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Abstract

Time series are ubiquitous in real world problems
and computing distance between two time series
is often required in several learning tasks. Com-
puting similarity between time series by ignoring
variations in speed or warping is often encoun-
tered and dynamic time warping (DTW) is the
state of the art. However DTW is not applicable in
algorithms which require kernel or vectors. In this
paper, we propose a mechanism named WaRTEm
to generate vector embeddings of time series such
that distance measures in the embedding space ex-
hibit resilience to warping. Therefore, WaRTEm
is more widely applicable than DTW. WaRTEm
is based on a twin auto-encoder architecture and a
training strategy involving warping operators for
generating warping resilient embeddings for time
series datasets. We evaluate the performance of
WaRTEm and observed more than 20% improve-
ment over DTW in multiple real-world datasets.

1. Introduction

Time series is a specific type of observation that contains
a sequence of points, and the sequence as a whole repre-
sents a data point in many applications such as healthcare,
energy and manufacturing. Due to this structure, solving
problems involving time series still remains a challenging
task. As an example, consider a stream of speech and two
variants of it; one in which the same sequence of text is read
out in a different speed, and another in which the sentence
sequences are shuffled but is spoken at the same speed as
the original. The original speech needs to be intuitively
considered similar to the first and dissimilar to the second;
this is so since shuffling of sentences changes the semantics
of the speech whereas speed variations do not. In other
words, a similarity measure between time series sequences
should be reasonably invariant to speed/phase shifts, but
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be sensitive to the ordering in the sequence. Speed/phase
shifts are often referred to as warping; dynamic time warp-
ing(Berndt & Clifford, 1994), or DTW for short, has been an
extremely successful distance measure between time series
owing to its ability to be resilient to warping. It has been
so successful that it has been widely used in a variety of
domains (Mueen & Keogh, 2016) that involve time series
data such as biometrics, anthropology and finance.

Majority of machine learning algorithms expect data objects
to be represented as feature-vectors. The data vectors or
embeddings are expected to be meaningful within the vector
spaces that they reside in; in other words, similarities be-
tween vectors using reasonable vector similarities/distances
(e.g., euclidean) are expected to reflect semantic relation-
ships between data points. Vector/Matrix processing meth-
ods include classical analytics methods such as those for
non-negative matrix factorization (Xu et al., 2003), locally
linear embedding (Roweis & Saul, 2000) and a large major-
ity of deep learning methods. While research into deep learn-
ing has evolved mechanisms for identifying space-invariant
and localized features (e.g., convolutional units (Krizhevsky
et al., 2012)) and long-range sequential dependencies (e.g.,
LSTM (Greff et al., 2017)), DTW still remains a very com-
petitive method (Bagnall et al., 2017).

While time series data may be naively considered as vectors
by ignoring the sequential information, such vectors don’t
yield a meaningful representation within their vector spaces.
This is so since much of the meaningfulness is embedded
within the sequential information as well as the expectation
of warping invariance as modelled within bespoke time
series similarity measures such as DTW. Consequently, as
recognized in earlier work (Lei et al., 2017), this scenario
makes the many machine learning models built for feature-
vectors inapplicable to time series data. As in that paper, we
consider the route of converting a time series dataset into
multi-dimensional vectors such that distances/similarities in
the resultant vector space are meaningful. The vast library
of matrix/vector oriented machine learning algorithms can
then be applied on the resultant dataset of embeddings.

Our Contributions: Our contributions are as follows:

o We develop two warping operators which transform time
series data into their warped variations.

e We propose a novel neural architecture based on auto-
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encoders that can leverage a time series dataset along with
warping variations in order to convert time series data into
meaningful warping resilient vector embeddings.

e Through an empirical evaluation over real world datasets,
we illustrate that such vector embeddings yield 1-NN
classification accuracies that are competitive to DTW 1-
NN over corresponding time series. We also show that the
they yield better accuracies than the original time series
when used with other models developed for static data.

2. Related Work

Most related to our work is a recent work (Lei et al., 2017)
addressing the same task as ours, that of converting a time
series dataset into a set of vector embeddings. Starting from
a dataset of n time series, they build an n X n matrix of pair-
wise similarities that is defined using DTW distances. This
is done by performing O(n x log(n)) DTW computations,
and approximating the other entries in the matrix using a
low-rank assumption. If a time series is of length m, a DTW
computation takes time of the order of O(m?). This makes
just the matrix creation step a process in O(n xlog(n)xm?).
The similarity matrix is then subject to symmetric matrix
factorization so that a vector embedding matrix X is learnt
such that XX approximates the similarity matrix well. This
calls for eigen decomposition which is superlinear in n as
well. This makes it impractical for most large datasets. In
contrast to this work, the method we propose is linear in both
n and m, making our method significantly more scalable.

There are two more recent methods that consider learn-
ing embeddings to approximate DTW distances. The first,
called Jiffy (Shanmugam et al., 2018), targets the case of
multi-variate time series, and proposes a convolutional neu-
ral architecture. We differ from their task setting in that we
consider the univariate setting for devising our method. The
second method (Lods et al., 2017) models the embedding
task as one of identifying a specified number of shapelets of
specified lengths (both being method parameters) that enable
transforming time series data into embeddings closely ap-
proximating DTW distances. Our model is not constrained
to produce shapelets, and targets to train a neural architec-
ture that embodies the transformation within itself.

Another recent work (Franceschi et al., 2019) makes use
of convolutional neural networks in a framework heavily
inspired by word2vec (Mikolov et al., 2013). They train a
neural network so that it learns an embedding for a time
series subsequence that would be closer to the embedding
of the larger sequence containing it (positive example) than
to a different random series (negative example). SVM clas-
sifiers trained over such embeddings are shown to be better
than DTW 1-NN classifier in accuracy. In contrast with
their intent of learning representations that are more suit-
able to train SVMs, our intent is to ensure that the distances

between embeddings are meaningful locally. This intent
entails a different evaluation target, that of optimizing for
performance of a 1-NN (or k-NN) classifier over the embed-
dings.

3. WaRTEm: Proposed Method

Consider a time-series dataset T = {T1,...,T;}, where
each individual T represents a time series of length m. Our
time series embedding method, WaRTEm (short for Warping
Resilient Time Series Embeddings), transforms this dataset
into a set of vector embeddings that reside in a vector space
R? (d being pre-specified), with each T} being assigned to
its own embedding V; € RY, the collection of embeddings
being denoted by V.
WaRTEm

{Th,....Tn,} ——{V1,...,Vu,}

To ensure that V comprises meaningful representations, we
would like simple vector distances among them to be seman-
tically meaningful like warping invariant distance measures
such as DTW over corresponding time series in 7. On the
lines of manifold learning methods for dimensionality re-
duction (e.g., SNE (Hinton & Roweis, 2003), LLE (Roweis
& Saul, 2000)), we look to maintain warping resilience only
within local neighborhoods. Accordingly, our evaluation
is performed by comparing 1-NN classification accuracies
over vectors in V using Euclidean distance vis-a-vis DTW
1-NN over 7.

We first introduce a set of warping operators that transform a
time series into warped versions. This is followed by outlin-
ing our twin auto-encoder architecture that can utilize time
series and their transformations to learn vector embeddings

for time series data.
\ RIW

Lew

Figure 1. Warping Operators Example: The warping operators
LCW and RIW are illustrated by the changes they effect within
the warping windows. Blue indicates the original time series, with
others the respective warped versions.

3.1. Warping Operators

Our warping operators are intended to transform a time
series into another one such that the pair are warped variants
of each other. In other words, the pair would be expected
to be judged as very similar under warping aware distance
measures such as DTW. Each of our warping operators
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involve deleting off a point/value from the original series,
and adding a point/value to the left or right of it to restore
the original length.

Copy Warping: Consider a window of four points from a
time series 7" denoted as [p1, p2, p3, p4]; this is the warping
focus window. The left and right copy warping operators
are illustrated as below:

Left: [p1,p2,p3,pa] = [p1,p3, 4] = [P1, D3, P4, P4]

Right : [p1,p2, p3,pa] = [p1,p2,p4] = [p1,P1, D2, Pa]

The LeftCopyWarp (LCW) operator deletes off po from the
window and duplicates p4 to restore the length, whereas
RCW deletes off p3 and duplicates p;. In other words, LCW
shrinks the left side of the window and extends the right
endpoint to a plateau, whereas the vice versa is the case for
RCW. It may be noted that a time series 7" and it’s warped
variant LOCW (T') or RCW (T') differ only in the values that
they take within the warping focus window.

Interpolation Warping: Consider a warping focus window
[p1, D2, P3, 4] as earlier. The variants of the interpolation
warping are as follows:

P3 +pa
Left : [p1sp2, ps; pa] = [p1,p3, pa] = [p1,p3, = pa]
. p1+ P2
Right : [p1, p2,ps, pa]l = [p1, D2, pa] = [p1, 5 , D2, Pa]

The LIW operator, as in the case of LCW, shrinks the left
side of the window, but then extends the right side by a
slope (as against a plateau in LCW). This slope is formed
by adding a point that is midway between ps and p4 both in
terms of its value and placement. RIW is simply the mirror
image of LIW.

Figure 1 illustrates examples of series formed by two of our
warping operators to help visualize the changes effected by
them.
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Figure 2. Twin Auto-encoder Architecture

3.2. Twin Auto-Encoder Architecture

The WaRTEm neural network architecture comprising twin
auto-encoders (AEs) is illustrated in Figure 2. Our network

is modelled to take a pair of time-series sequences as in-
put. Each time series sequence in the input pair is passed
through a separate convolutional AE (shown side by side in
Fig. 2). As is typical of AEs, the respective time series get
converted into an internal representation (aka code) through
the encoder, with the decoder expected to re-construct the
original input to high accuracy from the code. L1 and L2 in-
dicate the conventional reconstruction losses for the separate
AEs. The twinning between the AEs is achieved through
the introduction of a new loss term, L3 which is designed
as the squared euclidean distance | R — Ra||3 between the
codes (R; and Ry) corresponding to the pair of input time
series. To learn embeddings that cater to a different sim-
ilarity measure, WaRTEm can be adapted by designing a
corresponding loss term between R; and Rs. As indicated,
L3 is propagated back through the encoder parts of the AEs,
and does not affect the decoder weights. In other words,
in addition to training the separate auto-encoders to recon-
struct their respective inputs, we also try to ensure that the
codes corresponding to the time series pairs are close to
each other. The way this maps to our intent of learning
warping resilient time series embeddings will be outlined in
our warping-based training strategy in the next section.

The encoder part of the AE comprises a sequence of pairs of
1d convolution and maxpooling layers followed by a final
fully connected layer, whereas the decoder analogously uses
upsampling and pairs of 1d convolution layers.

3.3. Training Strategy and Embeddings

The training strategy indicates the manner in which we use
the time series dataset 7 in training our twin AE architecture.
The twin AE architecture is motivated by our observation
based on empirical studies that warping resilience is quite
complex for a single AE to learn (using, for example, a
variant of denoising AE). Thus, we specialize the task to
two, viz., leftward and rightward warping resilience, so
separate AEs can learn them separately.

For each time series 7" € T and for each directionality
of warping (left or right), we generate a warped variant.
Consider the choice of /eft direction; we first sample a ran-
dom integer r between 0 and (0.5 x length(T')). We then
progressively perform r leftward warpings over randomly
chosen warping focus windows, choosing LCW or LIW
depending on the experiment, to generate a warped variant
of T, denoted as L(T). The pair [L(T), T thus generated
forms an element of the training dataset for our twin AE.
Analogously, the choice of right direction yields a warped
variant R(T'), forming a training pair [T, R(T)]. It may be
noted that each 7" thus generates two training pairs, one for
left and another for right. The construction of the ordering in
the pairs is pertinent to the separation of warping resilience
learning; the left entry in the pair is either a left-warped vari-
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ant or the original series, but never a right-warped variant
(and similarly for the right entry). This creates a warping
directionality co-ordination between the AEs which helps
separate the nature of learnings within the respective AEs.

The training process is continued for as many epochs as
needed; we use a held-out dataset to compute loss trends
across epochs to effect early stopping. Then, each time
series T is passed through each of the AEs separately to
generate their left and right AE codes, which are then aver-
aged to be used as the corresponding embedding V. This
completes the description of WaRTEm transformation from
time series to embeddings.

4. Experiments

For all experiments, datasets were taken from the UCR Time
Series Classification Archive (Dau et al., 2018). 1NN Eu-
clidean and INN DTW accuracies reported in table 1 were
calculated from the corresponding error rates provided in
the archive. We use the provided train test split for all mod-
els to ensure fair comparison. For all experiments, we set
the representation length as 20% of the series length. Dif-
ferent datasets give best accuracies at different code lengths
but we found that 20% works well overall. Three models,
corresponding to Copy warping, Interpolation warping and
a combination of both are explored. For the combination,
at each focus window, CW or IW is chosen with equal
probability. For each model, we train the network with 10
different initializations and take the average 1NN accuracy.
Same initialization seeds are used across the three meth-
ods. The best accuracy among the three is reported under
WaRTEm-NN in table 1.

Table 1 shows that WaRTEm provides better INN perfor-
mance than both Euclidean 1NN and DTW 1NN for most
datasets. Moreover, WaRTEm provides a way to use nu-
merous static data models with time series datasets. For in-
stance, Table 2 reports the performances of a simple 3-layer
neural network classifier and XGBoost (Chen & Guestrin,
2016) on these datasets. The network comprises of 3 fully-
connected layers with maz(10, | L/10]), 50 and n_classes
nodes respectively, where L is the length of the input se-
ries and n_classes the number of classes. For XGBoost,
the maximum depth and number of estimators is decided
through 5-fold cross-validation on the train data. For both
the models, for each input dataset/embeddings, training
is carried out 10 times and best test accuracy is selected.
For WaRTEm, average accuracy over 10 such embeddings
(learned in the previous experiment) is reported.

As shown in table 2, both WaRTEm-DL and WaRTEm-
XGB outperform their counterparts on 6 out of 10 datasets.
WaRTEm gives overall best performance (marked in bold)
for half the datasets investigated. These results suggest

Table 1. Comparing accuracy of 1NN classifier using 1)Euclidean
distance on lower order representation given by WaRTEm
(WaRTEm-NN ), 2)Euclidean distance on original time series(Eucl-
NN) and 3)DTW distance on original time series(DTW-NN). Best
accuracy for each dataset is in bold.

DATASET WARTEM-NN EucL-NN DTW-NN
ARROWHEAD 77.43 + 1.81 80.00 70.29
BEEF 67.33 +5.73 66.67 63.33
ETHANOLLEVEL 29.68 + 2.95 27.4 27.6
FACEALL 70.32 £4.02 71.36 80.77
INSECTWBSND  58.02 4 0.43 56.16 35.51
LIGHTNING7 64.93 £+ 3.58 57.53 72.6
SHANDGENCH2 92.22 4+ 1.89 76.17 80.17
SHANDMOVCH2 78.42 4 2.48 36.89 58.44
SWEDISHLEAF 81.01 +=1.37 78.88 79.2
YoGga 83.19 £ 0.55 83.03 83.63

Table 2. Comparing accuracy of deep learning based classifier
trained on 1)lower order representation given by WaRTEm
(WaRTEm-DL) and 2)original time series(DL) and XGBoost on
1) WaRTEm embedding (WaRTEm-XGB) 2)original time series
(XGB)

DATASET WARTEM-DL DL \WARTEM-XGB XGB
ARROWHEAD 76.72 £3.03 77.59| 66.38 £4.76 60.92
BEEF 36.21 +=5.61 34.48| 65.86 +=8.78 65.52
ETHANOLLEVEL 54.51 +=7.51 81.96| 34.75+3.77 51.3
FACEALL 14.42 £2.19 11.96| 65.62 +2.3 82.53
INSECTWBSND  62.03 0.8 62.25| 59.59 +1.49 61.85
LIGHTNING7 65.42 +3.65 56.94| 63.19 =4.86 56.94
SHANDGENCH2 94.61 +0.87 65.44| 92.09+ 1.6 91.15
SHANDMOVCH2 33.41 4+ 3.18 20.94 684 +1.9 53.9
SWEDISHLEAF 83.08 £0.73 81.09| 80.37 £1.49 82.37
YoGga 79.67 £1.36 81.73| 79.84 £0.79 79.46

that WaRTEm embeddings are suitable for using with static
models and can help leverage such static models for time
series analysis.

5. Conclusion

We propose WaRTEm, a model for generating lower dimen-
sional vector embeddings for time series data such that the
embeddings exhibit resilience to warping in local neighbor-
hoods. To this end, we introduce two warping operators
which transform time series into their warped variations,
and a novel neural architecture which along with our pro-
posed training strategy, can convert time series data into
their lower dimensional warping resilient embeddings. In
addition to outperforming DTW and Euclidean distance on
NN tasks, the study also demonstrates that our embeddings
lend themselves well to other static learning models.
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