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Abstract
Gaussian processes are flexible function approxi-
mators, with inductive biases controlled by a co-
variance kernel. Learning the kernel is the key
to representation learning and strong predictive
performance. In this paper, we develop functional
kernel learning (FKL) to directly infer functional
posteriors over kernels. In particular, we place a
transformed Gaussian process over a spectral den-
sity, to induce a non-parametric distribution over
kernel functions. The resulting approach enables
learning of rich representations, with support for
any stationary kernel, uncertainty over the values
of the kernel, and an interpretable specification
of a prior directly over kernels, without requiring
sophisticated initialization or manual intervention.
We perform inference through elliptical slice sam-
pling, which is especially well suited to marginal-
izing posteriors with the strongly correlated pri-
ors typical to function space modelling. We de-
velop our approach for non-uniform, large-scale,
multi-task, and multidimensional data, and show
promising performance in a wide range of set-
tings, including interpolation, extrapolation, and
kernel recovery experiments.

1. Introduction & Background
Gaussian Processes (GPs) are highly flexible non-parametric
models that, with simple assumptions, are capable of de-
tailed pattern discovery. Accurate exact inference can pro-
ceed with an assumed parametric form on the covariance
structure (i.e. RBF or periodic kernels); in some cases the
limitations of these easily parameterized covariance func-
tions are too severe for highly accurate prediction, or they
require careful composition that cannot be deployed to gen-
eral tasks (Williams & Rasmussen, 2006).

In many cases it is sufficient to assume the process is weakly
stationary as this still admits many of the most popular
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choices for parametric form of the kernel (RBF, Matèrn,
periodic, etc). In this setting we can simplify the kernel
k(x, x′) to just a function of the distance between these
points: k(τ) = k(||x− x‘||).

Recent work has utilized the spectral decomposition of ker-
nels - their Fourier transforms - to generate prior distribu-
tions that provide support to broad classes of covariance
functions (Wilson & Adams, 2013; Remes et al., 2017).
While existing methods are effective at uncovering corre-
lation structure in data, they are still reliant on parametric
forms. Alternatively, we approach kernel learning from a
non-parametric perspective, modelling the spectral density
of the covariance function with a latent Gaussian process.

We propose this method as a drop-in replacement for covari-
ance priors like the spectral mixture kernel by placing a GP
prior over the spectral representation of covariance structure.
This imbues the process of modeling the covariance with
the same benefits seen in GP modeling of data (flexibility,
simplicity, and a nonparametric approach). In the end we
are able to define one model over the covariance of a GP that
is able to realize and sample from a wide array of outcomes,
and provides not only uncertainty in the estimation of data
but in the estimation of the underlying kernel.

2. Methods
2.1. Spectral Transformations of Kernel Functions

Bochner’s Theorem Bochner (1959) describes positive def-
inite functions, k(τ), as the Fourier transform of finite
Lebesgue measure on the real line. Thus, k(τ) is the co-
variance of a stationary integrable process on R if and only
if

k(τ) =

∫
R
e2πiωτS(ω)dω, (1)

for a positive, finite density S(ω). This transformation is
simply the Fourier dual of the spectral density, S(s) and im-
plies invertibility. If S(ω) is known, k(τ) can be computed.

Uniqueness is guaranteed by the Wiener-Khintchine Theo-
rem (Eq. 4.6 of Williams & Rasmussen (2006)). Note that
S(ω) is an un-normalized Lebesgue measure, and so the
pointwise variance (or outputscale) of the process is given
by k(0) =

∫
R dµ(ω).
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In the context of stationary covariance Gaussian processes,
k(τ) is real-valued and can be made symmetric without loss
of generality. Equation 1 simplifies to

k(τ) =

∫
[0,∞)

cos(2πτω)S(ω)dω, (2)

by utilizing the complex exponential and oddness of sine.
This is a slight simplification of Equations 4.7 and 4.8 in
Williams & Rasmussen (2006).

For finitely sampled data, we can only identify frequencies
up to π/∆, where ∆ is the largest spacing between neigh-
boring points. This further restricts the integral to be over
the space, [0, π/∆], giving

k(τ) =

∫
[0,π/∆]

cos(2πτω)S(ω)dω. (3)

For an arbitrary density S(ω) this does not admit an ana-
lytic form of k(τ), however simple numerical integration
schemes allow k(τ) to be approximated with high accuracy.
We will utilize the trapezoid rule for this work, giving the
approximate form of this integral as,

k(τ) ≈ ∆ω

2

I∑
i=1

cos(2πτωi)S(ωi) + cos(2πτωi−1)S(ωi−1),

(4)

assuming the spectrum is sampled at W evenly spaced
points ωi that are ∆ω units apart in the frequency domain.
This is a safe assumption as the choice of where to sample
the spectrum is purely a modeling choice and can be fixed
at the onset of any experimentation.

2.2. Specification of Latent Density

Since the transformation in Equation 1 is unique, we propose
to fit a Gaussian process to the log-spectral density of a
kernel k(τ). The log transformation assures that the spectral
representation is non-negative and corresponds to a positive
definite kernel.

Functional Kernel Learning defines the following heirarchi-
cal model:

{Hyperprior} p(φ) = p(θ, γ)

{Latent GP} g(ω)|θ ∼ GP (µ(ω; θ), kg(ω, ω
′; θ))

{Spectral Density} S(ω) = exp{g(ω)}
{Data GP} f(xn)|S(ω), γ ∼ GP(γ0, k(τ ;S(ω))).

(5)
In the above, k(τ ;S(ω)) is computed using the trapezoid
rule of equation 4. We let f(x) be the noiseless outputs of
the data, and y(x) be the (potntially) noisy observations:
y(x) ∼ GP(γ0, k(τ ;S(ω)) + γ1δτ=0). Full specification
of hyperpriors is given in section A.1.

A guiding figure outlining the heirarchy outlined above,
showing realizations of the prior of the latent process, ker-
nels constructed from these realizations, and data drawn
from GPs with these kernels is given in figure 4 in Section
B.

Note that when sampling at N datapoints and W fre-
quencies, the storage costs for this model are naively
O(N2 +W 2) with the computational costs O(N3 +W 3);
however, Toeplitz structure in both the data and latent GPs
can be exploited to get runtimes of O(N3 + I log I) (Guin-
ness & Fuentes, 2017; Wilson et al., 2014).

3. Related Work
Gaussian Process Density Models Leonard (1978);
Lenk (1988) extensively studied the logistic transforma-
tion of Gaussian processes as a density model, while Tokdar
& Ghosh (2007) proved asymptotic properties of the same
model as a density estimator. Adams et al. (2009) proposed
the Gaussian process density sampler, a generalization of lo-
gistic Gaussian processes to include arbitrary non-linearities,
proposing a rejection scheme for sampling and inference.

Spectral Domain Gaussian Processes Perhaps the first
to consider the Fourier domain of stationary covariance func-
tions was Whittle (1957) who used the spectral density to
approximate Gaussian log-likelihoods in linear time. Sim-
ilarly, Lázaro-Gredilla et al. (2013) proposed using sparse
spectral densities as a mechanism for making Gaussian pro-
cesses more scalable. Wilson & Adams (2013); Wilson
(2014) proposed the spectral mixture kernel, fitting a mix-
ture of Gaussians in the spectral domain, exploiting the
closed form spectral density for efficient inference.

Alternatively, Rahimi & Recht (2008) proposed approxi-
mating Eq. 2 using Monte Carlo samples from the spectral
densities, proposing random Fourier features. Oliva et al.
(2016) extended the spectral mixture kernel, proposing a
non-parametric Bayesian kernel.

Finally, Tobar et al. (2015) proposed a convolutional model
for modelling the spectral density with a Gaussian process.
For comparison we include predictions generated using the
methods of Tobar (2018) in which the spectral density of
time series data is modeled nonparametrically using GPs.
This method is highly effective for interpolation, but as is
shown in Section 5 is not as robust for interpolation tasks as
FKL.

4. Inference
For the hierarchical model defined in Equation 5, we need
to learn both the hyper-parameters, φ, and an instance of
the latent Gaussian process, g(ω). We employ alternating
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Algorithm 1 Alternating Sampler

Input: Data (x, y), Initial hyper-parameters φ0, Sam-
pling frequencies ω, Initial Latent GP g(ω), Number of
gradient steps Noptim, Number of ESS samples NESS ,
repeat

for i = 1 to Noptim do
Update φ using gradient descent given g(ω) and
Eqn. 6

end for
for i = 1 to NESS do

Update g(ω) using elliptical slice sampling given φ
and Eqn. 7

end for
until convergence

updates in which the latent GP, g(ω) and the hyperparam-
eters, φ are updated separately. A full description of the
method is in Algorithm 1.

Updating Hyper-Parameters Considering the model
specification in Eq. 5, we can define a loss as a function
of φ for fixed realization of the latent GP g̃(ω) and data
observations y(x). The loss corresponds to the prior likeli-
hood, likelihood of the latent realization, and likelihood of
the data:

L(θ) = − (log p(φ) + log p(g̃(ω)|θ, ω) + log p(y|g(ω), γ, x)) .
(6)

We employ the AMSGRAD implementation of Adam as
provided by PyTorch (Reddi et al., 2019).

Updating Latent Gaussian Process We perform updates
over the latent GP in a fully Bayesian way, noting that the
full conditional is

p(g(ω)|φ, x, y(x), f(x)) ∝ N (µ(ω; θ), kg(ω; θ))·
p(f(x)|g(ω), γ).

(7)

Elliptical slice sampling (Murray et al., 2010; Murray &
Adams, 2010) can be used in this setting to efficiently sam-
ple from the latent posterior. In practice, we found that
ESS nearly converges in terms of likelihood after just 15-20
iterations.

5. Experiments
In this section we fix the mean and covariance of the latent
process to take the following

µ(ω; θ) = θ0 −
ω2

2θ̃1
2

kg(ω, ω
′; θ) =

21−ν

Γ(ν)

(√
2ν
|ω − ω′|
θ̃2

)
Kν

(√
2ν
|ω − ω′|
θ̃2

)
.

(8)
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Figure 1. Above: Spectrum reconstruction for data generated from
a spectral mixture kernel. Below: The samples of the latent GP
correspond closely to the true spectral density, and many of the
FKL predictions on the held out data are nearly on par with the
ground-truth model (SM in dashed pink).

The θ̃i’s are variables that need to be ensured to be positive,
so the above are computed with θ̃i = log(eθi + 1), the
softplus of the raw value.

The mean of the latent process, µ(ω; θ), is (up to some
scaling) the log-spectral density of an RBF kernel, giving
that our prior mean corresponds to an RBF kernel. The
covariance function is a Mater̀n with ν chosen to be 1.5.
Using a Mater̀n kernel to model the log-spectral density
allows recovery of sharp peaks that are often seen in the
spectrum of covariance functions, in particular when the
data contain an overall trend.

Using the sampling routine of Algorithm 1 and transforming
the spectral densities into kernels (using the processes out-
lined in Section 2.2), samples of predictions on the training
and testing data can be taken.

In the figures of this section we show spectral densities
and predictions using the kernels generated by the final 10
spectral density samples drawn from ESS in the inference
procedure. Thus each blue line corresponds to the prediction
(with appropriate shading) of one output of the alternating
sampler.



Functional Kernel Learning

1 0 1 2 3
Time (std.)

2

1

0

1

2

3

4

5

6

Pa
ss

en
ge

rs
 (s

td
.)

Airline
FKL
±2 SD
RBF
Matern
SM
BNSE
Training Data
Test Data

Figure 2. Airline Data

5.1. Recovery of Spectral Mixture Kernels

Synthetic data are generated from a mean zero GP with a
spectral mixture (SM) kernel (Wilson & Adams, 2013). The
true spectrum corresponds to a mixture of two Gaussians,
shown as the orange line in the top panel of figure 1. Using
the inference procedure of Section 4 recovery of the true
spectrum is obtained. The kernels corresponding to the
sampled spectral density and the ground truth are shown in
Figure 6 as well as figures from a similar experiment on data
drawn from a GP with a quasi-periodic kernel are shown in
Section B.

5.2. Extrapolation: Airline Data

We next consider the benchmark airline passenger dataset
(Hyndman, 2005) consisting of 96 monthly observations of
airline passengers from 1949 to 1961, attempting to extrap-
olate the next 48 observations. The dataset is considered
difficult for zero mean Gaussian processes with stationary
kernels due to the absence of noise artifacts, the periodicity,
and the linear-like trend over time.

Standard parametric kernels and more modern methods such
as Bayesian Nonparametric Spectral Estimation (BNSE)
from Tobar (2018) are highly capable of interpolating the
training data, but quickly mean-revert in the testing region.

5.3. Multi-task Time Series

FKL provides the framework to consider multi-task data in
a novel way. We assume that the covariance function for
each task t is constructed from a sample of a shared latent
GP over the log-spectral density. Indicating a independent
realizations of the latent GP with superscripts (St(ω) =
exp{gt(ω)}) and the GP’s over each output dimension of
the data with subscripts (ft(x)). Thus the multi-task model
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Figure 3. Interpolation and extrpolation on multi-task precipitation
data for Boulder, CO and Telluride, CO.

is

g(ω)|θ ∼ GP(µ(ω; θ), kg(ω, ω
′; θ))

ft(x)|gt(ω), γ ∼ GP(γ0, k(τ, St(ω)) + γ1δτ=0),
(9)

with the same hyperparameters and hyperpriors as Equation
5. The inference procedure is modified only by iterating
through tasks and performing elliptical slice sampling up-
dates to each one independently.

We test this average postiive precipitation by day taken from
the United States Historical Climatology network (Menne
et al., 2015). We look at modeling data from climatologi-
cally similar recording stations in Colorado, using the last
2 months of the year as held-out testing data. Results are
shown for two such stations in figure 3.

6. Discussion
Functional kernel learning (FKL) permits not only accu-
rate reconstructions of spectral densities corresponding to
stationary kernels, but also extrapolates and interpolates ob-
servable data via Fourier transformation and latent Gaussian
processes. In turn, this permits the inference of spectral
densities and kernels in an analytic and probabilistic manner.
Learning from data incorporates gradient descent and ellip-
tical slice sampling in order to perform updates of the latent
GP and sampled spectral densities. The method is validated
in recovery of known kernels (and corresponding spectral
densities) as well as accurate interpolation and extrapolation
of both synthetic and real-world data.

Future directions of work include: (i) discovering shared
structure across multiple heterogenous tasks; (ii) exploiting
structure inherent in stationary kernels, such as Toeplitz
structure, for increased scalability; (iii) exploring general-
izations of FKL corresponding to learning non-stationary
kernels.
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A. Extensions
Multi-Output Hierarchical Gaussian Processes Given multiple outputs, y1(x1), that might be correlated, it might be
natural to consider that the spectral densities themselves are related by the same Gaussian process (e.g. have the same
parameters θ) with only the specific random function draw (the specific g(s|θ)) being different).

Deep Gaussian Process The model specification is implicitly a deep Gaussian process, albeit one with the depth occurring
only in the covariance structure. Here, the recursion is in contrast to the Damianou & Lawrence (2013)’s construction of
deep Gaussian processes as compositions of standard Gaussian processes on potentially different inputs; by contrast, our
formulation allows for exact inference without the learning of inducing points or pseudo-inputs.

Non-Stationary Kernels Despite being the most generally employed family of kernels, monotonic stationary kernels
such as the Gaussian kernel are not only a subpar choice for partitioning input spaces, but also a special case of the
non-stationary class of kernels (Genton, 2001). Non-stationary kernels are often employed in signal processing, geostatistics,
and time-series analysis. Unlike the Gaussian kernel, one such member of the partly non-stationary class includes a variant
of the Spectral Mixture kernel (Wilson, 2014), a covariance function often used in modeling physical processes due to its
construction of a univariate spectral density by a mixture of normal distributions. Combining standard kernels with various
transformations (Wilson et al., 2016) with products of stationary kernels has been a common kernel construction approach.
Perhaps the simplest non-stationary kernel is the dot product kernel as a way to model input-dependent variance (Williams
& Rasmussen, 2006). Despite being unsuited for modeling non-monotonic properties, the aforementioned non-stationary
kernels are useful for modeling dynamical systems.

A.1. Prior Specification

For the noise terms, we place smoothed box priors on the range (1e-8, 1e-3) to control both numerical instability and
the noise terms. A smooth box prior is a smooth approximation to uniform priors, where B(x) = {a ≤ x ≤ b}
then d(x,B) := minx′∈B |x − x′| and finally the density is given by f(x) := exp{−d(x,B)2/

√
2σ2}. See https:

//gpytorch.readthedocs.io/en/latest/priors.html for further implementation details. For the constant
mean terms in both the data and latent means, we place uninformative N (0, 100) priors to allow broad ranges of outcomes.
For the length-scale in the spectral density mean along with the length-scale and output-scale of the covariance of the
spectral density GP, we place standard log-normal priors, as these variables need to be positive.

B. Additional Figures
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are used to compose kernels over data. Right: Using each of the constructed kernels mean-zero functions over data are drawn. Shaded
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Figure 5. Above Left: Spectrum reconstruction for a Quasi-periodic kernel; Above Right: Kernel reconstruction; Below: Data interpola-
tion and extrapolation for FKL and competing methods
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Figure 6. Left: Spectrum and kernel reconstruction for data generated from a spectral mixture kernel. Right: The samples of the latent
GP correspond closely to the true spectral density, and many of the FKL predictions on the held out data are nearly on par with the
ground-truth model (SM in dashed pink).


