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Time series modelling by restricting feature interaction
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Abstract

Time series data are prevalent in electronic health
records, mostly in the form of physiological pa-
rameters such as vital signs and lab tests. The
patterns of these values may be significant indi-
cators of patients’ clinical states and there might
be patterns that are unknown to clinicians but
are highly predictive of some outcomes. Many
of these values are also missing which makes it
difficult to apply existing methods like decision
trees. We propose a recurrent neural network
model that utilises the patterns of data timing and
their values and reduces overfitting to noisy obser-
vations by limiting interactions between features.
We analyze its performance on mortality, ICD-
9 and AKI prediction from observational values
on the Medical Information Mart for Intensive
Care III (MIMIC-III) dataset. Our models result
in a significant improvement of 1.1% [p<0.01]
in AU-ROC for mortality prediction under the
MetaVision subset and 1.0% and 2.2% [p<0.01]
respectively for mortality and AKI under the full
MIMIC-III dataset compared to existing state-of-
the-art interpolation, embedding and decay-based
models.

1. Introduction
Observational values, such as lab results and vital signs, are
frequently used to make a quantitative estimation of the cur-
rent physiological state of a patient. However, these values
are mostly processed into pre-specified ranges and buckets.
For example, when calculating the commonly-used Acute
Physiology and Chronic Health Evaluation (APACHE) IV
score (Zimmerman et al., 2006), there are as few as 3 buck-
ets for some of the physiological measurements of the pa-
tients, for example 3 for hematocrit. These buckets have
been assumed to be equally representative for all patients
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and ignore patients’ different healthy baseline values. In
addition, these score systems also ignore how the lab values
are changing. For example, a systolic blood pressure that
was rapidly trending from 111 to 219 would give the same
NEWS score contribution of 0, although for many clinicians
this would be an adverse indicator. These trend signals and
many others are lost with many of the existing methods of
processing lab values.

Predictive models such as mortality or billing code predic-
tion utilise lab values, vital signs and other measurements
to improve predictive accuracy. However, missing values
are prevalent in EHR data since lab tests are ordered at the
physician’s discretion and costly or impractical measure-
ments are not taken unless necessary. This results in time
series data where the patterns of missingness can be pre-
dictive of risk or a diagnosis (Schafer & Graham, 2002).
For the modelling of time series data, observational values
are typically standardized, while missing values are carried
forward, interpolated from the previous value or are mod-
elled to decay to the population mean (Che et al., 2016).
The patterns of missingness are typically represented as bi-
nary missingness indicator variables. Bucketing values is a
common alternative to using standardized values directly as
inputs. In this case, values are bucketed by percentile range
and then each bucket may be embedded (represented by a
vector) (Rajkomar et al., 2018). In this work, we compare
both bucketed and various standardized value approaches in
a deep learning sequence model.

Recently, recurrent neural networks (RNNs) have been ap-
plied to electronic health records for more accurate clinical
predictions (Rajkomar et al., 2018). Overfitting is a common
problem for deep learning models. Deep learning models
are often overparameterized and so it is easy for the model
to memorize the training data while failing to generalize to
unseen data. We tackle this problem in the context of multi-
variate time series data by limiting the interaction between
features. A simple way to do this is to use separate recurrent
neural networks to model each feature.

We introduce the feature-grouped long short-term memory
network (FG-LSTM) that operates by modelling features in-
dividually and limiting their interactions in the model. The
FG-LSTM specializes the long short-term memory network
(LSTM (Hochreiter & Schmidhuber, 1997)) by restricting
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Time series modelling for EHR data

the form of the weight matrices. To ensure that missingness
and time gaps are modelled, we represent each feature by
a group of two or three input variables: the standardized
measurement value (interpolated if missing), a binary vari-
able indicating presence or absence and an optional variable
indicating the time since the feature was last measured. For
a given input feature, the FG-LSTM allows all these compo-
nents to interact but prevents features from interacting with
each other. This reduces overfitting in the model and allows
the model to more easily learn trending patterns instead of
the interactions or correlations between certain features over
a few short timesteps. At inference time, features can only
interact after each entire sequence of features has been read,
which tends to produce smoother predictions over time. We
find that this improves results over state-of-the-art baselines.

2. Methods
In the FG-LSTM, each input feature is represented by
a group of two or three variables (referred to as a fea-
ture group). We denote a multivariate time series with
p feature groups as a vector xt = (ut, vt, wt) where
ut = (u1t, . . . , upt) denote the standardized values for
the p features, vt = (v1t, . . . , vpt) denote the binary miss-
ing indicators where 0 indicates a feature is missing and
wt = (w1t, . . . , wpt) optionally denote the time since the
last observation. The standardized value is linearly inter-
polated between adjacent values when it is missing (taking
time into account), and simply carried forward when all fu-
ture values are missing as in the interpolation baseline. The
time differences are defined similarly to GRU-D where st
is the absolute time when the tth observation was obtained
(after windowing) and s1 is set to 0. The time differences
are normalised to be between 0 and 1.

wkt =


st − st−1 + wkt−1, t > 1, vkt−1 = 0

st − st−1, t > 1, vkt−1 = 1

0, t = 1

(1)

When the time differences are not used, the vector only
consists of u and v. xt represents the set of observations at
timestep t. A naive setup would be to run p small recurrent
neural networks, one for each feature group, but running
many small RNNs can potentially be inefficient due to not
being able to use a single large matrix multiplication. In-
stead, we feed all p feature groups into a single RNN where
constrained weight matrices are used to restrict feature in-
teraction. We describe this as a FG-LSTM (feature grouped
long short-term memory network). We define FG-LSTM by
the following equations (which are a variant of the LSTM

equations):

ft = σ((Wf ·Mw)xt + (Uf ·Mu)ht−1 + bf ) (2)
it = σ((Wi ·Mw)xt + (Ui ·Mu)ht−1 + bi) (3)
ot = σ((Wo ·Mw)xt + (Uo ·Mu)ht−1 + bo) (4)
ct = ft · ct−1 + it · tanh((Wc ·Mw)xt + (Uc ·Mu)ht−1 + bc)

(5)

ht = ot · tanh(ct) (6)

Here, σ denotes the sigmoid function, tanh denotes the
hyperbolic tangent function, and · denotes the Hadamard
(elementwise) product. The weights W{f,i,o,c}, U{f,i,o,c}
and bias terms b{f,i,o,c} are learned during training. Mw is
a fixed binary mask for the input-to-hidden weight matrices,
and Mu is a fixed binary mask for the hidden-to-hidden
weight matrices. The effect of the mask is to restrict the
weight matrix so that each element of the hidden state and
cell state of the LSTM is computed from only one feature
group. The mask is defined as follows.

Mwij =

{
1 if i mod p = j mod p

0 otherwise
(7)

Mu is defined similarly. The hidden state of the LSTM
at the last timestep of the sequence is passed through a
dense fully-connected layer to generate predictions. Only
at this point are the activations of the layer computed from
multiple features so that they can interact. A sigmoid or
softmax activation is then applied depending on the task
(sigmoid for binary (AKI/mortality), softmax for ICD-9).
The model is trained to minimize the cross-entropy loss
on the ground-truth labels. Models were optimized using
AdaGrad (Duchi et al., 2011) or Adam (Kingma & Ba,
2015) depending on the model. Standard dropout tech-
niques were applied to models including standard input and
hidden-layer dropout(Srivastava et al., 2014), variational
input and hidden-layer dropout(Gal & Ghahramani, 2016),
and zoneout(Krueger et al., 2017). The FG-LSTM can be
considered similar to running p individual LSTM models.

For the baselines, we use the author provided Keras imple-
mentation of GRU-D, as well as standard median and linear
interpolation. We have also reported the performance of
FG-LSTM with and without the time difference. Besides
the improvement in prediction performance, the FG-LSTM
has many fewer non-zero weights than the LSTM, which re-
duces memory usage and computation at serving time. Also,
since each hidden state is computed from a single feature, it
can be easier to interpret model predictions.

In all experiments, the following setup was used: 80%, 10%
and 10% of patients were used as the train, validation and
test sets respectively randomly split based on patient ID. The
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Time series modelling for EHR data

validation set was used for model hyperparameter tuning for
FG-LSTM and all the baselines through Gaussian process
bandit hyperparameter optimization (Desautels et al., 2014)
and we report the performance of the models with the best
performance on the validation set over multiple runs on the
test set. The hyperparameter limits that were used are listed
in Table S3 with the final tuned hyperparameters listed in
Table S4. All models were implemented in TensorFlow
(Abadi et al., 2016).

3. Dataset
We conduct experiments on the MIMIC-III dataset (Johnson
et al., 2016), a publicly available dataset of critical care
records. Each patient’s medical data during the first 48 hours
in the current hospitalization is represented as a time series
according to the Fast Healthcare Interoperability Resources
(FHIR) specification, as described in Rajkomar et al. (2018).

Our cohort consists of inpatients hospitalized for at least
48 hours. We require the patient’s age to be greater or
equal to 18 years at the time of admission. We present
results on the full cohort as well as MetaVision and CareVue
subsets of the cohort which contain significantly different
data as described in Mark (2016). The MetaVision cohort
is the same cohort as used in Che et al. (2016), which has
been claimed to be superior quality data. The test cohort is
described in Table S7.

We use the top 100 observational features according to mea-
surement frequency as predictor features; these are listed
in Table S8. Each feature is standardized (transformed to
have a median of 0 and standard deviation of 1) according
to training set statistics.

Measurements are grouped into 20-minute windows, and
we take the average if there are multiple measurements in
the same window. A time step is skipped in the sequence if
no features are present in that window. Outliers are handled
by clipping the value to 10 standard deviations.

4. Experiments
4.1. Evaluation Approach/Study Design

The following outcomes are predicted for each patient using
the predictor variables described above. More details are in
the appendix.

Mortality: Whether the patient dies during the current hos-
pital admission. Predicted at 48 hours after admission.

AKI: Predicting acute kidney injury (AKI) onset within the
inpatient encounter at 48 hours after admission.

ICD-9 20 task classification: The ICD-9 diagnosis codes
are grouped into 20 categories following Che et al. (2016) .

This is then predicted at 48 hours after admission.

We report results with our model (FG-LSTM) along with
several baselines. All baselines concatenate the input with a
missingness indicator for each feature (unless mentioned)
and use a LSTM model (unless specified). Outliers are
handled by clipping the value to 10 standard deviations. Our
preliminary experiments indicate that these outliers carry
information and that removing them from the data results in
a loss of performance. The baselines we use are described
in detail in the appendix.

We report the test-set performance over 5 runs using the
best validation set hyperparameters from different random
initializations in the tables below (mean and standard devia-
tion, unless otherwise noted). We report both the area under
the receiver operating characteristic curve (AU-ROC) and
the area under the precision recall curve (AU-PRC).

4.2. Results on MIMIC-III

Table 1 compares the performance of our model (FG-LSTM)
with several state of the art baselines on the full MIMIC-III
dataset. The FG-LSTM results in significant absolute in-
creases in AU-ROC of 1.0% (Welch’s t-test: P<0.001) and
2.2% (Welch’s t-test: P<0.0001) respectively for mortality
and AKI compared to the best baseline models (interpolation
and GRU-D). For the task of ICD-9 20 task classification
we find our model’s results are not significantly different
from that of the GRU-D. We find that for ICD9 20 task clas-
sification, using the time differences improves performance,
whereas there is no significant impact for mortality and AKI
classification. We show the results of further ablations with
FG-LSTM in Table S5.

4.3. Results on MIMIC-III MetaVision cohort

We also conducted experiments on admissions restricted to
patients monitored using the MetaVision system in MIMIC-
III. This is similar to the cohort from the GRU-D paper (Che
et al., 2016).

Table 2 compares the performance of FG-LSTM and the
baselines trained and tested under the MetaVision subset
of the dataset, which is claimed by Che et al. (2016) to be
superior quality in terms of time series data. We see a drop
in performance on this subset, likely because it is only a
third of the size of the full dataset. The FG-LSTM results in
a significant absolute improvement of 1.1% (Welch’s t-test:
P=0.0081) in AU-ROC for mortality under this MetaVision
subset. Again for the task of ICD-9 20 task classification,
there is no significant difference from GRU-D.
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Table 1. Results on patient mortality, AKI and ICD-9 20 task clas-
sification at 48 hours after admission on the MIMIC-III dataset.
We report the mean (standard deviation) for each metric over five
repeated runs. We also report the significance of the difference
between the FG-LSTM results and the best baseline model under
Welch’s t-test, where applicable.

Mortality
AU-ROC AU-PRC

Percentile embedding
w/o indicator

0.8344
(0.0015)

0.3456
(0.0081)

Percentile embedding 0.8371
(0.0024)

0.3437
(0.0062)

Median 0.8399
(0.0021)

0.3864
(0.0094)

Interpolation 0.8564
(0.0032)

0.4009
(0.0122)

GRU-D 0.8544
(0.0033)

0.4195
(0.0084)

FG-LSTM 0.8665
(0.0020)***

0.4225
(0.0065)

FG-LSTM w/ time
differences

0.8630
(0.0030)

0.4126
(0.0033)

AKI

Percentile embedding
w/o indicator

0.7159
(0.0058)

0.4297
(0.0095)

Percentile embedding 0.7205
(0.0050)

0.4365
(0.0054)

Median 0.7316
(0.0031)

0.4501
(0.0070)

Interpolation 0.7433
(0.0021)

0.4630
(0.0047)

GRU-D 0.7474
(0.0025)

0.4688
(0.0050)

FG-LSTM 0.7689
(0.0023)***

0.4785
(0.0036)**

FG-LSTM w/ time
differences

0.7489
(0.0022)

0.4679
(0.0055)

ICD-9 20 task classification

Percentile embedding
w/o indicator

0.8444
(0.0004)

0.7408
(0.0005)

Percentile embedding 0.8465
(0.0006)

0.7450
(0.0009)

Median 0.8495
(0.0003)

0.7515
(0.0005)

Interpolation 0.8492
(0.0004)

0.7500
(0.0004)

GRU-D 0.8489
(0.0004)

0.7506
(0.0008)

FG-LSTM 0.8488
(0.0003)

0.7500
(0.0003)

FG-LSTM w/ time
differences

0.8496
(0.0003)

0.7511
(0.0005)

Table 1. **p < 0.01 ***p < 0.001

Table 2. Results on patient mortality and the ICD-9 20 task at 48
hours after admission after training and testing on the MetaVision
subset of MIMIC-III.

Mortality
AU-ROC AU-PRC

Percentile em-
bedding w/o
indicator

0.8218 (0.0038) 0.2903 (0.0030)

Percentile
embedding

0.8378 (0.0058) 0.3267 (0.0068)

Median 0.8417 (0.0043) 0.3677 (0.0176)
Interpolation 0.8373 (0.0099) 0.3473 (0.0267)
GRU-D 0.8484 (0.0037) 0.3856 (0.0057)
FG-LSTM 0.8591

(0.0054)**
0.3757 (0.0101)

FG-LSTM w/
time differences

0.8567 (0.0019) 0.3813 (0.0087)

ICD-9 20 task classification
AU-ROC AU-PRC

Percentile em-
bedding w/o
indicator

0.8384 (0.0007) 0.7726 (0.0012)

Percentile
embedding

0.8374 (0.0007) 0.7716 (0.0011)

Median 0.8379 (0.0005) 0.7727 (0.0008)
Interpolation 0.8402 (0.0003) 0.7762 (0.0003)
GRU-D 0.8410 (0.0005) 0.7787 (0.0007)
FG-LSTM 0.8419 (0.0002) 0.7796 (0.0003)
FG-LSTM w/
time differences

0.8420 (0.0005) 0.7793 (0.0005)

Table 2. **p < 0.01

5. Discussion
Our results show that the FG-LSTM performs significantly
(under Welch’s t-test) better than the state-of-the-art base-
line methods (GRU-D and linear feature interpolation) for
mortality and AKI prediction. These tasks are particularly
sensitive to vital signs and lab values so it’s reasonable that
the FG-LSTM models these well. The insignificant results
on ICD-9 20 class prediction is likely because the input
features we chose were not significantly predictive of differ-
ent diagnoses and it is possible that the other categorical or
notes data in the EHR are better predictors for this task. In
the appendix, we show that the FG-LSTM also yields more
interpretable attribution than the baseline models. For future
work, we expect the combination of the FG-LSTM with a
model that handles categorical features as in Rajkomar et al.
(2018) can lead to better predictions for diagnosis, mortality
and AKI.
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Appendix
Task details

The following outcomes are predicted for each patient using the predictor variables described above.

Mortality Whether the patient dies during the current hospital admission. Predicted at 48 hours after admission. The
dataset contains 46,120 admission records from 35,440 patients, with 4,277 positive labels.

AKI Predicting acute kidney injury (AKI) onset within the inpatient encounter at 48 hours after admission. This dataset
contains 46,120 records from 35,440 patients, and has 10,180 positive labels.

AKI is a sudden episode of kidney failure or kidney damage that happens within a few hours or a few days. It is a
common complication among hospitalized patients, and is an important cause for in-hospital death. Multiple criteria
exist for AKI diagnosis. We adopt the KDIGO (Kidney Disease Improving Global Organization) criteria based on
short-term lab value changes in our prediction tasks here:

• Increase in serum creatinine by ≥ 0.3 mg/dl (≥ 26.5 umol/l) within 48 hours;
• Urine volume < 0.5 ml/kg/h (25ml/h, assuming 50kg weight) for 6 hours.

At 48 hours after admission, we classify the patients who have not developed AKI but will have AKI within this
encounter as positive and the others as negative examples.

ICD-9 20 task classification The ICD-9 diagnosis codes are grouped into 20 categories following Che et al. (2016) . This
is then predicted at 48 hours after admission, which has a total of 46,120 admission records from 35,440 patients.

Baselines

Percentile embedding w/o indicator Features are bucketed by percentiles and then the buckets are embedded, where each
bucket embedding is initialized to a random vector and trained jointly. Any missing values are ignored. The number of
buckets is tuned on the validation set. This is the method as described in the deep models in Rajkomar et al. (2018).

Percentile embedding As in the model above but the embedding vector is concatenated with a missingness indicator for
each feature.

Median Standardized feature values are used and missing values are filled in with the median from the training set.

Interpolation Standardized feature values are used and linear interpolation is used to fill in the missing values. To interpolate
a missing value v at time t between 2 measurements v1 measured at t1 and v2 measured at t2, v = v1 +(v2 − v1)

t−t1
t2−t1 .

If there is no measurement after v1, the value v1 is simply carried forward. If there is no measurement before v2, the
value v2 is carried backward. If there is no measurement during the period, 0 will be used.

GRU-D The GRU based model as implemented by Che et al. (2016) in TensorFlow which has trainable decay rates for the
input and hidden states.

Attribution Methods

Deep learning techniques are typically regarded as black boxes where it is hard to determine what causes a model to make a
prediction. Recent advances in interpretability techniques have produced better tools to probe a trained model. One of these
is path-integrated gradients (Sundararajan et al., 2017). Gradients can be used to approximate the change in a prediction
given a step change in the input data. Path-integrated gradients have been shown to produce a better approximation of the
change in a prediction by summing gradients over a gradual change in the input data. This has typically been applied to
images but here we adapt it to time series data.

To apply this technique to sparsely measured time series for a particular patient, we use as a baseline a patient who has
had the same measurements recorded at the same times, but for whom all measurements take the population median value.
We then average the gradients of the model prediction across 50 evenly-spaced points between this baseline and the actual
measurements. For each lab and measurement time, we take the product of this averaged gradient with the change from
measurement to baseline value as a linearized approximation of the influence of that value on the generated prediction.
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Because the population median is mapped to zero in our normalization, we can represent the contribution of each lab type
and time of measurement simply. If F (x) is the neural network’s predicted probability of an event, as a function of the first
48 hours of lab values, then:

IntGrad(xit) =
xit
50

50∑
k=1

∂F (kx/50)

∂xit
(8)

Dataset details

Table S1: Descriptive statistics for patient cohort. These consist of inpatients who are admitted for at least 48 hours in the
MIMIC-III dataset and are used for training or validation purposes.

Demographics Adult MIMIC admissions MetaVision Only
(GRU-D cohort)

Number of Patients 31,786 14,467
Number of Encounters 41,387 17,777
Number of Female Patients 18,210 44.2% 7,874 44.3%
Median Age (Interquartile Range) 66 (25) 66 (24)

Disease Cohort

Cancer 2,978 7.2% 1,359 7.6%
Cardiopulmonary 4,279 10.3% 1,924 10.8%
Cardiovascular 10,515 25.4% 3,715 20.9%
Medical 17,862 43.2% 8,409 47.3%
Neurology 4,998 12.1% 2,218 12.5%
Obstetrics 131 0.3% 47 0.3%
Psychiatric 28 0.1% 18 0.1%
Other 596 1.4% 87 0.5%

Number of Previous Hospitaliza-
tions
0 31,463 76.0% 12,874 72.4%
1 5,932 14.3% 2,725 15.3%
2-5 3,429 8.3% 1,845 10.4%
6+ 563 1.4% 333 1.9%

Discharge Disposition

Expired 3,858 9.3% 1,520 8.6%
Home 21,022 50.8% 8,876 49.9%
Other 1,079 2.6% 599 3.4%
Other Healthcare Facility 2,938 7.1% 1,809 10.2%
Rehabilitation 5,706 13.8% 1,657 9.3%
Skilled Nursing Facility 6,784 16.4% 3,316 18.7%

Binary Label Prevalence

Mortality 3,858 9.3% 1,520 8.6%
Acute Kidney Injury (AKI) 9,110 22.0%

Multilabel Prevalence (ICD9
Groups)

1:Infectious and Parasitic Diseases 11,632 28.1% 5,827 32.8%
2:Neoplasms 7,293 17.6% 3,651 20.5%
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Table S1: Descriptive statistics for patient cohort. These consist of inpatients who are admitted for at least 48 hours in the
MIMIC-III dataset and are used for training or validation purposes.

Demographics Adult MIMIC admissions MetaVision Only
(GRU-D cohort)

3:Endocrine, Nutritional and
Metabolic Diseases, Immunity

28,749 69.5% 13,929 78.4%

4:Blood and Blood-Forming Organs 15,732 38.0% 8,340 46.9%
5:Mental Disorders 13,232 32.0% 7,558 42.5%
6:Nervous System and Sense Organs 12,913 31.2% 8,004 45.0%
7:Circulatory System 34,985 84.5% 15,327 86.2%
8:Respiratory System 20,422 49.3% 9,379 52.8%
9:Digestive System 17,289 41.8% 8,735 49.1%
10:Genitourinary System 17,947 43.4% 9,066 51.0%
11:Complications of Pregnancy,
Childbirth, and the Puerperium

142 0.3% 52 0.3%

12:Skin and Subcutaneous Tissue 4,852 11.7% 2,494 14.0%
13:Musculoskeletal System and
Connective Tissue

8,349 20.2% 4,929 27.7%

14:Congenital Anomalies 1,442 3.5% 725 4.1%
15:Symptoms 12,979 31.4% 7,506 42.2%
16:Nonspecific Abnormal Findings 3,786 9.2% 2,176 12.2%
17:Ill-defined and Unknown Causes
of Morbidity and Mortality

1,364 3.3% 955 5.4%

18:Injury and Poisoning 18,211 44.0% 8,044 45.2%
19:Supplemental V-Codes 21,607 52.2% 12,001 67.5%
20:Supplemental E-Codes 13,512 32.7% 7,608 42.8%

Results on MIMIC-III CareVue subset

We also took the model trained on the full MIMIC-III cohort and analysed results solely on the CareVue subset (the records
not in the MetaVision cohort) to determine if the quality of data affected the relative performance of the models.

Table S2 compares the performance of FG-LSTM and the baselines under the CareVue subset of the dataset, which are
not considered by Che et al. (2016) as they claim the data is worse quality. Again, for this subset we see a significant
improvement in performance in mortality and AKI prediction using the FG-LSTM model as compared to the baselines.
Again for the task of ICD-9 20 task classification, there is no significant difference from GRU-D. Interestingly, this shows
that the poorer quality data does not affect the relative performance of the model.

Attribution

Figure 1 shows attribution over time for a particular patient to the four lab measurements with the biggest difference in
attribution between the interpolation model and the FG-LSTM. The patient had a persistently low Glascow Coma Score
(GCS) for the 48 hours preceding the prediction, which indicates that the patient had poor neurological function. The
sodium and pH values indicate progressive hypernatremia and alkalosis, which are clinically considered to represent a
worsening physiological state. The blood urea nitrogen level remained constant, which clinically correlates with stable
kidney functions. The FG-LSTM and interpolation model have directionally similar attributions (in line with clinical
expectations), but FG-LSTM’s attributions are more stable and smooth whereas the interpolation model has abrupt jumps
in attribution despite small or no changes in the feature value. This is likely due to the interpolation model being overly
sensitive to combinations of feature values over short periods of time. This can result in abrupt changes to predicted risk as
measurements come in to the interpolation model as compared to the FG-LSTM.
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Table S2. Results on patient mortality, AKI and ICD-9 20 task at 48 hours after admission on the CareVue subset of MIMIC-III.

Mortality AKI
AU-ROC AU-PRC AU-ROC AU-PRC

Percentile embedding
w/o indicator

0.8280 (0.0027) 0.3456 (0.0094) 0.7078 (0.0063) 0.4250 (0.0099)

Percentile embedding 0.8298 (0.0024) 0.3488 (0.0036) 0.7152 (0.0052) 0.4371 (0.0040)
Median 0.8318 (0.0044) 0.3878 (0.0102) 0.7243 (0.0051) 0.4472 (0.0077)
Interpolation 0.8516 (0.0025) 0.4090 (0.0118) 0.7407 (0.0010) 0.4675 (0.0038)
GRU-D 0.8560 (0.0032) 0.4380 (0.0084) 0.7417 (0.0019) 0.4656 (0.0034)
FG-LSTM 0.8659 (0.0016)*** 0.4362 (0.0111) 0.7691 (0.0023)*** 0.4843 (0.0048)***
FG-LSTM w/ time
differences

0.8620 (0.0020) 0.4251 (0.0076) 0.7445 (0.0046) 0.4683 (0.0078)

ICD-9 20 task classification

Percentile embedding
w/o indicator

0.8441 (0.0006) 0.7068 (0.0011)

Percentile embedding 0.8463 (0.0006) 0.7124 (0.0010)
Median 0.8497 (0.0003) 0.7195 (0.0003)
Interpolation 0.8503 (0.0005) 0.7202 (0.0006)
GRU-D 0.8495 (0.0004) 0.7194 (0.0010)
FG-LSTM 0.8499 (0.0005) 0.7197 (0.0008)
FG-LSTM w/ time
differences

0.8510 (0.0005) 0.7208 (0.0010)

Table S2. ***p < 0.001
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Figure 1. We show 4 features that contribute to the FG-LSTM’s prediction (right) in a different way than to the baseline interpolation
model (left) via attribution, and their values for the preceding 48 hours prior to the prediction. The red-overlays indicate that the particular
value had a positive attribution to the predicted risk for that model and the height of the red columns are proportional to the log-scaled
attribution weight. The blue overlays indicate a negative attribution, which indicate a negative contribution to predicted risk for that model
from that feature. GCS is the Glascow Coma Scale.
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Table S3. Hyperparameter tuning limits used.

Hyperparameter Minimum Maximum

Clip norm 0.1 50.0
Input dropout Pk 0.01 1.0
RNN Hidden dropout Pk 0.01 1.0
Learning rate 0.0001 0.5
Percentile embedding size 25 200
Number of percentile buckets 5 20
RNN hidden size 16 3000
RNN hidden size per feature group 1 30
Projection layer dropout Pk 0.01 1.0
Projection layer size 0 1000
Variational input Pk 0.01 1.0
Variational output Pk 0.01 1.0
Variational recurrent Pk 0.01 1.0
Zoneout Pk 0.01 1.0

Model Selection

We tuned the models with the following hyperparameters, targeting AU-ROC on the full MIMIC-III dataset. For the LSTM
based models, the AdaGrad optimizer was used, for the GRU-D model, the Adam optimizer was used with batchnorm as in
the paper. For the regularization techniques used, i.e. input dropout, LSTM hidden state dropout, projection layer dropout,
zoneout, and variational dropout, we use Pk to denote keep probability, which is 1 - dropout probability.

Model ablation

We also conducted a few ablation experiments on the FG-LSTM on the mortality task.

W/o indicator missingness indicators are removed from input.

W/o interpolation missing values are filled with the median instead of interpolation.

All ablation experiments showed a significant drop of performance.

Table S7: Descriptive statistics for patient cohort in test set.

Demographics Adult MIMIC admissions MetaVision Only
(GRU-D cohort)

Number of Patients 3,654 1,655
Number of Encounters 4,733 2,042
Number of Female Patients 1,970 41.6% 872 42.7%
Median Age (Interquartile Range) 66 (24) 66 (25)

Disease Cohort

Cancer 337 7.1% 149 7.3%
Cardiopulmonary 508 10.7% 218 10.7%
Cardiovascular 1260 26.6% 472 23.1%
Medical 2021 42.7% 964 47.2%
Neurology 545 11.5% 222 10.9%
Obstetrics 9 0.2% 4 0.2%
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Table S7: Descriptive statistics for patient cohort in test set.

Demographics Adult MIMIC admissions MetaVision Only
(GRU-D cohort)

Psychiatric
Other 53 1.1% 13 0.6%

Number of Previous Hospitaliza-
tions
0 3622 76.5% 1471 72.0%
1 643 13.6% 302 14.8%
2-5 398 8.4% 221 10.8%
6+ 70 1.5% 48 2.4%

Discharge Disposition

Expired 419 8.9% 159 7.8%
Home 2424 51.2% 1027 50.3%
Other 120 2.5% 70 3.4%
Other Healthcare Facility 341 7.2% 219 10.7%
Rehabilitation 649 13.7% 189 9.3%
Skilled Nursing Facility 780 16.5% 378 18.5%

Binary Label Prevalence

Mortality 419 8.9% 159 7.8%
Acute Kidney Injury (AKI) 1070 22.6%

Multilabel Prevalence (ICD9
Groups)

1:Infectious and Parasitic Diseases 1347 28.5% 647 31.7%
2:Neoplasms 806 17.0% 407 19.9%
3:Endocrine, Nutritional and
Metabolic Diseases, Immunity

3288 69.5% 1593 78.0%

4:Blood and Blood-Forming Organs 1837 38.8% 965 47.3%
5:Mental Disorders 1513 32.0% 854 41.8%
6:Nervous System and Sense Organs 1408 29.8% 878 43.0%
7:Circulatory System 4026 85.0% 1764 86.4%
8:Respiratory System 2338 49.4% 1036 50.7%
9:Digestive System 1964 41.5% 985 48.2%
10:Genitourinary System 2061 43.6% 1069 52.4%
11:Complications of Pregnancy,
Childbirth, and the Puerperium

12 0.3% 4 0.2%

12:Skin and Subcutaneous Tissue 574 12.1% 285 14.0%
13:Musculoskeletal System and
Connective Tissue

1009 21.3% 594 29.1%

14:Congenital Anomalies 157 3.3% 87 4.3%
15:Symptoms 1385 29.3% 786 38.5%
16:Nonspecific Abnormal Findings 421 8.9% 250 12.2%
17:Ill-defined and Unknown Causes
of Morbidity and Mortality

156 3.3% 115 5.6%

18:Injury and Poisoning 2047 43.3% 891 43.6%
19:Supplemental V-Codes 2475 52.3% 1391 68.1%
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Table S7: Descriptive statistics for patient cohort in test set.

Demographics Adult MIMIC admissions MetaVision Only
(GRU-D cohort)

20:Supplemental E-Codes 1517 32.1% 869 42.6%

Table S8: List of input features used in the model.

Index Observation Name LOINC code MIMIC specific
code

Units

0 Heart Rate 211 bpm
1 SpO2 646 percent
2 Respiratory Rate 618 bpm
3 Heart Rate 220045 bpm
4 Respiratory Rate 220210 breaths per min
5 O2 saturation pulseoxymetry 220277 percent
6 Arterial BP [Systolic] 51 mmhg
7 Arterial BP [Diastolic] 8368 mmhg
8 Arterial BP Mean 52 mmhg
9 Urine Out Foley 40055 ml
10 HR Alarm [High] 8549 bpm
11 HR Alarm [Low] 5815 bpm
12 SpO2 Alarm [Low] 5820 percent
13 SpO2 Alarm [High] 8554 percent
14 Resp Alarm [High] 8553 bpm
15 Resp Alarm [Low] 5819 bpm
16 SaO2 834 percent
17 HR Alarm [Low] 3450 bpm
18 HR Alarm [High] 8518 bpm
19 Resp Rate 3603 breaths
20 SaO2 Alarm [Low] 3609 cm h2o
21 SaO2 Alarm [High] 8532 cm h2o
22 Previous WeightF 581 kg
23 NBP [Systolic] 455 mmhg
24 NBP [Diastolic] 8441 mmhg
25 NBP Mean 456 mmhg
26 NBP Alarm [Low] 5817 mmhg
27 NBP Alarm [High] 8551 mmhg
28 Non Invasive Blood Pressure mean 220181 mmhg
29 Non Invasive Blood Pressure systolic 220179 mmhg
30 Non Invasive Blood Pressure diastolic 220180 mmhg
31 Foley 226559 ml
32 CVP 113 mmhg
33 Arterial Blood Pressure mean 220052 mmhg
34 Arterial Blood Pressure systolic 220050 mmhg
35 Arterial Blood Pressure diastolic 220051 mmhg
36 ABP Alarm [Low] 5813 mmhg
37 ABP Alarm [High] 8547 mmhg
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Table S8: List of input features used in the model.

Index Observation Name LOINC code MIMIC specific
code

Units

38 GCS Total 198 missing
39 Hematocrit 4544-3 percent
40 Potassium 2823-3 meq per l
41 Hemoglobin [Mass/volume] in Blood 718-7 g per dl
42 Sodium 2951-2 meq per l
43 Creatinine 2160-0 mg per dl
44 Chloride 2075-0 meq per l
45 Urea Nitrogen 3094-0 mg per dl
46 Bicarbonate 1963-8 meq per l
47 Platelet Count 777-3 k per ul
48 Anion Gap 1863-0 meq per l
49 Temperature F 678 deg f
50 Temperature C (calc) 677 deg f
51 Leukocytes [#/volume] in Blood by Manual

count
804-5 k per ul

52 Glucose 2345-7 mg per dl
53 Erythrocyte mean corpuscular hemoglobin

concentration [Mass/volume] by Auto-
mated count

786-4 percent

54 Erythrocyte mean corpuscular hemoglobin
[Entitic mass] by Automated count

785-6 pg

55 Erythrocytes [#/volume] in Blood by Auto-
mated count

789-8 per nl

56 Erythrocyte mean corpuscular volume [En-
titic volume] by Automated count

787-2 fl

57 Erythrocyte distribution width [Ratio] by
Automated count

788-0 percent

58 Temp/Iso/Warmer [Temperature degrees C] 8537 deg f
59 FIO2 3420 percent
60 Magnesium 2601-3 mg per dl
61 CVP Alarm [High] 8548 mmhg
62 CVP Alarm [Low] 5814 mmhg
63 Calcium [Moles/volume] in Serum or

Plasma
2000-8 mg per dl

64 Phosphate 2777-1 mg per dl
65 FiO2 Set 190 torr
66 Temp Skin [C] 3655 in
67 pH 11558-4 u
68 Temperature Fahrenheit 223761 deg f
69 Central Venous Pressure 220074 mmhg
70 Inspired O2 Fraction 223835 percent
71 PAP [Systolic] 492 mmhg
72 PAP [Diastolic] 8448 mmhg
73 Calculated Total CO2 34728-6 meq per l
74 Oxygen [Partial pressure] in Blood 11556-8 mmhg
75 Base Excess 11555-0 meq per l
76 Carbon dioxide [Partial pressure] in Blood 11557-6 mmhg
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Table S8: List of input features used in the model.

Index Observation Name LOINC code MIMIC specific
code

Units

77 PTT 3173-2 s
78 Deprecated INR in Platelet poor plasma by

Coagulation assay
5895-7 ratio

79 PT 5902-2 s
80 Temp Axillary [F] 3652 deg f
81 Day of Life 3386
82 Total Fluids cc/kg/d 3664
83 Present Weight (kg) 3580 kg
84 Present Weight (lb) 3581 cm h2o
85 Present Weight (oz) 3582 cm h2o
86 Fingerstick Glucose 807 mg per dl
87 PEEP set 220339 cm h2o
88 Previous Weight (kg) 3583 kg
89 Weight Change (gms) 3692 g
90 PEEP Set 506 cm h2o
91 Mean Airway Pressure 224697 cm h2o
92 Tidal Volume (observed) 224685 ml
93 Resp Rate (Total) 615 bpm
94 Minute Volume Alarm - High 220293 l per min
95 Minute Volume Alarm - Low 220292 l per min
96 Apnea Interval 223876 s
97 Minute Volume 224687 l per min
98 Paw High 223873 cm h2o
99 Peak Insp. Pressure 224695 cm h2o
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Table S4. Tuned hyperparameters found through Gaussian process bandit optimization.

Hyperparameter Median Percentile embed-
ding

Interpolation GRU-D FG-LSTM

Clip norm 46.9164 48.9696 8.06007 32.90225 42.327009
Input dropout Pk 0.487627 0.326633 0.668343 0.747041 0.982881
RNN Hidden
dropout Pk

0.854115 0.701658 0.88545 0.976599 0.356855

Learning rate 0.124912 0.19047 0.135474 0.001279 0.051977
Percentile embed-
ding size

N/A 126 N/A N/A N/A

Number of per-
centile buckets

N/A 4 N/A N/A N/A

RNN hidden size 114 73 309 187 N/A
RNN hidden size
per feature group

N/A N/A N/A N/A 21

Projection layer
dropout Pk

0.888716 0.874535 0.973923 0.987385 0.992444

Projection layer
size

380 274 951 191 477

Variational input
Pk

0.951351 0.491936 0.992106 N/A N/A

Variational output
Pk

0.990069 0.980551 0.856734 N/A N/A

Variational recur-
rent Pk

0.974393 0.979701 0.643025 0.970241 0.986196

Zoneout Pk 0.358289 0.989134 0.748179 N/A 0.582535

Table S5. FG-LSTM model ablation experiments results on mortality dataset. We report the mean (standard deviation) for each metric
over five repeated runs.

AU-ROC AU-PRC

Full FG-LSTM 0.8665 (0.0020) 0.4225 (0.0065)
w/o indicator 0.8576 (0.0020) 0.4215 (0.0044)
w/o interpolation 0.8494 (0.0032) 0.3724 (0.0022)
w/o indicator and w/o interpolation 0.8420 (0.0010) 0.3674 (0.0087)



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Time series modelling for EHR data

Table S6. Kernel size (total size of W{f,i,o,c}, U{f,i,o,c}) comparison between the baseline interpolation model and the proposed FG-
LSTM model.

Hidden state size Corresponding FG-LSTM
Per feature group state size

Size of baseline LSTM ker-
nel

Effective Size of FG-LSTM
kernel

50 – 50,000 –
100 1 120,000 1,200
200 2 320,000 3,200
300 3 600,000 6,000
400 4 960,000 9,600
500 5 1,400,000 14,000
1000 10 4,800,000 48,000
1500 15 10,200,000 102,000
2000 20 17,600,000 176,000


