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Abstract
In the quest for more secure and varied methods
of human identification, researchers have already
found noteworthy results using bipedal gait anal-
ysis through accelerometric data. Using a gait-
trained model, we show that transfer learning can
successfully transverse different kinematic modal-
ities and sensor modalities at the same time. Not
only did the model transfer successfully from the
domain of bipedal gait to the domain of body-
weight squats, but it also crossed sensor domains.
The gait model was originally trained on data
from smartphone sensors while the squat data
was collected from from inertial measurement
unit (IMU) sensors. With 92% top-1 accuracy, the
model classifies humans remarkably well based
on their squat motions using IMU sensors and
requiring only a small amount of data.

1. Introduction
Performing longitudinal studies of a cohort of athletes or pa-
tients becomes challenging, especially when they share the
same medical equipment or sensors. Currently, it is being
done manually via careful registration and tracking. In this
paper, we address this challenge by performing machine-
learning-aided automated identification of the cohort mem-
bers by harnessing deep transfer learning. Researchers have
enjoyed a lot of success recently in identifying humans at a
large scale by performing deep learning on accelerometric
gait data such as the data found in GaitNet (See (Prabhu
& Whaley, 2009; Vinay Uday Prabhu & Whaley, 2018;
Sprager & Juric, 2015)). Using these gait-trained model(s),
we sought to discover if we can use transfer learning to
bring human classification into the squats domain.

Studies that analyze gait and other human motion generally
rely on video capture or inertial measurement unit (IMU)
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sensors (Prabhu & Whaley, 2009; Ahmadi et al., 2014).
IMU sensors, like the one used in this study, have accelerom-
eters and gyroscopes as well as additional sensors such as
magnetometers, depending on the model. Smartphones have
also been used as IMU sensors due to the fact that they have
accelerometers and usually gyroscopes as well. In fact, the
accelerometric gait data used to capture the data found in
GaitNetwas from smartphones (Prabhu & Whaley, 2009).
IMU sensors have also been used previously with squat data
in particular.

Physiotherapists and fitness coaches both work on squat
mechanics with their athletes and patients, agreeing for the
most part on what a ”correct” squat should look like. They
can also recognize common incorrect squats, or deviations,
in their clients. Both professions often deal with groups,
which makes real-time feedback more difficult, and ath-
letes/clients also perform these exercises when alone. To
this end, researchers used IMU sensors to help classify these
movements (O’Reilly et al., 2015). After standardizing the
correct squat form and some deviations, the researchers had
different people do the same mechanics for each variation
and achieved a multiclass model accuracy of 56.55% - find-
ing the squat variation amongst the data. Prior to our work,
to the best of our knowledge, no one has seen if a model
could instead find the person amongst the data. We wanted
to see if the model could locate common artifacts across all
of a user’s squat variations - artifacts that were unique to just
one person. By achieving this goal, the model could assist
physiotherapists and coaches by automatically identifying
the user from a group of clients or athletes.

Instead of trying to train a brand new model, our investiga-
tion turned to transfer learning. Recognizing that human
classification through motion exists and was already estab-
lished in the GaitNet studies, we decided to use a model
from that study - DeepGaitID - as the pretrained model
for our exploration. Much to our surprise, we found that
the gait model does transfer well to a different modality of
human kinematics. In addition to the high accuracy from
the model and the low amount of training data required,
the one facet of our results that was especially promising
to note was the multidimensional transmodal versatility.
While the gait models were trained on real-world tri-axial
accelerometric gait data emanating from the IMU sensors in
commercial smartphones, the squat data was collected using
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an off-the-shelf IMU sensor device metamotionr1. Thus,
the transfer learning is happening across different kinematic
and sensor modalities at once.

The main contributions of the paper are as follows:

1. Introduce a new tri-axial accelerometric dataset
(Squat-20) for the time-series community

2. Disseminate the first ever research effort to identify
humans on the basis of their squatting motion

3. Successfully showcase deep transfer learning across
two different modalities of human motion - bipedal
gait and bodyweight squats

4. Open source the data and code associated with the
experiments

In Section 2, we present the dataset collection procedure as
well as detailed explanations into the type of data collected.
Then in Section 3, we present the transfer learning procedure
and results. Finally in Section 4, we conclude the paper
and cover some of the directions in which we are currently
extending this work.

2. Squat-20: Dataset description
The data collected from participants was in the form of
bodyweight squats, which are squats that are performed
without any equipment (no extra weight). We asked the
volunteers to do eight different variations of a squat: ”cor-
rect” squats - those done with proper mechanics - as well as
seven popular deviations (which we hope to use as a further
classification environment in the future). The variation of
squat movements performed can be seen in Table 1 along
with the corresponding squat form ID used in the data.

Because there was not a constraint on squat experience, we
noticed that some participants’ data was more ”noisy” than
others. Visually, this noise was discernible to the trainer
on-site as the more amateur participants, though accurately
performing the squat with the instructed mechanics, of-
ten hesitated in their movements. These hesitation marks
presented a challenge to classifying squat form using tra-
ditional batch classification algorithms as the unique squat
form characteristics appeared to be harder to discern. We
open up this dataset for outside exploration, and we will also
continue our own exploration into joint userID and squat
form identification. This noise, however, did not hinder
participant-based classification.

1https://mbientlab.com/metamotionr/

Squat Form Variations
SquatFormID Description

0 Correct
1 Knees pass over toes
2 Knees move towards each other
3 Knees move away from each other
4 Heels up during movement
5 Hips shift to the left
6 Hips shift to the right
7 Improper hip flexion

Table 1. Every variation of the squat movement along with the
corresponding form ID# used in the data

2.1. Squat Form and Deviations

A correct squat is one that maximizes power efficiency
through a person’s global and local centers of gravity. As
one deviates away from this ideal model, the movement
becomes more inefficient and can often cause injury. Partici-
pants were instructed to follow the guidelines established by
the National Strength and Conditioning Association (NSCA)
(Coburn & Malek, 2012). With feet shoulder-width apart,
the participant was told to sit back and let their knees slowly
bend while keeping a flat back and their chest up. Their
heels remained on the floor with the knees in line with their
toes. When beginning their ascent, the participants made
sure to extend their hips and knees at the same rate and to
keep their chest up, again with their heels down and knees
moving in the same line as their toes.

Some incorrect variations occur due to deviations from the
body’s global center of gravity. For example, a user may
shift their hips to the left or right while descending into
their squat (SquatFormID 5,6). Another deviation in this
category occurs when a user shifts their mass too far forward,
often seen through the user’s heels raising off the ground
(SquatFormID 4) or their knees passing far over their toes
(SquatFormID 1). Improper hip flexion occurs when the user
drops their chest during descent and/or leads the ascent by
straightening their knees, inefficiently shifting their center
of gravity during the movement (SquatFormID 7).

Other deviations displace local centers of gravity in the
joints, specifically the knees. If the knees move towards
each other or away from each other during the squat (Squat-
FormID 2,3), the user is away from their maximum potential
which is when the knees remain tracked in line with the toes.

The set of deviations used for data collection is not compre-
hensive, but does reflect seven of the most popular devia-
tions seen as verified by a physiotherapist and a personal
trainer.

https://mbientlab.com/metamotionr/
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Figure 1. tSNE visualization of the 80-dimensional features ex-
tracted from the pre-softmax layers of the DeepGaitID classi-
fier

2.2. Data Collection

Twenty healthy participants agreed to contribute data for
this study. Volunteers varied widely in age, from 22 to 60
years old with a median age of 27 and a standard deviation
9.35. They also varied in their history of squat performance
from those with little to no experience up through advanced
athletes.

After the participant signed a consent form, an Mbient Lab
MetaMotionR IMU sensor was placed on their back at the
L4 vertebra. Each participant was instructed on the ex-
pected form for the correct squat and each deviation. They
performed ten correct squats and three to five of each devia-
tion under the supervision of a certified personal trainer and
fitness coach.

Accelerometric and gyroscopic data were collected at a fre-
quency of 100Hz during each of the squats. Accelerometric
magnitudes for each participant over their squat variations
can be seen in Figure 3. Data was then labeled according to
squat form ID (from 0 to 7) as well as participant ID (from
0 to 19).

3. Transfer learning procedure and results
The GaitNet dataset is the largest accelerometric human
gait dataset ever compiled (Prabhu & Whaley, 2009; Vinay
Uday Prabhu & Whaley, 2018). The entire dataset is a
1.2e6× 4× 100 tensor and contains tri-axial acceleromet-
ric data collected from 1000 volunteers in 150+ countries.
Each gait cycle matrix A is of size 4 × 100. The 4 axes
are x, y, z plus the magintude axis. The dimension of the
temporal axis is the end-result of resampling all gait cycles
to size 100. That is, A = [ax(t), ay(t), az(t), amag(t) =

Figure 2. The epoch-wise plot of the train/test accuracy/loss

√
a2x(t) + a2y(t) + a2z(t)]; t = 1, .., 100. One of the models

used to analyze this dataset was a deep CNN architecture
named DeepGaitID that achieved 63% top-1 accuracy
on the 1000-class GaitNet dataset. We chose this model to
serve as our pretrained model for transfer learning.

Transfer learning works on a spectrum. Generally in clas-
sification problems, the last layer of the original model is
removed and replaced with a layer specific to the new data.
Other layers can be frozen or left unfrozen. If all pretrained
layers are frozen, the weights from those layers are used
to extract features from the new data as that data is passed
through to the added layer(s). Strong results come from this
scenario if there is a high correlation between the original
and new data. On the other end of the spectrum, all of the
layers can remain unfrozen. In this case, the pretrained
model acts as a weights-initializer for the new data (Pan &
Yang, 2010). For this study, we chose to retrain all layers of
the original model. Some of the benefits of transfer learning,
which we saw in this study, are that less data is required to
achieve significant results and that the model learns faster
than when it trained the original data (Pan & Yang, 2010).

In order to investigate the potential of transfer learning using
this model, we removed the 1000-node softmax layer from
the DeepGaitID model(, froze every layer,) and passed
the Squat-20 tensors to obtain 80-dimensional feature
vectors. Figure 1 shows the t-SNE visualization of the
features obtained colored according to the user-id. Clusters
emerged, dividing users reasonably well, which sets the
stage for transfer learning.

We constructed a DeepSquatID CNN by inheriting all
the pre-softmax layers of the DeepGaitID model and in-
troducing a new softmax layer with 20 nodes. We then
retrained this model on the Squat-20 dataset using cate-
gorical cross-entropy loss and the rmsprop optimizer. To
provide regularization, we used early stopping and reduced
learning rate on plateau (factor=0.1, ε = 1e − 4) strate-
gies. We also performed label smoothing as an additional
regularization pre-processing step with ε = 0.1.
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SquatID Classification Report
ParticipantID precision recall f1-score support
0 1.00 1.00 1.00 14
1 0.81 0.81 0.81 16
2 1.00 1.00 1.00 4
3 0.94 0.94 0.94 16
4 0.92 1.00 0.96 11
5 0.94 0.94 0.94 18
6 1.00 0.90 0.95 10
7 0.81 0.94 0.87 18
8 0.89 0.94 0.92 18
9 0.83 0.91 0.87 11
10 1.00 1.00 1.00 12
11 0.88 0.93 0.90 15
12 1.00 0.75 0.86 12
13 0.67 1.00 0.80 8
14 0.90 0.75 0.82 12
15 1.00 1.00 1.00 6
16 0.67 0.67 0.67 3
17 0.67 0.50 0.57 8
18 1.00 1.00 1.00 11
19 1.00 0.75 0.86 12
macro avg 0.90 0.89 0.89 235
weighted avg 0.90 0.90 0.90 235

Table 2. The classification report of the Squat-ID classification
problem

In order to ensure fast enrollment of the athletes/patients, we
performed a rather frugal train-test split of 0.6 : 0.4 which
left us with 352 tensors in our training set and 235 tensors
in our testing set. Even with this small amount of data,
our model achieved a 92% top-1 accuracy and a weighted
F1 score of 0.90 as seen the classification report in Table
2. In Figure 4, the class-wise confusion matrix reveals a
low number of misclassifications and high accuracy across
the classes. For further exploration into this study, a colab
notebook2 showcasing the obtained results has been duly
open-sourced.

4. Conclusion and future work
In this paper, we were able to showcase a successful transfer
learning experiment that entailed using a deep CNN model
pretrained on the state-of-the-art GaitNet. Though the
original dataset contained accelerometric gait data collected
from commercial phones, we were able to transfer human
classification into the domain of squat exercise signatures
emanating from a commercial off-the-shelf IMU sensor kit.
This is currently a work in progress and we are extending
this work in the following two directions:

2https://github.com/vinayprabhu/
GaitID-2-SquatID

1. Trying to replicate the results with tri-axial gyroscopic
data.

2. Performing participant classification in conjunction
with squat-type classification. A naive attempt at using
the DeepGaitIDCNN and trying to predict the squat-
type rather than user-ID yielded an accuracy of ∼ 45%.
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Figure 3. Visualization of the variations in amag across different users performing squats [User-(userID) (squatformID)]



GaitID-2-SquatID: Deep transfer learning for human kinematics

Figure 4. Confusion matrix for the Squat-20 dataset


