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Abstract
Physical reasoning requires forward prediction:
the ability to forecast what will happen next given
some initial world state. We study the perfor-
mance of state-of-the-art forward-prediction mod-
els in the complex physical-reasoning tasks of the
PHYRE benchmark (Bakhtin et al., 2019). We do
so by incorporating models that operate on object
or pixel-based representations of the world into
simple physical-reasoning agents. We find that
forward-prediction models can improve physical-
reasoning performance, particularly on complex
tasks that involve many objects. However, we
also find that these improvements are contingent
on the test tasks being small variations of train
tasks, and that generalization to completely new
task templates is challenging. Surprisingly, we
observe that forward predictors with better pixel
accuracy do not necessarily lead to better physical-
reasoning performance. Nevertheless, our best
models set a new state-of-the-art on the PHYRE
benchmark. Our code and models will be released
online.

1. Introduction
When presented with a picture of a Rube Goldberg ma-
chine, we can predict how the machine works. We do so
by using our intuitive understanding of concepts such as
force, mass, energy, collisions, etc., to imagine how the
machine state would evolve once released. This ability al-
lows us to solve real world physical-reasoning tasks, such
as how to hit a billiards cue such that the ball ends up in
the pocket, or how to balance the weight of two children
on a see-saw. In contrast, physical-reasoning abilities of
machine-learning models have largely been limited to closed
domains such as predicting dynamics of multi-body gravita-
tional systems (Battaglia et al., 2016), stability of block tow-
ers (Lerer et al., 2016), or physical plausibility of observed
dynamics (Riochet et al., 2018). In this work, we explore
the use of imaginative, forward-prediction approaches to
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Figure 1. Physical reasoning on the challenging PHYRE tasks re-
quire placing an object (the red ball) in the scene, such that when
the simulation is rolled out, the blue and green objects touch for at
least three seconds. In (a), the ball is too small and does not knock
the green ball off the platform. In (b), the ball is larger and solves
the task. In (c), the ball is placed slightly farther left, which results
in the task not being solved. Small variations in the selected action
(or the scene) can have a large effect on the efficacy of the action,
making the task highly challenging.

solve complex physical-reasoning puzzles. We study mod-
ern object-based (Battaglia et al., 2016; Sanchez-Gonzalez
et al., 2020; Watters et al., 2017) and pixel-based (Finn et al.,
2016; Hafner et al., 2020; Ye et al., 2019) forward-prediction
models in simple search-based agents on the PHYRE bench-
mark (Bakhtin et al., 2019). PHYRE tasks involve placing
one or two balls in a 2D world, such that the world reaches a
state with a particular property (e.g., two balls are touching)
after being played forward. PHYRE tasks are very chal-
lenging because small changes in the action (or the world)
can have a very large effect on the efficacy of an action;
see Figure 1 for an example and Appendix C for details.
Moreover, PHYRE tests models’ ability to generalize to
completely new physical environments at test time, a sig-
nificantly harder task than prior work that mostly varies
number or properties of objects in the same environment.
As a result, physical-reasoning agents may struggle even
when their forward-prediction model works well.

Nevertheless, our best agents substantially outperform the
prior state-of-the-art on PHYRE. Specifically, we find that
forward-prediction models can improve the performance
of physical-reasoning agents when the models are trained
on tasks that are very similar to the tasks that need to be
solved at test time. However, we find forward-prediction
based agents struggle to generalize to truly unseen tasks,
presumably, because small deviations in forward predic-
tions tend to compound over time. We also observe that
better forward prediction does not always lead to better
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physical-reasoning performance on PHYRE (c.f. (Buesing
et al., 2018) for similar observations in RL). In particular,
we find that object-based forward-prediction models make
more accurate forward predictions but pixel-based models
are more helpful in physical reasoning. This observation
may be the result of two key advantages of models using
pixel-based state representations. First, it is easier to deter-
mine whether a task is solved in a pixel-based representation
than in an object-based one, in fully observable 2D environ-
ments like PHYRE. Second, pixel-based models facilitate
end-to-end training of the forward-prediction model and
the task-solution model in a way that object-based mod-
els do not in the absence of a differentiable renderer (Liu
et al., 2019; Loper & Black, 2014). We discuss related work
in Appendix B.

2. Methods
We develop physical-reasoning agents for PHYRE that use
learned forward-prediction models in a search strategy to
find actions that solve a task. The search strategy maximizes
the score of a task-solution model that, given a world state,
predicts whether that state will lead to a task solution. Fig-
ure 6 (appendix) illustrates how our forward-prediction and
task-solution models are combined. We describe both types
of models, as well as the search strategy we use, below.

Forward-Prediction Models. At time t, a forward-
prediction model F aims to predict the next state, x̂t+1,
of a physical system based on a series of τ past states of
that system. F consists of a state encoder e, a forward-
dynamics model f , and a state decoder d. The past states
{xt−τ , . . . , xt} are first encoded into latent representations
{zt−τ , . . . , zt} using a learned encoder e with parameters
θe, i.e., zt = e(xt; θe). The latent representations are then
passed into the forward-dynamics model f with param-
eters θf : f ({xt−τ , . . . , xt}, {zt−τ , . . . , zt}; θf ) → ẑt+1.
Finally, the predicted future latent representation is decoded
using the decoder d with parameters θd: d(ẑt+1; θd) →
x̂t+1 . We learn the model parameters Θ = (θe, θf , θd) on
a large training set of observations of the system’s dynam-
ics. We experiment with forward-prediction models that
use either object-based or pixel-based state representations.
Specifically, we experiment with two object based models
based on Interaction Nets (IN) (Battaglia et al., 2016) and
the Transformer architecture (Tx) (Vaswani et al., 2017);
and two pixel based models based on Spatial Transformers
(STN) (Finn et al., 2016; Jaderberg et al., 2015) and a Decon-
volutional architecture (Dec). Please refer to Appendix D.1
for details on these models.

Task-Solution Models. We use our forward-prediction
models in combination with a task-solution model that pre-
dicts whether a rollout solves a physical-reasoning task. In
the physical-reasoning tasks we consider, the task-solution
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Figure 2. AUCCESS of object-based ( ) and pixel-based (N) task-
solution model (y-axis) applied on state obtained by rolling out
an oracle forward-prediction model for τ ′ seconds (x-axis). AUC-
CESS of the OPTIMAL agent is shown for reference. Shaded
regions indicate standard deviation across 10 folds. We note
that object-based task-solution models struggle compared to pixel-
based ones, especially in cross-template settings.

model needs to recognize whether two particular target
objects are touching (task solved) or not (task not solved).
We note that good task-solution models may also correct for
errors made by the forward-prediction model. Per Figure 6
(appendix), we implement the task solution model using a
simple binary classifier C with parameters ψ. The classifier
receives the τ + τ ′ (initial and predicted) frames and/or
latent representations as input from the forward-prediction
model. We provide the input frames as well to account
for potentially poor performance of the dynamics model
on certain tasks; in those cases the task-solution model
can learn to ignore the rollout and only use input frames
to make a prediction. It then produces a binary prediction:
C(x0 . . . xτ , z0 . . . zτ , x̂τ+1 . . . x̂τ+τ ′ , ẑτ+1 . . . ẑτ+τ ′ ;ψ)→
[−1,+1]. Because both types of forward-prediction models
produce different outputs, we experiment with object-based
classifiers and pixel-based classifiers that make predic-
tions based on simulation state represented by object
features or pixels respectively. We also experiment with
pixel-based classifiers on object-based forward-prediction
models by rendering the object-based state to pixels first.
In object-based, we use the Transformer architecture
(Tx-Cls) (Vaswani et al., 2017) based models that ingest
the object positions in the rollout and predict whether the
task is solved. In pixel-based, we use 3D convolutional
models (Conv3D-{Latent,Pixel})) (Tran et al.,
2018) that similarly classify the rollout video. Please
see Appendix D.2 for details.

Search Strategy. We compose a forward-prediction model
F and a task-solution model C to form a scoring function
for action proposals. An action adds one or more additional
objects to the initial world state. We sample K actions
uniformly at random and evaluate the scoring function for
each by altering the initial state with the action, using the
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Figure 3. AUCCESS of task-solution model applied on state
obtained by rolling out five object-based ( ) and pixel-based
(N) forward-prediction models (y-axis) for τ ′ seconds (x-axis).
Forward-prediction models were initialized with τ = 3 ground-
truth states. AUCCESS of agent without forward prediction
(No-fwd) is shown for reference. Results are presented for the
within-template (left) and cross-template (right) settings.
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Figure 4. Left: Within-template forward-prediction accuracy
(FPA) after τ ′ seconds roll out of five forward-prediction models.
Right: Maximum AUCCESS value across roll-out as a function
of forward-prediction accuracy averaged over τ ′=10 seconds for
the five models. Shaded regions and error bars indicate standard
deviation over 10 folds.

resulting state as input into the forward-prediction model,
and evaluating the task-solution model on the output of the
forward-prediction model. The search strategy selects the
action that is most likely to solve the task according to the
task-solution model, based on the output of the forward-
prediction model.

3. Experiments
We evaluate the performance of the forward-prediction
models on the B-tier of the challenging PHYRE bench-
mark ((Bakhtin et al., 2019); see Figure 1). Please see Ap-
pendix E.1 for experimental setup.

Can perfect forward prediction solve PHYRE physical
reasoning? We first evaluate if perfect forward-prediction
can solve physical reasoning on PHYRE. We do so by us-
ing the PHYRE simulator as the forward-prediction model,

Table 1. AUCCESS and success percentage of our Dec
[Joint] agents using τ ′ = 0 (no roll-out, frame-level model)
and τ ′ = 10 (full roll-out) compared to current state-of-the-art
agents (Bakhtin et al., 2019) on the PHYRE benchmark. In con-
trast to prior experiments, all agents here are conditioned on τ = 1
initial frame. Our agents outperform all prior work on both settings
and metrics of the PHYRE benchmark.

AUCCESS Success %age
Within Cross Within Cross

RAND (Bakhtin et al., 2019) 13.7±0.5 13.0±5.0 7.7±0.8 6.8±5.0

MEM (Bakhtin et al., 2019) 2.4±0.3 18.5±5.1 2.7±0.5 15.2±5.9

DQN (Bakhtin et al., 2019) 77.6±1.1 36.8±9.7 81.4±1.9 34.5±10.2

Ours (τ ′ = 0) 76.7±0.9 40.7±7.7 80.7±1.5 40.1±8.2

Ours (τ ′ = 10) 80.0±1.2 40.3±8.0 84.1±1.8 39.2±8.6

and applying task-solution models on the predicted state.
We exclude the Conv3D-Latent task-solution model in
this experiment because it requires the latent representa-
tion of learned forward-prediction model, which the sim-
ulator can not provide. Figure 2 shows the AUCCESS of
these models as a function of the number of seconds the
forward-prediction model is rolled out. We compare model
performance with that of the OPTIMAL agent (Bakhtin
et al., 2019), which is an agent that achieves the maxi-
mum attainable performance given that we rank only K
actions. We observe that task-solution models work nearly
perfectly in the within-template setting when the forward-
prediction is rolled out for τ ′ ≈ 10 seconds. We also
observe that pixel-based task-solution models outperform
object-based models, especially in the cross-template set-
ting. This suggests that it is more difficult for object-based
models to determine whether or not two objects are touch-
ing than for pixel-based models, presumably, because the
computations required are more complex. In preliminary ex-
periments, we found that Conv3D-Latent outperforms
Conv3D-Pixel when combined with learned pixel-based
forward-prediction models (see Appendix G.1). Therefore,
we use Conv3D-Latent as the task-solution model for
pixel-based models and Conv3D-Pixel for object-based
models (by rendering object-based predictions) in the fol-
lowing experiments.

How well do forward-prediction models solve PHYRE
physical reasoning? We evaluate performance of our
learned forward-prediction models on the PHYRE tasks.
Akin to the previous experiment, we roll out the forward-
prediction model for τ ′ seconds and evaluate the corre-
sponding task-solution model on the τ ′ state predictions
and the τ = 3 input states. Figure 3 presents the AUC-
CESS of this approach as a function of the number of sec-
onds (τ ′) that the forward-prediction models were rolled
out. The AUCCESS of an agent without forward predic-
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Figure 5. Left: Per-template AUCCESS of Dec [Joint] 1f with τ ′ = 0 (no forward prediction) and τ ′ = 10 (forward prediction) of
five task templates that benefit the least from forward prediction (left) and five templates that benefit the most (right). Right: Per-template
AUCCESS of the τ ′ = 0 model as a function of the number of objects in the task template (left) and improvement in per-template
AUCCESS, called ∆ AUCCESS, obtained by the τ ′ = 10 model (right).

tion (No-fwd) is shown for reference. The results show
that forward prediction can improve AUCCESS by up to
2% in the within-template setting. The pixel-based Dec
model performs similarly to models that operate on object-
based states, either extracted (STN) or ground truth (IN and
Tx). Furthermore, Dec allows for end-to-end training of the
forward-prediction and the pixel-based task-solution models.
The resulting Dec [Joint] model performs the best in
our experiments, which is why we focus on it in subsequent
experiments. Similar joint training of object-based models
(c.f. Appendix G.2) yields smaller improvements due to lim-
itations of object-based task-solution models. Although the
within-template results suggest that forward prediction can
help physical reasoning, AUCCESS plateaus after τ ′≈5 sec-
onds. This suggests that forward-prediction models are only
truly accurate on PHYRE for a short period of time. Also,
forward-prediction models help little in the cross-template
setting, suggesting limited generalization across templates.

Does better forward-prediction imply better PHYRE
physical reasoning? Figure 4 (left) measures the forward-
prediction accuracy (FPA) of our forward-prediction models
after τ ′ seconds of rolling out the models. We observe that
FPA generally decreases with roll-out time although, inter-
estingly, Dec recovers over time (c.f. Appendix F). While
all models obtain a fairly high FPA, models that utilize
object-centric representations (IN, Tx, and STN) clearly
outperform their pixel-based counterparts. This is intrigu-
ing because, in prior experiments, Dec models performed
best on PHYRE in terms of AUCCESS. To investigate this
in more detail, Figure 4 (right) shows FPA averaged over
10 seconds as a function of the maximum AUCCESS over
that time. The results confirm that more pixel-accurate for-
ward predictions do not necessarily increase performance
on PHYRE’s physical-reasoning tasks.

How do forward-prediction agents compare to the state-
of-the-art on PHYRE? Hitherto, all our experiments as-
sumed access to τ = 3 input frames, which is not the setting
considered by (Bakhtin et al., 2019). To facilitate com-
parisons with prior work, we develop an Dec agent that

requires only τ = 1 input frame: we pad the first frame
with 2 empty frames and train the model exclusively on roll-
outs that start from the first frame and do not use teacher
forcing. We refer to the resulting model as Dec [Joint]
1f. Table 1 compares the performance of Dec [Joint]
1f to the state-of-the-art on PHYRE in terms of AUCCESS
and success percentage @ 10 (i.e., the percentage of tasks
that were solved within 10 attempts). The results show
that Dec [Joint] 1f outperforms the previous best re-
ported agents in terms of metrics in both the within and
the cross-template settings. In the within-template setting,
the performance of Dec [Joint] 1f increases substan-
tially for large τ ′. This demonstrates the benefits of using
a forward-prediction modeling approach to PHYRE in that
setting. Having said that, forward-prediction did not help in
the cross-template setting, presumably, because rollouts on
unseen templates, while realistic, were not accurate enough
to solve the tasks.

Which PHYRE templates benefit from using a forward-
prediction model? To investigate this, we compare Dec
[Joint] 1f at τ = 0 (i.e., no forward-prediction) and
τ = 10 seconds in terms of per-template AUCCESS. We
define per-template AUCCESS as the average AUCCESS
over all tasks in a template in the within-template setting.
Figure 5 (left) shows the per-template AUCCESS for the
five templates in which forward-prediction models help the
least (left five groups) and the five templates in which these
models help the most (right five). Qualitatively, we ob-
serve that forward prediction does not help much in “simple”
tasks that comprise a few objects, whereas it helps a lot in
more “complex” tasks. This is corroborated by the results
in Figure 5 (right), in which we show AUCCESS and the
improvement in AUCCESS due to forward modeling (∆
AUCCESS) as a function of the number of objects in the
task. We observe that AUCCESS decreases (Pearson’s coef-
ficient, ρ=−0.4) with the number of objects in the task, but
that the benefits of forward predictions increase (ρ=0.6).
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A. Rollout Visualizations
We first show rollouts when our model is trained on train
tasks from a single template, and evaluated from the val
tasks on that template. We chose one of the hardest tem-
plates in terms of FPA, Template 18. This evaluation is com-
parable to most prior work (Battaglia et al., 2016; Sanchez-
Gonzalez et al., 2020), where variations of single environ-
ment are used during training and testing. Note that our
model’s rollouts are quite high fidelity in this case, as ex-
pected.

• Within-Template Template 18 (fold 0):
http://fwd-pred-phyre.s3-website.
us-east-2.amazonaws.com/
within-temp18only/

However, PHYRE requires training a single model for all
the templates in the dataset. We now show a comprehensive
visualization of rollouts for all our forward-prediction mod-
els (as were used to compute forward-prediction accuracy),
for both within and cross-template settings. Note that the
rollout fidelity drops, understandably as the model needs to
capture all the different templates.

• Within-Template (fold 0):
http://fwd-pred-phyre.s3-website.
us-east-2.amazonaws.com/within/

• Cross-Template (fold 0):
http://fwd-pred-phyre.s3-website.
us-east-2.amazonaws.com/cross/

B. Related Work
Our study builds on a large body of prior research on for-
ward prediction and physical reasoning.

Forward prediction models attempt to predict the future
state of objects in the world based on observations of past
states. Learning of such models, including using neural net-
works, has a long history (Byravan & Fox, 2017; Grzeszczuk
et al., 1998). These models operate either on object-based
(proprioceptive) representations or on pixel-based state rep-
resentations. A popular class of object-based models use
graph neural networks to model interactions between ob-
jects (Battaglia et al., 2016; Kipf et al., 2018), for example,
to simulate environments with thousands of particles (Li
et al., 2019; Sanchez-Gonzalez et al., 2020). Another class
of object-based models explicitly represents the Hamilto-
nian or Lagrangian of the physical system (Chen et al.,
2019; Cranmer et al., 2020; Greydanus et al., 2019). While
promising, such models are currently limited to simple
point objects and physical systems that conserve energy.
Hence, they cannot currently be used on PHYRE, which
contains dissipative forces and extended objects. Modern
pixel-based forward-prediction models extract state repre-

sentations by applying a convolutional network on the ob-
served frame(s) (Kipf et al., 2020; Watters et al., 2017) or
on object segments (Janner et al., 2019; Qi et al., 2021;
Ye et al., 2019). The models perform forward prediction
on the resulting state representation using graph neural net-
works (Kipf et al., 2020; Li et al., 2020; Mrowca et al., 2018;
Qi et al., 2021; Veerapaneni et al., 2020; Ye et al., 2019), re-
current neural networks (Cho et al., 2014; Finn et al., 2016;
Fragkiadaki et al., 2016; Hochreiter & Schmidhuber, 1997;
Xingjian et al., 2015), or a physics engine (Chang et al.,
2017; Wu et al., 2017). The models can be trained to predict
object state (Watters et al., 2017), perform pixel reconstruc-
tion (Villegas et al., 2017; Ye et al., 2019), transform the
previous frames (Finn et al., 2016; Ye et al., 2018; 2019),
or produce a contrastive state representation (Hafner et al.,
2020; Kipf et al., 2020).

Physical reasoning tasks gauge a system’s ability to intu-
itively reason about physical phenomena (Battaglia et al.,
2013; Kubricht et al., 2017). Prior work has developed mod-
els that predict whether physical structures are stable (Groth
et al., 2018; Lerer et al., 2016; Li et al., 2016), predict
whether physical phenomena are plausible (Riochet et al.,
2018), describe or answer questions about physical sys-
tems (Rajani et al., 2020; Yi et al., 2020), perform counter-
factual prediction in physical worlds (Baradel et al., 2020),
predict effect of forces (Mottaghi et al., 2016; Wang et al.,
2018), or solve physical puzzles/games (Allen et al., 2020;
Bakhtin et al., 2019; Du & Narasimhan, 2019). Unlike other
physical reasoning tasks, physical-puzzle benchmarks such
as PHYRE (Bakhtin et al., 2019) and Tools (Allen et al.,
2020) incorporate a full physics simulator, and contain a
large set of physical environments to study generalization.
This makes them particularly suitable for studying the ef-
fectiveness of forward prediction for physical reasoning,
and we adopt the PHYRE benchmark in our study for that
reason.

Inferring object representations involve techniques like
generative models and attention mechanisms to decompose
scenes into objects (Burgess et al., 2019; Engelcke et al.,
2019; Eslami et al., 2016; Greff et al., 2019). Many tech-
niques also leverage the motion information for better de-
composition or to implicitly learn object dynamics (Craw-
ford & Pineau, 2020; Kipf et al., 2020; Kosiorek et al.,
2018; van Steenkiste et al., 2018). While relevant to our
exploration of pixel-based methods as well, we leverage
the simplicity of PHYRE visual world to extract object-like
representations simply using connected component algo-
rithm in our approaches (c.f. STN in Section 2). However,
more sophisticated approaches could help further improve
the performance, and would be especially useful for more
visually complex and 3D environments.

Video Prediction or conditional pixel generation typically

http://fwd-pred-phyre.s3-website.us-east-2.amazonaws.com/within-temp18only/
http://fwd-pred-phyre.s3-website.us-east-2.amazonaws.com/within-temp18only/
http://fwd-pred-phyre.s3-website.us-east-2.amazonaws.com/within-temp18only/
http://fwd-pred-phyre.s3-website.us-east-2.amazonaws.com/within/
http://fwd-pred-phyre.s3-website.us-east-2.amazonaws.com/within/
http://fwd-pred-phyre.s3-website.us-east-2.amazonaws.com/cross/
http://fwd-pred-phyre.s3-website.us-east-2.amazonaws.com/cross/


Forward Prediction for Physical Reasoning

requires an implicit understanding of physics. Popular ap-
proaches model the past frames using a variant of recurrent
neural network (Cho et al., 2014; Hochreiter & Schmid-
huber, 1997; Xingjian et al., 2015) and make predictions
directly using a decoder (Villegas et al., 2017), or as a trans-
formation of the previous frames using optical flow (Ye
et al., 2018) or spatial transformations (Finn et al., 2016;
Ye et al., 2019). Our work is complementary to such ap-
proaches, building upon them to solve physical reasoning
tasks.

Model-based RL approaches rely on building models of
the environment of the agent to plan in. Such approaches
typically use recurrent stochastic state transition models su-
pervised with a reconstruction (Ha & Schmidhuber, 2018;
Hafner et al., 2019; 2020; Janner et al., 2019) or con-
trastive (Hafner et al., 2020) objective. Given the learned
forward model, the planning is typically performed using a
variant of cross entropy method (CEM) (Chua et al., 2018;
Rubinstein, 1997). Our setup is similar to model-based RL,
with the crucial difference being that we take only a single
action, and the long-horizon dynamics we need to model
is significantly more complex than typical RL control envi-
ronments (Tassa et al., 2018; Todorov et al., 2012). Given
the simplicity of our action space, we learn a value function
over actions using the predicted rollouts, and use it to search
for the optimal action at test time. Future work involving
more complex or even continuous action spaces can per-
haps benefit from learning a more sophisticated sampling
approach using CEM.

C. PHYRE Benchmark
In PHYRE, each task consists of an initial state that is a
256 × 256 image. Colors indicate object properties; for
instance, black objects are static while gray objects are dy-
namic and neither are involved in the goal state. PHYRE
defines two task tiers (B and 2B) that differ in their action
space. An action involves placing one ball (in the B tier) or
two balls (in the 2B tier) in the image. Balls are parameter-
ized by their position and radius, which determine the ball’s
mass. An action solves the task if the blue or purple object
touches the green object (the goal state) for a minimum of
three seconds when the simulation is rolled out. Figure 1
illustrates the challenging nature of PHYRE tasks: small
variations can change incorrect actions (Figure 1(a) and (c))
into a correct solution (Figure 1(b)).

Each tier in PHYRE contains 25 task templates. A task tem-
plate contains 100 tasks that are structurally similar but that
differ in the initial positions of the objects. Performance on
PHYRE is measured in two settings. The within-template
setting defines a train-test split over tasks, such that training
and test tasks can contain different instantiations of the same
template. The cross-template setting splits across templates,

such that training and test tasks never correspond to the same
template. A PHYRE agent can make multiple attempts at
solving a task. The performance of the agent is measured by
the area under the success curve (AUCCESS; (Bakhtin et al.,
2019)), which ranges from 0 to 100 and is higher when the
agent needs fewer attempts to solve a task. Performance is
averaged over 10 random splits of tasks or templates. In ad-
dition to AUCCESS, we also measure a forward-prediction
accuracy (FPA) that does not consider whether an action
solves a task. We define FPA as the percentage of pixels that
match the ground-truth in a 10-second rollout at 1 frame
per second (fps); we only consider pixels that correspond to
dynamic objects when computing forward-prediction accu-
racy. Please refer to Appendix H for exact implementation
details.

D. Approach Details
D.1. Forward Prediction Models

Object-based models. We experiment with two object-
based forward-prediction models that capture interactions
between objects: interaction networks (Battaglia et al.,
2016) and transformers (Vaswani et al., 2017). Both object-
based forward-prediction models represent the system’s
state as a set of tuples that contain object type (ball, stick,
etc.), location, size, color, and orientation. The models are
trained by minimizing the mean squared error between the
predicted and observed state.

• Interaction networks (IN; (Battaglia et al., 2016)) main-
tain a vector representation for each object in the system
at time t. Each vector captures information about the
object’s type, position, and velocity. A relationship is
computed for each ordered pair of objects, designating
the first object as the sender and the second as the re-
ceiver of the relation. The relation is characterized by
the concatenation of the two objects’ feature vectors and
a one-hot encoding representing the sender object’s at-
tribute of static or dynamic. The dynamics model embeds
the relations into “effects” per object using a multilayer
perceptron (MLP). The effects exerted on an object are
summed into a single effect per object. This aggregated
effect is concatenated with the object’s previous state
vector, from a particular temporal offset, along with a
placeholder for external effects, e.g., gravity. The result
is passed through another MLP to predict velocity of the
object. We use two interaction networks with different
temporal offsets (Watters et al., 2017), and aggregate the
results in an MLP to generate the final velocity prediction.
The decoder then sums the object’s predicted velocity
with the previous position to obtain the new position of
the object.

• Transformers (Tx; (Vaswani et al., 2017)) also maintain
a representation per object: they encode each object’s
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Figure 6. We study models that take as input a set of initial state via an object-based or a pixel-based representation (blue box). We input
the representation into a range of forward-prediction models, which generally comprise an encoder (yellow box), a dynamics model
(green box), and a decoder (gray box). We feed that output to a task-solution model (red box) that predicts whether the goal state is
reached. At inference time, we search over actions that alter the initial state by adding additional objects to the state. For each action (and
corresponding initial state) we predict a task-solution probability; we then select the action most likely to solve the task.

state using a 2-layer MLP. In contrast to IN, the dynamics
model f in Tx is a Transformer that uses self-attention lay-
ers over the latent representation to predict the future state.
We add a sinusoidal temporal position encoding (Vaswani
et al., 2017) of time t to the features of each object. The
resulting representation is fed into a Transformer encoder
with 6 layers and 8 heads. The output representation is
decoded using a MLP and added to the previous state to
obtain the future state prediction.

Pixel-based models. In contrast to object-based models,
pixel-based forward-prediction models do not assume direct
access to the attribute values of the objects. Instead, they
operate on images depicting the object configuration, and
maintain a single, global world state that is extracted by
an image encoder. Our image encoder e is a ResNet-18
network (He et al., 2016) that is clipped at the res4 block.
Objects in PHYRE can have seven different colors; hence,
the input of the network consists of seven channels with
binary values that indicate object presence, consistent with
prior work (Bakhtin et al., 2019). The representations ex-
tracted from the past τ frames are concatenated before being
input into the two models we study.

• Spatial transformer networks (STN; (Jaderberg et al.,
2015)) split the input frame into segments by detecting
objects (Ye et al., 2019), and then encode each object us-
ing the encoder e. Specifically, we use a simple connected
components algorithm (Weaver, 1985) to split each frame
channel into object segments. The dynamics model con-
catenates the object channels for the τ input frames, and
predicts a rotation and translation for each channel cor-
responding to the last frame using a small convolutional
network. The decoder applies the predicted transforma-
tion to each channel. The resulting channels are combined
into a single frame prediction by summing them. Inspired
by modern keypoint localizers (He et al., 2017), we train

STNs by minimizing the spatial cross- entropy, which
sums the cross-entropies of H×W softmax predictions
over all seven channels.

• Deconvolutional networks (Dec) directly predict the
pixels in the next frame using a deconvolutional network
that does not rely on a segmentation of the input frame(s).
The representations for the last τ frames are concatenated
along the channel dimension, and passed through a small
convolutional network to generate a latent representation
for the t+ 1th frame. Latent representation ẑt+1 is then
decoded to pixels using a deconvolutional network, im-
plemented as series of five transposed-convolution and
(bilinear) upsampling layers, with intermediate ReLU ac-
tivation functions. We found Decs are best trained by
minimizing the per-pixel cross-entropy, which sums the
cross-entropy of seven-way softmax predictions at each
pixel.

D.2. Task-Solution Models

• Object-based classifier (Tx-Cls). We use a Trans-
former (Vaswani et al., 2017) model that encodes the
object type and position into a 128-dimensional encoding
using a two-layer MLP. As before, a sinusoidal temporal
position encoding is added to each object’s features. The
resulting encodings for all objects over the τ + τ ′ time
steps are concatenated, and used in a 16-head, 8-layer
transformer encoder with LayerNorm. The resulting rep-
resentations are input into another MLP that performs a
binary classification that predicts whether or not the task
is solved.

• Pixel-based classifier (Conv3D-{Latent,Pixel}).
Our pixel-based classifier poses the problem of classi-
fying task solutions as a video-classification problem.
Specifically, we adopt a 3D convolutional network for
video classification (Carreira & Zisserman, 2017; Tran
et al., 2015; 2018). We experiment with two variants of
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this model: (1) Conv3D-Latent: the latent state rep-
resentations (z, ẑ) are concatenated along the temporal
dimension, and passed through a stack of 3D convolutions
with intermediate ReLUs followed by a linear classifier;
and (2) Conv3D-Pixel: the pixel representations (x,
x̂) are encoded using a ResNet-18 (up to res4), and
classifications are made by the Conv3D-Latent model.
Conv3D-Pixel can also be used in combination with
object-based forward-prediction models, as the predic-
tions of those models can be rendered.

E. Experimental Details
E.1. Experimental Setup

Training. To generate training data for our models, we
sample task-action pairs in a balanced way: half of the
samples solve the task and the other half do not. We gen-
erate training examples for the forward-prediction models
by obtaining frames from the simulator at 1 fps, and sam-
pling τ consecutive frames used to bootstrap the forward
model from a random starting point in this obtained roll-
out. The model is trained to predict frames that succeed
the selected τ frames. For the task-solution model, we al-
ways sample τ frames from the starting point of the rollout,
or frame 0. Along with these τ frames, the task-solution
model also gets the τ ′ autoregressively predicted frames
from the forward-prediction model as input. We use τ = 3
for most experiments, and eventually relax this constraint to
use τ = 1 frame when comparing to the state-of-the-art in
the next section.

We train most forward-prediction models using teacher forc-
ing (Williams & Zipser, 1989): we only use ground-truth
states as input into the forward model during training. The
only exception is Dec, for which we observed better perfor-
mance when predicted states are used as input when training.
Furthermore, since Dec is trainable without teacher forc-
ing, we are able to train it jointly with the task-solution
model, as it no longer requires picking a random point in
the rollout to train the forward model. In this case, we
train both models from frame 0 of each simulation with
equal weights on both losses, and refer to this model as
Dec [Joint]. For object-based models, we add a small
amount of Gaussian noise to object states during training
to make the model robust (Battaglia et al., 2016). We train
all task-solution and pixel-based forward-prediction mod-
els using mini-batch SGD, and train object-based forward-
prediction models with Adam. We selected hyperparameters
for each model based on the AUCCESS on the first fold in
the within-template setting; see Appendix L.

Evaluation. At inference time, we bootstrap the forward-
prediction models with τ initial ground-truth states from
the simulator for a given action, and autoregressively pre-

dict τ ′ future states. The τ + τ ′ states are then passed into
the task-solution model to predict whether the task will
be solved or not by this action. Following (Bakhtin et al.,
2019), we use the task-solution model to score a fixed set of
K = 1, 000 (unless otherwise specified) randomly selected
actions for each task. We rank these actions based on the
task-solution model score to measure AUCCESS. We also
measure forward-prediction accuracy (FPA; see Section C)
on the validation tasks for 10 random actions each, half of
which solve the task and the other half that do not. Fol-
lowing (Bakhtin et al., 2019), we repeat all experiments for
10 folds and report the mean and standard deviation of the
AUCCESS and FPA.

F. Rollout Accuracy in Cross-Template
Setting

Similar to Figure 4 in the main paper, we show the forward-
prediction accuracy on the cross-template setting in Fig-
ure 7. As expected, the accuracy is generally lower in the
cross-template setting, showing that the models struggle to
generalize beyond training templates. Otherwise, we see
similar trends as seen in Figure 4.

It is interesting to note that Dec accuracy goes down and
then up, similar to as observed in the within-template case.
We find that it is likely because Dec is better able to predict
the final position of the objects than the actual path the
objects would take. Since it tends to smear out the object
pixels when not confident of its position, the model ends up
with lower accuracy during the middle part of the rollout.
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Figure 7. Left: Forward-prediction accuracy (FPA; y-axis) after τ ′

seconds (x-axis) rolling out five forward-prediction models. Right:
Maximum AUCCESS value across roll-out (y-axis) as a function
of forward-prediction accuracy averaged over τ ′ = 10 seconds
(x-axis) for five forward-prediction models. Shaded regions and
error bars indicate standard deviation over 10 folds. Both shown
for cross-template setting.
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Figure 8. Comparison of Conv3D-{Latent, Pixel} classi-
fiers on learned pixel-based forward-prediction models: Dec and
STN, in the within-template setting. Conv3D-Latent performs
as well or better than Conv3D-Pixel, and hence we use it for
the experiments in the paper.

G. Other Task-Solution Models on Learned
Forward-Prediction Models

G.1. Conv3D-Latent vs Conv3D-Pixel, on
Pixel-Based Forward-Prediction Models

In Figure 8, we compare Conv3D-Latent and
Conv3D-Pixel on learned pixel-based forward models.
We find Conv3D-Latent generally performs better, espe-
cially for Dec, since that model does not produce accurate
future predictions in terms of pixel accuracy (FPA). How-
ever, the latent space for that model still contains useful
information, which the Conv3D-Latent is able to ex-
ploit successfully. Hence for pixel-based forward-prediction
models, given the option between latent or pixel space task-
solution classifiers, we choose Conv3D-Latent for ex-
periments in the paper.

G.2. Tx-Cls vs Conv3D-Pixel, on Object-Based
Forward-Prediction models

In Figure 9, we compare the object-based task-solution
model on learned object-based forward-prediction mod-
els. Similar to the observations with GT simulator in
Figure 2 (main paper), object-based task-solution model
(Tx-Cls) performed worse than its pixel-based counterpart
(Conv3D-Pixel), even with learned forward-prediction
models. Jointly training the object-based forward mod-
els with object-based task-solution model improves per-
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Figure 9. Comparison of Tx-Cls and Conv3D-Pixel classi-
fiers on learned object-based forward-prediction models: IN and
Tx, in the within-template setting. Since Conv3D-Pixel gener-
ally performed better, we use it for the experiments shown in the
paper.

formance, as shown for the IN model, however it is still
worse than using a pixel-based task-solution model on
the object-based forward model. Hence, for experiments
in the paper, we render the object-based models’ predic-
tions to pixels, and use a pixel-based task-solution model
(Conv3D-Pixel). Note that the other pixel-based task-
solution model, Conv3D-Latent, is not applicable here,
as object-based forward-prediction models do not produce a
spatial latent representation which Conv3D-Latent op-
erates on. Moreover, training object-based models jointly
with the pixel-based classifier is not possible in the absence
of a differentiable renderer.

H. Forward Prediction Accuracy (FPA)
metric

To compute FPA, we first zero out all pixels with colors
corresponding to non-moving objects, in both GT and pre-
diction. This ensures that any motion of non moving objects
over other non moving objects or background will incur
no reduction in the FPA score. Then, FPA for a frame of
the rollout is defined as the percentage of pixels that match
between GT and prediction. Hence, if any object of colors
corresponding to moving objects (red, green, blue, gray) is
at an incorrect position (either overlapping with static or
non static objects/background), it would incur a reduction in
FPA. A python-style code for the computation is as follows:

1 def zero_out_non_moving_channels(img):
2 is_red = np.isclose(img, RED)
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3 is_green = np.isclose(img, GREEN)
4 is_blue = np.isclose(img, BLUE)
5 is_gray = np.isclose(img, GRAY)
6 is_l_red = np.isclose(img, L_RED)
7 img[~(is_red | is_green | is_blue |

is_gray | is_l_red)] = 0.0
8 return img
9

10

11 def fpa(prediction, gt):
12 """
13 prediction: predicted frame of

dimensions (H, W, 3)
14 gt: Corresponding GT frame of

dimensions (H, W, 3)
15 """
16 prediction =

zero_out_non_moving_channels(prediction
)

17 gt = zero_out_non_moving_channels(gt)
18 is_close_per_channel = np.isclose(

prediction, gt)
19 all_channels_close =

is_close_per_channel.sum(
20 axis=-1) == prediction.shape[-1]
21 frame_size = gt.shape[0] * gt.shape[1]
22 return np.sum(all_channels_close) /

frame_size

I. Joint model with only task-solution loss
For our best joint model, Dec [Joint], we evaluate the
effect of setting the forward prediction loss to 0. As seen in
Figure 10, the model performs about the same as it would
without a forward model, obtaining similar performance
at different number of rollout seconds (τ ′). This further
strengthens the claim that forward prediction leads to the
improvements in performance (as also evident from the
increase in AUCCESS on increasing τ ′), as opposed to any
changes in parameters or training dynamics.

J. Performance with different number of
actions ranked

Similar to Figure 4 in (Bakhtin et al., 2019), we analyze
the performance of our best model, Dec [Joint] 1f, at
different number of actions being re-ranked at test time, in
Figure 11. We find the performance varies nearly linearly
with number of actions upto 10K actions, similar to the
observations in (Bakhtin et al., 2019).

K. Templates ranked by FPA
Figure 12 shows the easiest and hardest templates for each
forward model. We find some of the hardest ones are indeed
the ones that humans would also find hard, such as the
template involving a see-saw system or complex extended
objects like cups.
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Figure 10. Effect of setting forward prediction loss to 0 in Dec
[Joint]. The performance is stagnant with the rollout if loss on
the future prediction is set to 0, as expected. The model performs
comparably to a model without forward prediction.

L. Hyperparameters
All experiments were performed using upto 8 V100 32GB
GPUs. Depending on the number of steps the model was
rolled out for during training, the actual GPU requirements
were adjusted. The training time for all forward-prediction
models was around 2 days, and the task solution models took
upto 4 days (depending on how far the forward-prediction
model was rolled out). Our code will be made available to
reproduce our results.

L.1. Forward-prediction models

We train all object-based models with teacher forcing. We
use a batch size of 8 per GPU over 8 gpus. For each batch
element, we sample clips of length 4 from the rollout, using
the first three as context frames and the 4th as the ground
truth prediction frame. We train for 200K iterations. We add
Gaussian noise sampled from aN (0, 0.014435) distribution
to the training data, similar to (Battaglia et al., 2016). We
add noise to 20% of the data for the first 2.5% of training,
decreasing the percentage of data that is noisy to 0% over
the next 10% of training. The object based forward models
only make predictions for dynamic objects, and use a hard
tanh to clip the predicted state values between 0-1. The
models don’t use the state of static objects or the angle
of ball objects when calculating the loss. For angles, we
compute the mean squared error between the cosine of the
predicted and ground truth angle. We now describe the
other hyperparameters specific to each object-based and
pixel-based forward-prediction model.
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Figure 11. Performance of Dec [Joint] 1f at different
number of actions. The performance varies nearly linearly with
number of actions ranked.

• IN (object-based): We train these models using Adam
and a learning rate of 0.001. We use two interaction nets,
one that makes predictions based on the last two context
frames, the other that makes predictions based on the
first two context frames. Using the same architecture
as (Battaglia et al., 2016), the relation encoder is a five
layer MLP, with hidden size 100 and ReLU activation,
that embeds the relation into a dimension 50 vector. The
aggregated and external effects are passed through a three
layer MLP with hidden size 150 and ReLU activation.
Each interaction net makes a velocity prediction for the
object, and the results are concatenated with the object’s
previous state and passed to a three layer MLP with hidden
size 64 and ReLU activation to make the final velocity
prediction per object. The predicted state is a sum of the
velocity and the object’s previous state.

• Tx (object-based): We train these models using Adam
and a learning rate of 0.0001. We use a two layer MLP
with a hidden size of 128 and ReLU activation to embed
the objects into a 128 dimensional vector. A sinusoidal
temporal position encoding (Vaswani et al., 2017) of time
t is added to the features of each object. The result is
passed to a Transformer encoder with 8 heads and 6 lay-
ers. The embeddings corresponding to the last time step
are passed to the final three layer MLP with ReLU activa-
tions and hidden size of 100 to make the final prediction.
The model predicts the velocity of the object, which is
summed with the object’s last state to get a new state
prediction.

• STN (pixel-based): We also train these models with
teacher forcing. Since pixel-based models involve a
ResNet-18 image encoder, we use a batch size of 2 per
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Figure 12. Easiest and hardest templates in terms of FPA.

GPU, over 8 GPUs. For each batch element, we sam-
ple clips of length 16 from the rollout, and construct all
possible sets with 3 context frames and the 4th ground
truth prediction frame. The models were trained using
a learning rate of 0.00005, adam optimizer, with cosine
annealing over 100K iterations. The scene was split into
objects using the connected components algorithm, and
we split each color channel into upto 2 objects. The model
then predicts rotation and transformation for each object
channel, which are used to construct an affine transforma-
tion matrix. The last context frame is transformed using
this affine matrix to generate the predicted frame, which is
passed through the image encoder to get the latent repre-
sentation for the predicted frame (i.e. for STN, the future
frame is predicted before the future latent representation).

• Dec (pixel-based): For these models, we do not use
teacher forcing, and use the last predicted states to predict
future states at training time. We use a batch size of 2
per gpu over 8 gpus. For each batch element, we sam-
ple a 20-length clip from the simulator rollout, and train
the model to predict upto 10 steps into the future (note
with teacher forcing, models are trained only to predict
1 step into the future given 3 GT states). The model is
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trained for 50K iterations with a learning rate of 0.01 and
SGD+Momentum optimizer.

• Dec [Joint] (pixel-based): For this model, we train
both forward-prediction and task-solution models jointly,
with equally weighted losses. For this, we sample 13-
length rollout, always starting from frame 0. Instead of
considering all possible starting points from the 13 states
(as in Dec and STN), we only use the first 3 states to
bootstrap, and roll it out for upto 10 steps into the future.
We only incur forward-prediction losses for upto the first
5 of those 10 steps, we observed instability in training on
predicting for all steps. Here we use a batch size of 8/gpu,
over 8 gpus. The model is trained with learning rate of
0.0125 with SGD+Momentum for 150K iterations. The
task-solution model used is Conv3D-Latent, which
operates on the latent representation being learned by the
forward-prediction model.

L.2. Task-solution models

For all these models, we always sample τ = 3 frames from
the start point of each simulation, and roll it out for different
number of τ ′ states autoregressively, before passing through
one of these task-solution models.

• Tx-Cls (for object-based): We train a Transformer en-
coder model on the object states predicted by object-based
forward-prediction models. The object states are first en-
coded using a two layer MLP with ReLU activation into
an embedding size of 128. A sinusoidal temporal posi-
tion encoding (Vaswani et al., 2017) of time t is added
to the features of each object. The result is passed to a
Transformer encoder which has 16 heads and 8 layers and
uses layer normalization. The encoding is passed to three
layer MLP with hidden size 128 and ReLU activations to
classify the embedding as solved or not solved. We use a
batch size of 128 and train for 150K iterations with SGD
optimizer, a learning rate of 0.002, and momentum of 0.9.

• Conv3D-Latent (for pixel-based): We train a 5-layer
3D convolutional model (with ReLU in between) on the
latent space learned by forward-prediction models. We
use a batch size of 64 and train for 100K iterations with
SGD optimizer and learning rate of 0.0125.

• Conv3D-Pixel (for both object and pixel-based):
We train a 2D + 3D convolutional model on future states
rendered as pixels. We use a batch size of 64 and train
for 100K iterations with SGD optimizer, learning rate of
0.0125, and momentum of 0.9. This model consists of 4
ResNet-18 blocks to encode the frames, followed by 5 3D
convolutional layers over the frames’ latent representa-
tion, as used in Conv3D-Latent. When object-based
models are trained with this task-solution model, we run
the forward-prediction model and the renderer in the data
loader threads (on CPU), and feed the predicted frames
into the task-solution model (training on GPU). We found

this approach to be more computationally efficient than
running both forward-prediction and task-solution models
on GPU, and in between the two, swapping out the data
from GPU to CPU and back, to perform the rendering on
CPU.


