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Abstract

Here, we propose a general method for proba-
bilistic time series forecasting. We combine an
autoregressive recurrent neural network to model
temporal dynamics with Implicit Quantile Net-
works to learn a large class of distributions over a
time-series target. When compared to other prob-
abilistic neural forecasting models on real- and
simulated data, our approach is favorable in terms
of point-wise prediction accuracy as well as on
estimating the underlying temporal distribution.

1. Introduction
Despite being versatile and omnipresent, traditional time
series forecasting methods such as those in (Hyndman &
Athanasopoulos, 2018), typically provide univariate point
forecasts. Training in such frameworks requires to learn one
model per individual time series, which might not scale for
large data. Global deep learning-based time series mod-
els are typically recurrent neural networks (RNN), like
LSTM (Hochreiter & Schmidhuber, 1997). These meth-
ods have become popular due to their end-to-end training,
the ease of incorporating exogenous covariates, and their au-
tomatic feature extraction abilities, which are the hallmarks
of deep learning.

It is often desirable for the outputs to be probability dis-
tributions, in which case forecasts typically provide uncer-
tainty bounds. In the deep learning setting the two main
approaches to estimate uncertainty have been to either model
the data distribution explicitly or to use Bayesian Neural
Networks as in (Zhu & Laptev, 2017). The former methods
rely on some parametric density function, such as that of
a Gaussian distribution, which is often based on computa-
tional convenience rather than on the underlying distribution
of the data.

In this paper, we propose IQN-RNN, a deep-learning-based
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univariate time series method that learns an implicit distribu-
tion over outputs. Importantly, our approach does not make
any a-priori assumptions on the underlying distribution of
our data. The probabilistic output of our model is gener-
ated via Implicit Quantile Networks (Dabney et al., 2018)
(IQN) and is trained by minimizing the integrand of the
Continuous Ranked Probability Score (CRPS) (Matheson &
Winkler, 1976).

The major contributions of this paper are:

1. model the data distribution using IQNs which allows
the use of a broad class of datasets;

2. model the time series via an autoregressive RNN where
the emission distribution is given by an IQN;

3. demonstrate competitive results on real-world datasets
in particular when compared to RNN-based probabilis-
tic univariate time series models.

2. Background
2.1. Quantile Regression

The quantile function corresponding to a cumulative distri-
bution function (c.d.f.) F : R→ [0, 1] is defined as:

Q(τ) = inf{x ∈ R : τ ≤ F (x)}.

For continuous and strictly monotonic c.d.f. one can simply
write Q = F−1.

In order to find the quantile for a given τ one can use quan-
tile regression (Koenker, 2005), which minimizes the quan-
tile loss:

Lτ (y, ŷ) = τ(y − ŷ)+ + (1− τ)(ŷ − y)+, (1)

where ()+ is non-zero iff the value in the parentheses is
positive.

2.2. CRPS

Continuous Ranked Probability Score (Matheson & Winkler,
1976; Gneiting & Raftery, 2007) is a proper scoring rule,
described by a c.d.f. F given the observation y:

CRPS(F, y) =
∫ ∞
−∞

(F (x)− 1{y ≤ x})2 dx,
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where 1 is the indicator function. The formula can be rewrit-
ten (Laio & Tamea, 2007) as an integral over the quantile
loss:

CRPS(F, y) = 2

∫ 1

0

Lτ (y,Q(τ)) dτ,

where Q is the quantile function corresponding to F .

3. Related work
Over the last years, deep learning models have shown
impressive results over classical methods in many
fields (Schmidhuber, 2015) like computer vision, speech
recognition, natural language processing (NLP), and also
time series forecasting, which is related to sequence mod-
eling in NLP (Sutskever et al., 2014). Modern univariate
forecast methods like N-BEATS (Oreshkin et al., 2020)
share parameters, are interpretive and fast to train on many
target domains.

To estimate the underlying temporal distribution we can
learn the parameters of some target distribution as in the
DeepAR method (Salinas et al., 2019b) or use mixture
density models (McLachlan & Basford, 1988) operating
on neural network outputs, called mixture density net-
works (MDN) (Bishop, 1971). One prominent example
is MDRNN (Graves, 2013) that uses a mixture-density RNN
to model handwriting. These approaches assume some para-
metric distribution, based on the data being modeled, for
example a Negative Binomial distribution for count data.
Models are trained by maximizing the likelihood of these
distributions with respect to their predicted parameters and
ground truth data.

Our approach is closely related to the SQF-RNN (Gasthaus
et al., 2019) which models the conditional quantile function
using isotonic splines. We utilize an IQN (Dabney et al.,
2018; Yang et al., 2019) instead, as we will detail, which has
been used in the context of Distributional Reinforcement
Learning (Bellemare et al., 2017), as well as for Generative
Modelling (Ostrovski et al., 2018).

4. Forecasting with Implicit Quantile
Networks

In an univariate time series forecasting setting, we typically
aim at forecasting a subseries (yT−h, yT−h+1, . . . , yT ) of
length h from a series y = (y0, y1, . . . , yT ) of length
T + 1, generated by an auto-regressive process Y =
(Y0, Y1, . . . , YT ).

Let τ0 = P[Y0 ≤ y0] and τt = P[Yt ≤ yt|Y0 ≤
y0, . . . , Yt−1 ≤ yt−1] for each integer t ∈ [[1, T ]]. We can
rewrite y as (F−1Y0

(τ0), F
−1
Y1|Y0

(τ1), . . . , F
−1
YT |Y0,...,YT

(τT )),
where F is the c.d.f..

In probabilistic time series forecasting, it is typically as-

sumed that a unique function g can represent the distribution
of all Yt, given input covariates Xt and previous observa-
tions y0, y1, . . . , yt−1. When using IQNs, we additionally
parameterize this function with τt: IQNs learn the mapping
from τt ∼ U([0, 1]) to yt. In other words, they are determin-
istic parametric functions trained to reparameterize samples
from the uniform distribution to respective quantile values
of a target distribution. Our IQN-RNN model should then
learn yt = g(Xt, τt, y0, y1, . . . , yt−1) for t ∈ [[T − h, T ]]
and can be written as q ◦ [ψt � (1 + φ)], where � is the
Hadamard element-wise product and:

• Xt are typically time-dependent features, known for
all time steps;

• ψt is the state of an RNN that takes the concatenation
of Xt, yt−1 as well as the previous state ψt−1 as input;

• φ embeds a τt as described by (Dabney et al., 2018),
with n = 64:

φ(τt) = ReLU(

n−1∑
i=0

cos(πiτt)wi + bi);

• q is an additional generator layer, which in our case is
a simple two-layer feed-forward neural network, with
a domain relevant activation function.

We perform the Hadamard operation on (1 + φ), which is
one of the forms considered by (Dabney et al., 2018).

At training time, quantiles are sampled for each observation
at each time step and passed to both network and quantile
loss (1) (see Figure 1).

RNN

quantile
loss

in
fe
re
nc
e

IQN

Figure 1. IQN-RNN schematic at time t where during training we
minimize the quantile loss with respect to the ground truth.

During inference, we analogously sample a new quantile
for each time step of our autoregressive loop. Thus, a full



Probabilistic Time Series Forecasting with Implicit Quantile Networks

single forward pass follows an ancestral sampling scheme
along the graph of our probabilistic network. This approach
guarantees to produce valid samples from the underlying
model. Sampling a larger number of trajectories this way,
allows us to estimate statistics over the distribution of each
observation such as mean, quantiles, and standard deviation.
For instance, the mean of YT−h can be estimated using the
average over the first step of all sampled trajectories. In
our experiments, we choose 100 samples (in parallel via the
batch dimension) when calculating metrics and empirical
quantiles. This strategy also addresses potential quantile-
crossing issues, since nothing in the IQN-RNN architecture
guaranties monotonicity with respect to τ : we simply com-
pute the quantiles from sampled values.

We note that this method would work equally well using
a masked Transformer (Vaswani et al., 2017) to model the
temporal dynamics or a fixed horizon non-autoregessive
model like in (Oreshkin et al., 2020).

5. Experiments
We evaluate our IQN-RNN model on synthetic and open
datasets and follow the recommendations of the M4 com-
petition (Makridakis et al., 2020) regarding performance
metrics. We report the mean scale interval score (MSIS1)
for a 95% prediction interval, the 50-th and 90-th quantile
percentile loss, and the CRPS. The point-wise performance
of models is measured by the normalized root mean square
error (NRMSE), the mean absolute scaled error (MASE)
(Hyndman & Koehler, 2006), and the symmetric mean ab-
solute percentage error (sMAPE) (Makridakis, 1993). For
pointwise metrics, we use sampled medians with the excep-
tion of NRMSE, where we take the mean over our prediction
sample.

The code for our model is available in the PyTorchTS (Ra-
sul, 2021) library.

5.1. Results on synthetic data

We firstly evaluate our IQN-RNN on synthetic data and
compare its performance with another non-parametric prob-
abilistic forecast model: SQF-RNN (Gasthaus et al., 2019).
In order to minimize the MSIS and CRPS, we use this model
with 50 linear pieces. Both models have the same RNN ar-
chitecture and the same hyperparameters for training. Only
the probabilistic head is distinct.

In a similar fashion to (Gasthaus et al., 2019), we generate
10,000 time series of 48 points, where each time step is iid
and follows a Gaussian Mixture Model: GMM(π, µ, σ)
with π = [.3, .4, .3]T , µ = [−3, 0, 3]T , σ = [.4, .4, .4]T .
The models are trained 5 times each, with a context length

1https://bit.ly/3c7ffmS
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Figure 2. Estimated quantile functions for five training on time
series following a Gaussian Mixture using (a) IQN-RNN and (b)
SQF-RNN model.

Table 1. Performance of IQN-RNN and SQF-RNN in fitting a
three-component Gaussian Mixture Model.

METHOD CRPS MSIS SMAPE MASE

SQF-RNN-50 0.780 3.213 1.756 0.747
IQN-RNN 0.776 3.027 1.754 0.740

of 15, a prediction window of 2 for 20 epochs.

We show the estimated quantile functions in Figure 2 and
report the average metrics in Table 1. While both methods
have a similar point-wise performance, IQN-RNN is better
at estimating the entire probability distribution.

5.2. Results on empirical data

We next evaluate our model on open source datasets for
univariate time series: Electricity2, Traffic3, and
Wikipedia4, preprocessed exactly as in (Salinas et al.,
2019a), with their properties listed in Table 3. Our model is

2https://archive.ics.uci.edu/ml/datasets/
ElectricityLoadDiagrams20112014

3https://archive.ics.uci.edu/ml/datasets/
PEMS-SF

4https://github.com/mbohlkeschneider/
gluon-ts/tree/mv_release/datasets

https://bit.ly/3c7ffmS
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/PEMS-SF
https://archive.ics.uci.edu/ml/datasets/PEMS-SF
https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets
https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets
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Table 2. Comparison against different methods: SQF-RNN with 50 nodes, DeepAR with Student-T (-t) or Negative Binomial (-nb)
output, ETS and IQN-RNN on the 3 datasets.

DATA SET METHOD CRPS QL50 QL90 MSIS NRMSE SMAPE MASE

ELECTRICITY

SQF-RNN-50 0.078 0.097 0.044 8.66 0.632 0.144 1.051
DEEPAR-T 0.062 0.078 0.046 6.79 0.687 0.117 0.849

ETS 0.076 0.100 0.050 9.992 0.838 0.156 1.247
IQN-RNN 0.060 0.074 0.040 8.74 0.543 0.138 0.897

TRAFFIC

SQF-RNN-50 0.153 0.186 0.117 8.40 0.401 0.243 0.76
DEEPAR-T 0.172 0.216 0.117 8.027 0.472 0.244 0.89

ETS 0.427 0.488 0.325 20.856 0.872 0.594 1.881
IQN-RNN 0.139 0.168 0.117 7.11 0.433 0.171 0.656

WIKIPEDIA

SQF-RNN-50 0.283 0.328 0.321 23.71 2.24 0.261 1.44
DEEPAR-NB 0.452 0.572 0.526 46.79 2.25 0.751 2.94
DEEPAR-T 0.235 0.27 0.267 23.77 2.15 0.21 1.23

ETS 0.788 0.440 0.836 61.685 3.261 0.301 2.214
IQN-RNN 0.207 0.241 0.238 19.61 2.074 0.179 1.141

Table 3. Number of time series, domain, frequency, total training
time steps and prediction length properties of the training datasets
used in the experiments.

DATA SET NUM. DOM. FREQ. TIME
STEPS

PRED.
STEPS

ELEC. 321 R+ HOUR 21, 044 24
TRAFFIC 862 (0, 1) HOUR 14, 036 24
WIKI. 9, 535 N DAY 762 30

Table 4. Common hyperparmeters for SQF-RNN, DeepAR and
IQN-RNN models.

HYPERPARAMETER VALUE

RNN CELL TYPE GRU(CHUNG ET AL., 2014)
RNN HIDDEN SIZE 64
RNN NUM LAYERS 3
RNN DROPOUT RATE 0.2
CONTEXT LENGTH 2 * PRED STEPS

EPOCHS 10
LEARNING RATE 0.001
BATCH SIZE 256
BATCHES PER EPOCH 120
NUM SAMPLES 100
OPTIM ADAM (KINGMA & BA, 2015)

trained on the training split of each dataset. For testing, we
use a rolling-window prediction starting from the last point
seen in the training dataset and compare it to the test set.

For comparison, we again use SQF-RNN (Gasthaus et al.,
2019) with 50 linear pieces. We also evaluate DeepAR
(Salinas et al., 2019b) with a Student-T or a Negative Bi-
nomial distribution depending on the domain of the dataset.
Since IQN-RNN, SQF-RNN and DeepAR share the same
RNN architecture we compare these models using the same
untuned, but recommended, hyperparameters (see Table 4)

for training: only the probabilistic heads differ. Thus, devia-
tions from performance reported in the original publications
are solely due to the number of epochs used for training.
Alternative models are trained on the same instances, con-
sume a similar amount of memory, and need similar training
time. We also use ETS (Hyndman & Khandakar, 2008) as
a comparison, which is an exponential smoothing method
using weighted averages of past observations with expo-
nentially decaying weights as the observations get older
together with Gaussian additive errors (E) modeling trend
(T) and seasonality (S) effects separately.

In Table 2 we report probabilistic and point-wise perfor-
mance metrics of all models. We found that using IQN-RNN
often leads to the best performance on both probabilistic
and point-wise metrics while being fully non-parametric
and without significantly increasing the parameters of the
RNN model. We also note, that the resulting performance on
point-forecasting metrics does not result in higher errors for
our probabilistic measures (unlike e.g. DeepAR). We did
not incorporate per time series embeddings as covariates in
any of our experiments.

6. Conclusion
In this work, we proposed a general method of probabilistic
time series forecasting by using IQNs to learn the quantile
function of the next time point. We demonstrated the per-
formance of our approach against competitive probabilistic
methods on real-world datasets.

Our framework can be easily extended to multivariate time
series, under the rather restrictive hypothesis that we observe
the same quantile for individual univariate series. This is
equivalent to assuming comonotonicity of the processes for
each time step. Relaxing this assumption is left to future
research.
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