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Abstract
Real world multivariate time series pose three
significant challenges: irregularity in sampling,
missing values and varying sampling frequencies
among signals. Recent work for inference on
such data aims at solving one of these issues,
however a unified model is still lacking. We
present a unified method which handles all three:
Multi-resolution Attention with Signal Splitting
(MASS). Our method is model-agnostic and can
be applied to any existing model, significantly
boosting predictive performance. MASS uses
parallel multi-resolution block to model differ-
ent resolution data streams, in addition to splitting
signals into components of specific resolutions,
to provide approximately a 3% improvement on
the Physionet Challenge 2012 Dataset. We also
compare to the state of the art TBM and GRU-
D models, showcasing promising results against
them.

1. Introduction
Multivariate time series analysis is an essential component
of gaining knowledge in multiple domains, particularly in
the medical, financial and networking domains. While data
in these fields is abundant, it has certain properties which
makes inference on such data challenging. For example, in
the medical domain, vital signs like heart rate are regularly
captured, but other features such as blood platelet count
would only be recorded based on the patient’s condition,
introducing the problem of irregularity. Furthermore, differ-
ent signals can be captured at different frequencies, making
the multivariate time series multi-resolutional as well. Vital
signals like heart rate are recorded at a higher frequency
than signals like cholesterol. Apart from this, there is al-
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ways the possibility of having missing values which can be
introduced because of issues like device limitations.

Current work on multivariate time series classification tar-
gets one of these three problems individually, however a
unified method is still lacking. Recent work focuses on
either using simple methods like mean value imputation,
or using sequential models which ignore missing values
altogether. We present a method which tackles all three
issues at once: Multi-resolution Attention with Signal Split-
ting (MASS). MASS combines two methods we introduce:
Multi-resolution Networks and Signal Splitting.

Multi-resolution networks have dedicated ‘sub models’ for
signals of a particular resolution bandwidth. These sub
models or ‘blocks’ operate separately to create different
representations, which are then fused before the final down-
stream prediction task. A sparsity score is used to identify
the resolutions of signals, and map them to their appropri-
ate block. For example, a frequently sampled vital signal
like heart rate would be sampled to a ‘fast’ block, while an
infrequently sampled signal like cholesterol would be sent
to the ‘slow’ block. Standard models instead impute the
slow signals at each time step. MASS equips a model to
handle data with different frequencies without this imputa-
tion, thus significantly increasing predictive performance.
We further introduce a unique form of attention in each
block, which learns which hidden representations are most
useful to query, which results in an additional boost in per-
formance. Multi-resolution networks are extended through
the concept of Signal Splitting, which introduces the sharing
of information between signals from different blocks. As a
signal may be a composition of a set of signals with different
resolutions, Signal Splitting uses a simple method based on
averaging to divide a signal into components of different
resolutions. Following the signal splitting, each signal com-
ponent is sent to the block for its specific resolution. We
show the effectiveness of our method on the Physionet 2012
dataset (Silva et al., 2012), where data is irregular, and has
missing values and multiple resolutions. MASS, being a
method that can be added to any existing model, is added to
two different models and has been shown to boost predictive
accuracy.
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2. Related Work
Past work on multivariate time series classification does not
take into account the irregular sampling of values from a
time series, or the fact that different features in the multi-
variate time series are sampled at varying resolutions. These
methods focus on imputing missing values, and passing the
imputed series to a sequential model. The imputation meth-
ods can be as basic as mean imputation and interpolation
(Kreindler & Lumsden, 2016), or can be more complicated,
such as using kernel methods, (Rehfeld et al., 2011), multi-
ple imputation (Galimard et al., 2016) or expectation maxi-
mization (EM) (Garcı́a-Laencina et al., 2010). However, all
these methods suffer from the weakness of not being able
to handle sparse datasets.

Multivariate time series, especially in the medical domain,
can be comprised of complicated distributions. Addition-
ally, the patterns of sampling of the data can also provide
information for inference. For example, frequent sampling
of a patient’s vitals can indicate a more serious condition.
Recent models make better use of such information. Tem-
poral Belief Memory Network (Kim & Chi, 2018) is one
such method. TBM imputes a time series with decaying
values, making use of the average value and last observed
value of that series. The imputed set of signals are then
passed through a sequential model. Another recent method,
GRU-D (Che et al., 2018), works under the assumption that
patterns of missing values are often correlated with the tar-
get labels. Based on the Gated Recurrent Unit (GRU), the
model uses two time based representations to impute values,
and provides a greater capability to capture complicated pat-
terns. However, despite the strength of TBM and GRU-D,
neither effectively handles multi-resolution data.

3. Method
3.1. Multi-Resolution Networks

Recent work in multivariate time series processing focuses
on using a monolithic model for learning the distribution of
the entire data. However, such an approach may have disad-
vantages. In a multivariate setting, each feature is sampled
from a different true distribution P ∗, where distributions
can have varying resolutions. In such case, a single model
may not be able to effectively learn the overall distribution
of the data.

While it is not reasonable to have a dedicated model for
each feature, it is possible to have one for a cluster of sim-
ilar features. A considerable number of multivariate time
series datasets originate from the medical domain. Curating
these entails performing a battery of tests on a patient to
record various statistics, however, these samples are taken
with varying frequencies for each feature. Thus, we clus-
ter the features of the multivariate time series on the basis

of a ‘sparsity score’, which serves as an indicator of how
frequently a feature is sampled. This allows each model to
learn from a separate fine grained distribution, thus better
capturing the structure of the data.

The sparsity score calculation is designed to classify signals
with large missing chunks of data as slower signals. For
this, a two dimensional matrix C is created for every data
point x to keep track of how many time steps a signal has
been missing. M is a matrix of indicator random variables,
keeping track of time steps in which a signal is present
(where 1 represents a missing value, and 0 represents a
recorded value). C is constructed as,

Ci,j =

{
0 if Mi,j = 0

1 + Ci,j−1 if Mi,j = 1

Where i represents the feature and j represents the time step
of each data point. After the construction of C, the score
for each feature xi is calculated as follows, where T is the
length of the time series for the given data point.

score(xi) =

∑T
j=0 Ci,j∑T
t=0 t

Figure 2 shows the sparsity scores for all features in the Phy-
sionet 2012 Dataset. The figure shows three clear clusters
of signals with different resolutions. For this reason, we
modeled MASS to have three dedicated resolution blocks: a
block for ‘fast’ signals, one for ‘moderate’ frequency signals
and one for ‘slow’ signals. It is possible that data from other
sources might have a different clustering order of signals,
however, it is safe to assume that clustering features into
three groups of slow, moderate and fast is a paradigm that
would generalize well to other domains.

Each block creates a resolution-specific representation of
the signals passed to it, allowing the representations to be
more fine grained and specific. An additional feature we
add in multi resolution networks is an attention mechanism,
where the query is learned from the data, rather than being
extracted from it. This is added after the LSTM creates
an initial representation of the data, and it helps the model
identify which hidden features of this representation the
model would most benefit to learn from. This is similar
to self attention, with the main distinction being that the
model uses a specific part of the input as a query, rather
than the entire input. The three self-aware representations
are then concatenated and passed through a fully connected
layer, which calculates the final probabilities for binary
classification.

3.2. Residual Signal Splitting

While multi-resolution networks are a helpful first step in
solving the problem of multi-resolution between signals,
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Figure 1. Multi-resolution Attention with Signal Splitting (MASS)
for a vanilla BiLSTM with Attention. x1 is a feature that has been
categorized as ‘slow’, based on the sparsity score. Similarly, x2

and x3 represent ‘moderate’ and ‘fast’ signals respectively. The
Signal Transformer divides each xi into its slow, moderate and
fast components, should they exist (xij , where j ≤ number of
blocks in the model). All components of a particular resolution
across all signals are concatenated and sent to the model block for
that resolution, which creates a self-aware representation of the
signals. The representations from all blocks are then concatenated
and passed through a fully connected layer to make the final binary
prediction.

they can be improved upon further. Since all blocks func-
tion independently, a particular block receives no informa-
tion from signals sent to other blocks. Although there is
some amount of information passed between blocks due to
backward gradient flows, it is not sufficient. Furthermore,
each signal can consist of multiple other signals which have
different resolutions. For example, Figure 3 (a) shows two
signals that have been assigned to the ‘fast’ block and ‘slow’
blocks, based on their sparsity score. The signals in (b)
and (c) sum up to make the original signal, and are thus
components of it. However, they have different resolutions
from the original signal.

For this reason, we introduce the second major component
of MASS: signal splitting. Every signal is split into a max-
imum of three components with different resolutions, one
each for ‘slow’, ‘medium’ and ‘fast’, should they all exist.
The Signal Transformer in Figure 1 performs this resolution
based division of signals using the Signal Transformation

Figure 2. A histogram of sparsity scores for each feature of the
Physionet 2012 Dataset. The signals form three clear clusters
based on their sparsity: ‘fast’ (yellow), ‘moderate’ (pink) and
‘slow’ (green).
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Figure 3. An example of a composite signal with multiple resolu-
tions. (a) shows a ‘fast’ signal (green) and ‘slow’ signal (yellow),
based on their sparsity score. (b) shows the averaged value, or the
‘slow’ component of the green signal, while (c) shows the residual
‘fast’ and sparse component. The component signals have different
resolutions from the original signal.

described in Algorithm 1 (Appendix). The algorithm covers
a simplified case where only a single ‘slow’ signal x1 and a
single ‘fast’ signal x2 are considered.

Let xk be a particular signal from the dataset. Its
components of different resolutions are then defined as
xk1 , xk2 . . . xkl

, where l is the number of resolution blocks
used in the model. Before the Signal Transformation al-
gorithm is applied, mean imputation is performed on all
signals to ensure that a time step has values for either all
signals, or none of the signals. This resolves the irregularity
problem. Forward imputation, or other imputation methods
can also be used at this step.

Now, considering the case with a ‘slow’ signal x1 and ‘mod-
erate’ signal x2, xi,j represents the jth timestep in the signal
xi. Similarly, xi,j:k represents all values from the jth to
kth timesteps. c1 and c2 are defined to mark the start and
end of a series of timesteps in the slow signal, which all
have missing values. The Signal Transformation algorithm
extracts the slow and moderate components of the moderate
signal, creating x21 and x22 respectively. For this, the aver-
age x2,c1:c2 of x2 over the period from c1 to c2 is calculated
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as,

x2,c1:c2 =

∑c2
i=c1

x2,i

c2 − c1

The values for c1 and c2 are reset for every series of missing
timesteps noted in the slower signal. When a ‘fast’ signal x3

is introduced, the average x3,c1:c2 is calculated in addition
to the average over x2. This average is then subtracted to
create the residual, where the average is marked as a slow
component x31 . To find the moderate component x32 , c1
and c2 are computed for the moderate signal x2. Following
this, the new average x3,c1:c2 becomes x33 . The average is
once again subtracted from x3 to create the final residual,
which becomes the fast component x33 of x3.

4. Experiments
We experiment with the PhysioNet Challenge 2012 dataset
(Silva et al., 2012), which consists of Intensive Care Unit
(ICU) records of 8000 anonymous patients. 4000 of these
patients have labelled data, and have been used to train
our model. Up to 37 features are recorded for each patient
for approximately 48 hours worth of time, during the stay
of a patient. The data has been divided into two groups,
based on the Survival Index, to classify patients by ICU
mortality. This dataset is a classic example of a setting with
multi-resolution, irregular sampling and missing values in
the data. We also present results on a variant of the dataset
in Appendix B.

We compare our method against two strong baselines: the
Temporal Belief Memory Networks (TBM) of (Kim & Chi,
2018) and GRU-D of (Che et al., 2018) are state of the art
methods in missing valued multivariate time series analysis.
We also introduce a basic Bidirectional LSTM model with
attention (BA-Mean) as our baseline. The BA-Mean model
is run over the data after imputing missing values with
averages. As we present a model-agnostic method that
can be added to any existing model, we add it to our BA-
Mean model, and to the TBM model, displaying a boost in
performance over their vanilla variants. We also compare
the simple BA-Mean model with multi-resolution against
GRU-D, and showcase the comparable performance of a
basic model to a state of the art model.

We further experiment with two variants of our method.
Since there is the possibility that a sparsity specific block
might have more information than others, for a particular
patient, we add a second layer of attention after concatenat-
ing the representations from all blocks. These models are
the MASS-BA+Attn and MASS-TBM++Attn in Table 2.

Hyperparameters were gauged by the best performance on
the validation set, through a grid search over learning rates,
and representation sizes of the LSTM blocks. Optimal hy-
perparameters have been included in Appendix A. Training

Table 1. Precision, Recall and F-scores on the Physionet 2012
Dataset, for Bidirectional LSTM with Attention with average
filling (BA-Mean), Multi-resolution Attention with Signal Split-
ting Multi-resolution Attention BA-Mean with Signal Splitting
on BA-Mean (MASS-BA), MASS-BA with second Attention
(MASS +Attn), Temporal Belief Memory Network (TBM), Multi-
resolution Attention with Signal Splitting on TBM (MASS-TBM),
MASS-TBM with second Attention (MASS-TBM+Attn) and GRU-
D. Each result has been averaged over three trials.

METHOD PRECISION RECALL F1-SCORE

BA-MEAN 0.806 0.854 0.812
MASS-BA 0.841 0.860 0.846
MASS-BA+ATTN 0.845 0.869 0.836
TBM 0.805 0.849 0.816
MASS-TBM 0.838 0.856 0.842
MASS-TBM+ATTN 0.841 0.862 0.846
GRU-D 0.843 0.870 0.847

was conducted using the ADAM optimizer, and ended using
an early stopping criterion on the validation set. Our results
are described in Table 1. The performance of BA-Mean
and TBM are similar, due to both models being similar in
architecture. MASS-BA and MASS-TBM are similar for
the same reason, but the inclusion of MASS shows a signifi-
cant boost in performance, of around 3% over their vanilla
variants, as shown in Table 1. The addition of the second
attention mechanism does not contribute to predictive perfor-
mance in either model. This may be because the additional
capacity given to the model makes it overfit to the training
data. While GRU-D remains the strongest model, it must
be noted that the addition of MASS to a simple BiLSTM
model showcased performance almost equivalent to GRU-D.
This highlights the potential of our method, and a scope to
use it on better performing models in the future.

5. Conclusion
We presented MASS, a model agnostic method which can
be added to any model to improve predictive performance
on multivariate time series classification, by tackling the is-
sues of multi resolution between signals, irregular sampling
and missing values in data. Experiments were performed on
the Physionet Dataset which, possessing these three prob-
lems, accurately depicts real world data. The addition of
MASS shows an improvement on the TBM and BA-Mean
models, and even the simple BA-Mean model shows almost
equivalent performance to the state of the art GRU-D, on
the addition of MASS.

Our future work includes applying MASS on the state of the
art GRU-D, and testing the how well our method generalizes
to other models and domains. Additionally, we would like to
study the effect of varying the number of resolution blocks
on predictive performance.



Multi-resolution Attention with Signal Splitting for Multivariate Time Series Classification

References
Che, Z., Purushotham, S., Cho, K., Sontag, D., and Liu, Y.

Recurrent neural networks for multivariate time series
with missing values. Scientific reports, 8(1):6085, 2018.

Galimard, J.-E., Chevret, S., Protopopescu, C., and Resche-
Rigon, M. A multiple imputation approach for mnar
mechanisms compatible with heckman’s model. Statistics
in medicine, 35(17):2907–2920, 2016.

Garcı́a-Laencina, P. J., Sancho-Gómez, J.-L., and Figueiras-
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Table 2. Precision, Recall and F-scores on the Physionet 2012
”Hard” Dataset, for Bidirectional LSTM with Attention with av-
erage filling (BA-Mean), Multi-resolution Attention with Signal
Splitting Multi-resolution Attention BA-Mean with Signal Split-
ting on BA-Mean (MASS-BA), MASS-BA with second Atten-
tion (MASS +Attn), Temporal Belief Memory Network (TBM),
Multi-resolution Attention with Signal Splitting on TBM (MASS-
TBM), MASS-TBM with second Attention (MASS-TBM+Attn)
and GRU-D. Each result has been averaged over three trials.

METHOD PRECISION RECALL F1-SCORE

BA-MEAN 0.662 0.658 0.659
MASS-BA 0.673 0.672 0.676
TBM 0.657 0.665 0.658
GRU-D 0.676 0.684 0.667

A. Optimization and Hyperparameters
We use the ADAM optimization algorithm with a learning
rate of 1e− 4 and dropout of 0.9. Training is performed on
a Titan-X GPU with a a batch size of 1 (for simplicity in the
code for our method). The sizes of the representations of the
LSTM were also a tuneable hyperparameter, and optimal
vector lengths were found to be 200.

B. Signal Transformation Algorithm
MASS consists of a signal transformation module, shown
in Figure 1. The algorithm for this method is presented in
Algorithm 1.

Algorithm 1 Signal Transformation

Input: num timesteps over which data is recorded T
slow signal x1 ∼ Xslow, fast signal x2 ∼ Xfast

Initialize c1 ← 0, c2 ← 0, x21 ← [], x22 ← []
for t = 1 to T do

if x1,t is missing then
c2 ← c2 + 1

else
average =

∑c2
i=c1

x2,i

c2−c1
residual← []
for j = c1 to c2 do
residual.append(x2,j − average)

end for
x22 .append(average)
x21 .append(residual)
c1 ← c2

end if
end for
Return: x11 , x21 , x22
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C. Results on Physionet 2012 ”Hard” Dataset
The Physionet 2012 Dataset predicts ICU mortality. We
altered the task to forecast patient survival, thus making the
task of prediction more challenging. The Physionet ”Hard”
Dataset also divides the patients into two roughly equal
groups, with 2526 people surviving the study. Our results
are described in Table 2. Here, the addition of MASS to BA-
Mean clearly outperforms its vanilla variants. MASS-BA
also outperforms both state of the art baselines of TBM and
GRU-D.


