setting except QT = P1 = �
2
I where T

is March 1st 2020.

Dynamic big. We simply use �2 = 1 and a matrix Q

proportional to I optimized based on the 2020 data.

3.2. Dynamical variances

We would like to learn the variances �2
t , Qt in an adaptive

fashion. We thus treat them as latent variables and we
augment the state-space model:

at � at�1 ⇠ N (0, ⇢a) , bt � bt�1 ⇠ N (0, ⇢b) ,

✓t � ✓t�1 ⇠ N (0, exp(bt)I) ,

yt � ✓
>
t xt ⇠ N (0, exp(at)) .

Instead of estimating the state ✓t with known variances, we
estimate here both the state and the variances represented
as log-normal distributions. We have removed these hyper-
parameters, however we now have to set priors on a0, b0

along with the parameters ⇢a, ⇢b controlling the smoothness
of the dynamics on the variances.

We apply a bayesian approach. At each step, we start from
a prior p(✓t�1, at�1, bt�1 | Ft�1) obtained at the last iter-
ation, where we introduce the filtration of the past obser-
vations Ft = �(x1, y1, ..., xt�1, yt�1). Then we apply a
prediction step thanks to the dynamical equations yielding
p(✓t, at, bt | Ft�1). Finally we apply Bayes’ rule to derive
the posterior distribution p(✓t, at, bt | Ft).

However the posterior distribution is analytically intractable,
therefore we apply the classical Variational Bayesian (VB)
approach (Šmı́dl & Quinn, 2006). The idea is to approx-
imate recursively the posterior distribution with a factor-
ized distribution. In our setting we look for the best
product N (✓̂t|t, Pt|t)N (ât|t, st|t)N (b̂t|t,⌃t|t) approximat-
ing p(✓t, at, bt | Ft). The criterion we minimize is the
Kullback-Leibler (KL) divergence

KL(N (✓̂t|t, Pt|t)N (ât|t, st|t)N (b̂t|t,⌃t|t) || p(✓t, at, bt | Ft)) ,

where KL(p||q) =
R
p log(p/q)dp. At each step, the VB

approach yields a coupled optimization problem in the three
gaussian distributions. The classical iterative method (see
for instance (Tzikas et al., 2008)) consists in computing al-
ternately exp(E[log p(✓t, at, bt | Ft)]) where the expected
value is taken with respect to two of the three latent vari-
ables, and identifying the desired first two moments with
respect to the other latent variable. However the expression
exp(E✓t,bt [log p(✓t, at, bt | Ft)]) doesn’t match a gaussian
distribution in at, and similarly for bt. We therefore need
additional approximations. Specifically, we use the first two
moments of the gaussian distribution to derive an upper-
bound of the KL divergence for which we have an analytical
solution. We refer to Appendix A for the detailed derivation
of the algorithm, that we call Variational Bayesian Variance
Tracking (VIKING).

4. Experiments

We display the performance of the introduced methods that
we call experts. Then we use aggregation of experts to
leverage specificities of each forecaster.

4.1. Individual experts

We have 4 different models (AR, linear, GAM and MLP).
For each one, we try the various adaptation settings (no
adaptation, KF and VIKING). We illustrate the different
settings in Figure 3 where we display the evolution of the
state coefficient for the GAM adaptation strategies. We
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Figure 3. Evolution of the state coefficients for various adaptations of the GAM, see Section 3. On the left, we use the Kalman Filter in
the static setting (degenerate covariance matrix Qt = 0). On the middle, the dynamic setting where the variances are constant. On the
right, the VIKING setting where we estimate the variances adaptively.

Adaptation AR Linear GAM MLP
Offline 14.6 22.8 34.3 16.7
Static 20.5 15.7 17.0 22.9

Static break 27.9 14.4 28.4 35.4
Dynamic 14.4 14.9 15.3 13.0

Dynamic break 16.2 13.6 14.3 12.3
Dynamic big 14.3 11.2 13.8 13.7

VIKING 14.4 11.5 12.7 12.5

Table 1. Mean average error of each method (in MW) during the
competition evaluation set (2021-01-18 to 2021-02-16).

Adaptation AR Linear GAM MLP All
Best expert 14.3 11.2 12.7 12.3 11.2
Aggregation 14.4 11.4 11.6 11.9 10.9

Table 2. Mean average error of aggregation strategies (in MW)
during the competition evaluation set (2021-01-18 to 2021-02-16).

detail the numerical results on the competition dataset in
Table 1.

4.2. Aggregation

Online robust aggregation of experts (Cesa-Bianchi & Lu-
gosi, 2006) is a powerful model agnostic approach for time
series forecasting, already applied to load forecasting during
the lockdown in (Obst et al., 2021). We use the ML-Poly
algorithm proposed in (Gaillard et al., 2014) and imple-
mented in the R package opera (Gaillard & Goude, 2016)
to compute these online weights.

The aggregation weights are estimated independently for
each hour of the day. We summarize different variants in
Table 2. First, for each family of models we compute the
aggregation of all the adaptation settings (7 for each). Then
we aggregate all of them (28 models). An example of the
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Figure 4. Evolution of the aggregation weights at 3PM from July
1st 2020 to February 16th 2021.

weights obtained at 3PM is displayed in Figure 4. The
aggregation presented in this paper obtains a performance
close to our strategy winning the competition (degradation
of about 0.05 MW).

5. Conclusion

In this paper we presented a novel time series forecasting
approach based on state-space models. Winning a competi-
tion on electricity load forecasting motivates its usefulness.
Some perspectives have been raised during the competition
such as interpretability of the global approach and a better
understanding of the error propagation along the different
adaptations (AR correction, Kalman filtering, variance track-
ing and aggregation).
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A. Approximate Variational Bayes

We first present the prediction step and the filtering step in order to obtain the posterior distribution. Propagating the
factorized approximation

p(✓t�1, at�1, bt�1 | Ft�1) ⇡ N (✓t�1 | ✓̂t�1|t�1, Pt�1|t�1)N (at | ât|t, st|t)N (bt�1 | b̂t�1|t�1,⌃t�1|t�1) ,

the prediction step becomes:

p(✓t, at, bt | Ft�1) ⇡
Z

N (✓t �K✓t�1 | 0, exp(bt)I)N (at � at�1 | 0, ⇢a)N (bt � bt�1 | 0, ⇢b)

N (✓t�1 | ✓̂t�1|t�1, Pt�1|t�1)N (at | ât�1|t�1, st�1|t�1)N (bt | b̂t�1|t�1,⌃t�1|t�1)d✓t�1dat�1dbt�1

⇡ N (✓t | ✓̂t�1|t�1, Pt�1|t�1 + exp(bt)I)N (at | ât�1|t�1, st�1|t�1 + ⇢a)

N (bt | b̂t�1|t�1,⌃t�1|t�1 + ⇢b) .

Therefore, treating the approximation at time t� 1 as a prior at time t we obtain the following posterior distribution:

p(✓t, at, bt | Ft) = N (yt | ✓>t xt, exp(at))N (✓t | K ✓̂t�1|t�1,KPt�1|t�1 + exp(bt)I)N (at | ât�1|t�1, st�1|t�1 + ⇢a)

N (bt | b̂t�1|t�1,⌃t�1|t�1 + ⇢b)
p(xt,Ft�1)

p(Ft)
. (1)

We then derive a detailed expression of the KL divergence in the following Lemma:

Lemma 1. There exists a constant c independent of ✓̂t|t, Pt|t, ât|t, st|t, b̂t|t,⌃t|t such that

KL

⇣
N (✓t | ✓̂t|t, Pt|t)N (at | ât|t, st|t)N (bt | b̂t|t,⌃t|t) || p(✓t, at, bt | Ft)

⌘

= �1

2
log detPt|t +

1

2
((yt � ✓̂

>
t|txt)

2 + x
>
t Pt|txt) exp(�ât|t +

1

2
st|t)

+
1

2

Z
N (bt | b̂t|t,⌃t|t)

⇣
log det(Pt�1|t�1 + exp(bt)I)

+ Tr
⇣
(Pt|t + (✓̂t|t � ✓̂t�1|t�1)(✓̂t|t � ✓̂t�1|t�1)

>)(Pt�1|t�1 + exp(bt)I)
�1
⌘⌘

dbt

� 1

2
log(st|t) +

1

2(st�1|t�1 + ⇢a)
((ât|t � ât�1|t�1)

2 + st|t) +
1

2
ât|t

� 1

2
log det⌃t|t +

1

2

⇣
⌃t|t + (b̂t|t � b̂t�1|t�1)

2
⌘
(⌃t�1|t�1 + ⇢b)

�1 + c .

Proof. We start from the definition of the KL divergence:

KL

⇣
N (✓t | ✓̂t|t, Pt|t)N (at | ât|t, st|t)N (bt | b̂t|t,⌃t|t) || p(✓t, at, bt | Ft)

⌘

=

Z
N (✓t | ✓̂t|t, Pt|t) logN (✓t | ✓̂t|t, Pt|t)d✓t +

Z
N (at | ât|t, st|t) logN (at | ât|t, st|t)dat

+

Z
N (bt | b̂t|t,⌃t|t) logN (bt | b̂t|t,⌃t|t)dbt

�
Z

N (✓t | ✓̂t|t, Pt|t)N (at | ât|t, st|t)N (bt | b̂t|t,⌃t|t) log p(✓t, at, bt | Ft)d✓tdatdbt .

The entropy of the gaussian variables are easily computed. The last term can be split using the factorized form of Equation
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(1) and we observe that
Z

N (✓t | ✓̂t|t, Pt|t)N (at | ât|t, st|t)N (bt | b̂t|t,⌃t|t) logN (yt | ✓>t xt, exp(at))d✓tdatdbt

=

Z
N (✓t | ✓̂t|t, Pt|t)N (at | ât|t, st|t)

⇣
� 1

2
log(2⇡)� 1

2
at �

1

2
(yt � ✓

>
t xt)

2 exp(�at)
⌘
datd✓t

= �1

2
log(2⇡)� 1

2
ât|t �

1

2
((yt � ✓̂

>
t|txt)

2 + x
>
t Pt|txt) exp(�ât|t +

1

2
st|t) ,

Z
N (✓t | ✓̂t|t, Pt|t)N (at | ât|t, st|t)N (bt | b̂t|t,⌃t|t) logN (✓t | ✓̂t�1|t�1, Pt�1|t�1 + exp(bt)I)d✓tdatdbt

=

Z
N (✓t | ✓̂t|t, Pt|t)N (bt | b̂t|t,⌃t|t)

⇣
� d log(2⇡)

2
� 1

2
log det(Pt�1|t�1 + exp(bt)I)

� 1

2
(✓t � ✓̂t�1|t�1)

>(Pt�1|t�1 + exp(bt)I)
�1(✓t � ✓̂t�1|t�1)

⌘
dltd✓t

= �d log(2⇡)

2
� 1

2

Z
N (bt | b̂t|t,⌃t|t)

⇣
log det(Pt�1|t�1 + exp(bt)I)

+ Tr
⇣
(Pt|t + (✓̂t|t � ✓̂t�1|t�1)(✓̂t|t � ✓̂t�1|t�1)

>)(Pt�1|t�1 + exp(bt)I)
�1
⌘⌘

dbt .

Combining the last equations we obtain

KL

⇣
N (✓t | ✓̂t|t, Pt|t)N (at | ât|t, st|t)N (bt | b̂t|t,⌃t|t) || p(✓t, at, bt | Ft)

⌘

= �1

2
(1 + d log(2⇡) + log detPt|t)�

1

2
(1 + log(2⇡) + log(st|t))�

1

2
(1 + d log(2⇡) + log det⌃t|t)

+
1

2
log(2⇡) +

1

2
ât|t +

1

2
((yt � ✓̂

>
t|txt)

2 + x
>
t Pt|txt) exp(�ât|t +

1

2
st|t)

+
d log(2⇡)

2
+

1

2

Z
N (bt | b̂t|t,⌃t|t)

⇣
log det(Pt�1|t�1 + exp(bt)I)

+ Tr
⇣
(Pt|t + (✓̂t|t � ✓̂t�1|t�1)(✓̂t|t � ✓̂t�1|t�1)

>)(Pt�1|t�1 + exp(bt)I)
�1
⌘⌘

dbt

+
1

2
(log(2⇡) + log(st�1|t�1 + ⇢a)) +

1

2(st�1|t�1 + ⇢a)
((ât|t � ât�1|t�1)

2 + st|t)

+
1

2
(d log(2⇡) + log det(⌃t�1|t�1 + ⇢b))

+
1

2
Tr
⇣⇣

⌃t|t + (b̂t|t � b̂t�1|t�1)(b̂t|t � b̂t�1|t�1)
>
⌘
(⌃t�1|t�1 + ⇢b)

�1
⌘

+ log p(Ft)� log p(xt,Ft�1) .

The rest of the Section is devoted to minimize the expression of Lemma 1, which is the criterion for the VB approach. We
first obtain the exact minimum with respect to ✓̂t|t, Pt|t given fixed ât|t, st|t, b̂t|t,⌃t|t:

Theorem 2. Given ât|t, st|t, b̂t|t,⌃t|t, the values of ✓̂t|t, Pt|t minimizing the KL divergence are given by

P
?
t|t = A

�1
t � A

�1
t xtx

>
t A

�1
t

x
>
t A

�1
t xt + exp(ât|t � 1

2st|t)
,

✓̂
?
t|t = K ✓̂t�1|t�1 +

A
�1
t xt

x
>
t A

�1
t xt + exp(ât|t � 1

2st|t)
(yt � x

>
t ✓̂t�1|t�1) ,

with At =
R
N (bt | b̂t|t,⌃t|t)(Pt�1|t�1 + exp(bt)I)�1

dbt.

Theorem 2 realizes the exact optimum of the KL divergence with respect to ✓̂t|t, Pt|t, however A�1
t does not admit an

explicit form. We discuss an approximation in Section A.2.
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Proof. Thanks to Lemma 1 we have

KL

⇣
N (✓t | ✓̂t|t, Pt|t)N (at | ât|t, st|t)N (bt | b̂t|t,⌃t|t) || p(✓t, at, bt | Ft)

⌘

= �1

2
log detPt|t +

1

2
((yt � ✓̂

>
t|txt)

2 + x
>
t Pt|txt) exp(�ât|t +

1

2
st|t)

+
1

2
Tr
⇣
(Pt|t + (✓̂t|t � ✓̂t�1|t�1)(✓̂t|t � ✓̂t�1|t�1)

>)

Z
N (bt | b̂t|t,⌃t|t)(Pt�1|t�1 + exp(bt)I)

�1
dbt

⌘
+ c✓ ,

where c✓ is a constant independent of ✓̂t|t, Pt|t. We define At =
R
N (bt | b̂t|t,⌃t|t)(Pt�1|t�1 + exp(bt)I)�1

dbt. Then the
first order condition are written as

� 1

2
P

?�1
t|t +

1

2

⇣
At +

xtx
>
t

exp(ât|t � 1
2st|t)

⌘
= 0 ,

�
(yt � ✓̂

?>
t|t xt)xt

exp(ât|t � 1
2st|t)

+At(✓̂
?
t|t � ✓̂t�1|t�1) = 0 .

It yields

P
?
t|t =

 
xtx

>
t

exp(ât|t � 1
2st|t)

+At

!�1

= A
�1
t � A

�1
t xtx

>
t A

�1
t

x
>
t A

�1
t xt + exp(ât|t � 1

2st|t)

✓̂
?
t|t = P

?
t|t

 
ytxt

exp(ât|t � 1
2st|t)

+At✓̂t�1|t�1

!
= ✓̂t�1 +

A
�1
t xt

x
>
t A

�1
t xt + exp(ât|t � 1

2st|t)
(yt � x

>
t ✓̂t�1|t�1) .

A.1. Second-order upper-bound of the Kullback-Leibler divergence

We minimize a second-order upper-bound of the KL divergence. Minimizing the upper-bound does not necessarily lead to
minimizing the KL divergence, but we obtain the decrease at each step of the instantaneous KL divergence.

A.1.1. MINIMIZING AN UPPER-BOUND IN ât|t, st|t

We take the following expression of the KL divergence in ât|t, st|t:

KL

⇣
N (✓t | ✓̂t|t, Pt|t)N (at | ât|t, st|t)N (bt | b̂t|t,⌃t|t) || p(✓t, at, bt | Ft)

⌘

= �1

2
log(st|t) +

1

2(st�1|t�1 + ⇢a)
((ât|t � ât�1|t�1)

2 + st|t) +
1

2
ât|t +

1

2
((yt � ✓̂

>
t|txt)

2 + x
>
t Pt|txt)e

�ât|t+st|t/2 + ca ,

To optimize the previous quantity in st|t we consider the following upper-bound if �⇢a  st|t � st�1|t�1  ⇢a:

e
st|t/2  e

(st�1|t�1+⇢a)/2
⇣
1 +

e
�⇢a

2
(st|t � (st�1|t�1 + ⇢a))

⌘
,

and thus we can optimize the upper-bound of the expression on [st�1|t�1 � ⇢a, st�1|t�1 + ⇢a]. We obtain the following
first order condition:

� 1

2
s
�1
t|t +

1

2(st�1|t�1 + ⇢a)
+

1

4
((yt � ✓̂

>
t|txt)

2 + x
>
t Pt|txt)e

�ât|t+(st�1|t�1�⇢a)/2 = 0 .

This yields

s
�
t|t =

⇣
(st�1|t�1 + ⇢a)

�1 +
1

2
((yt � ✓̂

>
t|txt)

2 + x
>
t Pt|txt)e

�ât|t+(st�1|t�1�⇢a)/2
⌘�1

,

st|t = max(s�t|t, st�1|t�1 � ⇢a) .
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Then we use the following upper-bound for ât|t: if |ât|t � ât�1|t�1|  M then

e
�ât|t  e

�ât�1|t�1(1� (ât|t � ât�1|t�1) +
e
M

2
(ât|t � ât�1|t�1)

2) .

Thus the first order condition becomes

1

st�1|t�1 + ⇢a
(ât|t � ât�1|t�1) +

1

2
+

1

2
((yt � ✓̂

>
t|txt)

2 + x
>
t Pt|txt)e

�ât�1|t�1+st|t/2
⇣
� 1 + e

M (ât|t � ât�1|t�1)
⌘
= 0 ,

yielding

â = ât�1|t�1 +
1

2

⇣ 1

st�1|t�1 + ⇢a
+

1

2
((yt � ✓̂

>
t|txt)

2 + x
>
t Pt|txt)e

�ât�1|t�1+st|t/2+M
⌘�1

⇣
((yt � ✓̂

>
t|txt)

2 + x
>
t Pt|txt)e

�ât�1|t�1+st|t/2 � 1
⌘
,

ât|t = max(min(â, ât�1|t�1 +M), ât�1|t�1 �M) .

We take for instance M = 100⇢a.

A.1.2. OPTIMIZATION IN b̂t|t,⌃t|t

We now focus on the update of b̂t|t,⌃t|t. We fix ✓̂t|t, Pt|t, ât|t, st|t, then the KL divergence is written

KL

⇣
N (✓t | ✓̂t|t, Pt|t)N (at | ât|t, st|t)N (bt | b̂t|t,⌃t|t) || p(✓t, at, bt | Ft)

⌘

= �1

2
log det⌃t|t +

1

2

Z
N (bt | b̂t|t,⌃t|t) (bt)dbt +

1

2

⇣
⌃t|t + (b̂t|t � b̂t�1|t�1)

2
⌘
(⌃t�1|t�1 + ⇢b)

�1 + c ,

where

 (bt) = log det(Pt�1|t�1 + exp(bt)I) + Tr
⇣
(Pt|t + (✓̂t|t � ✓̂t�1|t�1)(✓̂t|t � ✓̂t�1|t�1)

>)(Pt�1|t�1 + exp(bt)I)
�1
⌘
.

As the integral is analytically intractable we use the following second-order upper bound:

 (bt)   (b̂t�1|t�1) +  
0(b̂t�1|t�1)(bt � b̂t�1|t�1) +

1

2
max 00([b̂t�1|t�1, bt])(bt � b̂t�1|t�1)

2
.

This yields the following upper-bound on the KL divergence: if maxb2R)  00(b)  H , we have

KL

⇣
N (✓t | ✓̂t|t, Pt|t)N (at | ât|t, st|t)N (bt | b̂t|t,⌃t|t) || p(✓t, at, bt | Ft)

⌘

 �1

2
log det⌃t|t +

1

2

⇣
⌃t|t + (b̂t|t � b̂t�1|t�1)

2
⌘
(⌃t�1|t�1 + ⇢b)

�1 + c (2)

+  (b̂t�1|t�1) +  
0(b̂t�1|t�1)(b̂t|t � b̂t�1|t�1) +

1

2
H(⌃t|t + (b̂t|t � b̂t�1|t�1)

2) .

Therefore we obtain the following theorem under the assumption that we know H:

Theorem 3. Given ✓̂t|t, Pt|t, ât|t, st|t, the minimum of the upper-bound on the KL divergence of Equation (2) is obtained
with:

⌃t|t =
⇣
(⌃t�1|t�1 + ⇢b)

�1 +
1

2
H

⌘�1
,

b̂t|t = b̂t�1|t�1 �
1

2
⌃t|t 

0(b̂t�1|t�1) ,

where maxb2R)  00(b)  H .
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Proof. Combining Lemma 1 and the second-order upper-bound, the quantity that we minimize is:

� 1

2
log det⌃t|t +

1

2
 (b̂t�1|t�1) +

1

2
 
0(b̂t�1|t�1)(b̂t|t � b̂t�1|t�1)

+
1

4
H(⌃t|t + (b̂t|t � b̂t�1|t�1)

2) +
1

2

⇣
⌃t|t + (b̂t|t � b̂t�1|t�1)

2
⌘
(⌃t�1|t�1 + ⇢b)

�1
.

where maxb2R)  00(b)  H . Therefore the first order conditions are

1

4
H � 1

2
⌃�1

t|t +
1

2
(⌃t�1|t�1 + ⇢b)

�1 = 0 ,

1

2
 
0(b̂t�1|t�1) +

1

2
H(b̂t|t � b̂t�1|t�1) + (⌃t�1|t�1 + ⇢b)

�1(b̂t|t � b̂t�1|t�1) = 0 ,

and the result follows.

We provide in the following proposition the first and second derivatives of  :

Proposition 4. We have for any bt,

 
0(bt) = Tr(C�1

t (I �BtC
�1
t )) exp(bt) ,

 
00(bt) = Tr(C�1

t (I �BtC
�1
t )) exp(bt) + 2Tr(C�2

t (BtC
�1
t � I/2)) exp(2bt) .

where Bt = Pt|t + (✓̂t|t � ✓̂t�1|t�1)(✓̂t|t � ✓̂t�1|t�1)
> and Ct = Pt�1|t�1 + exp(bt)I .

Proof. We recall that

 (b) = log det(Pt�1|t�1 + exp(bt)I) + Tr(Bt(Pt�1|t�1 + exp(bt)I)
�1) ,

where Bt = Pt|t + (✓̂t|t � ✓̂t�1|t�1)(✓̂t|t � ✓̂t�1|t�1)
>. Furthermore, note that if A � 0, it holds detA = expTr(LogA).

We define Ct = Pt�1|t�1 + exp(bt)I and we get

log det(Pt�1|t�1 + exp(b)I)

= TrLog(Pt�1|t�1 + exp(b)I)

= TrLog(Ct) + TrLog
⇣
I + (exp(b)� exp(bt))C

�1
t

⌘

= TrLog(Ct) + Tr
⇣
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1

2
exp(bt)(b� bt)

2)C�1
t � 1

2
(exp(bt)(b� bt)C

�1
t )2 + o((b� bt)

2)
⌘
.

The last line follows from the series expansion of the Logarithm. We apply another series expansion for the second term of
 : we have

Tr(Bt(Pt�1|t�1 + exp(b)I)�1)

= Tr
⇣
BtC

�1
t

⇣
I + (exp(b)� exp(bt))C

�1
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⌘�1⌘
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2
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2)C�1
t + (exp(bt)(b� bt)C
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t )2 + o((b� bt)

2)
⌘⌘

.

Summing the last two equations, and using the identity Tr(AB) = Tr(BA), we obtain

 (b) = TrLog(Ct) + Tr(BtC
�1
t ) + Tr(C�1

t (I �BtC
�1
t ))(exp(bt)(b� bt) +

1

2
exp(bt)(b� bt)

2)

� Tr(C�2
t (

I

2
�BtC

�1
t )) exp(2bt)(b� bt)

2 + o((b� bt)
2) .

Thus we can identify the first and second derivatives of  , that yields Proposition 4.
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A.2. The algorithm

Theorem 3 immediately follows from the second-order upper-bound, however we need to define H . Can we obtain an
explicit bound for  00 ?

True upper-bound: if we don’t use the compensations but we just bound each of the four terms, we obtain  
00 

d+ 2Tr(Bt(Pt�1|t�1)
�1).

Optimistic bound: we use instead an optimistic upper-bound. We have
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where ↵ = Tr(C�1
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t (I/3�BtC

�1
t ))

and � = Tr(C�2
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t ))

. If �2 � 4↵ then we can write
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⇣
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1

2
� �

r
1

4
�2 � ↵

⌘⇣
exp(bt) +
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2
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1

4
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Thus fixing a constant Ct = (Pt�1|t�1+exp(b̂t�1|t�1�⇢b/2)I)�1 we have two possible roots for  000 (if they exist) which

are b
(1)
t = log

⇣
� 1

2� +
q

1
4�

2 � ↵

⌘
, b

(2)
t = log

⇣
� 1

2� �
q

1
4�

2 � ↵

⌘
. Our optimistic constant is thus the maximum of

0 =  
00(1), 00(b̂t�1|t�1 � ⇢b/2), 00(b(1)t ) and  00(b(2)t ).

We recall that in Theorem 2 At is defined only implicitly. We use the following second-order approximation to estimate At:

At =

Z
N (bt | b̂t|t,⌃t|t)(Pt�1|t�1 + exp(bt)I)

�1
dbt

⇡
Z

N (bt | b̂t|t,⌃t|t)(Ct +
⇣
exp(b̂t|t)(bt � b̂t|t) +

1

2
exp(b̂t|t)(bt � b̂t|t)

2
⌘
I)�1

dbt

⇡
Z

N (bt | b̂t|t,⌃t|t)C
�1
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⇣
exp(b̂t|t)(bt � b̂t|t) +

1

2
exp(b̂t|t)(bt � b̂t|t)

2
⌘
C

�1
t + exp(2b̂t|t)(bt � b̂t|t)

2
C

�2
t )dbt

= C
�1
t � 1

2
exp(b̂t|t)⌃t|tC

�2
t + exp(2b̂t|t)⌃t|tC

�3
t ,

where Ct = Pt�1|t�1 + exp(b̂t|t)I .

Combining our findings we obtain Algorithm 1. As the KL optimization is a coupled problem we solve it in a classical
iterative fashion, that is, we repeat N times the updates alternately (in our experiments N = 2).

B. Additional numerical results

We present in Table 3 the numerical performance of our methods before intraday correction, that is the models built entirely
independently at each time of day.
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Algorithm 1 Variational Bayesian Variance Tracking (VIKING) at time step t

Inputs: ✓̂t�1|t�1, Pt�1|t�1, ât�1|t�1, st�1|t�1, b̂t�1|t�1,⌃t�1|t�1, xt, yt.
Initialize: â(0)t|t = ât�1|t�1, s

(0)
t|t = st�1|t�1 + ⇢a, b̂

(0)
t|t = b̂t�1|t�1,⌃

(0)
t|t = ⌃t�1|t�1 + ⇢b.

Iterate: for i = 1, . . . , N :

1. Set At = C
�1
t � 1

2 exp(b̂t|t)⌃t|tC
�2
t + exp(2b̂t|t)⌃t|tC

�3
t with Ct = Pt�1|t�1 + exp(b̂(i�1)

t|t )I .

Update P
(i)
t|t = A

�1
t � A�1

t xtx
>
t A�1

t

x>
t A�1

t xt+exp(â(i�1)
t|t � 1

2 s
(i�1)
t|t )

.

Update ✓̂(i)t|t = ✓̂t�1|t�1 +
A�1

t xt

x>
t A�1

t xt+exp(â(i�1)
t|t � 1

2 s
(i�1)
t|t )

(yt � x
>
t ✓̂t�1|t�1).

2. If we learn �
2
t :

Update s
(i)
t|t , â

(i)
t|t thanks to Section A.1.1 using ✓̂(i)t , P

(i)
t .

3. If we learn Qt:

Update ⌃(i)
t|t , b̂

(i)
t|t thanks to Section A.1.2 using ✓̂(i)t , P

(i)
t .

Outputs: ✓̂t|t = ✓̂
(N)
t|t , Pt|t = P

(N)
t|t , ât|t = â

(N)
t|t , st|t = s

(N)
t|t , b̂t|t = b̂

(N)
t|t ,⌃t|t = ⌃(N)

t|t .

Adaptation AR Linear GAM MLP
Offline 17.6 39.9 48.3 38.8
Static 18.3 16.5 19.8 23.1

Static break 23.5 15.8 17.3 35.4
Dynamic 14.9 15.0 15.4 13.1

Dynamic break 17.8 14.3 16.2 12.8
Dynamic big 17.1 11.8 13.5 12.7

VIKING 16.4 12.0 13.2 12.8

Table 3. Mean average error of each method (in MW) during the competition evaluation set (2021-01-18 to 2021-02-16) without intraday
correction.


