Generative Sequential Stochastic Model for Marked Point Processes

Abhishek Sharma *1 Aritra Ghosh *1 Madalina Fiterau 1

Abstract
Temporal point processes are often used to model the density of time of the next event conditioned on the history, i.e. $f(t_n | H_{t_n})$, $H_{t_n} := \{t_{1:n-1}\}$ (Rasmussen, 2011). Typically, point processes parameters are encoded using the conditional intensity function, $\lambda^*(t) = \lambda(t; H_{<t}) = \Pr[\text{event} \in [t, t+dt)|H_{<t}]$, which given the past, encodes the probability of an event occurring at future time points.

The time likelihood of n^{th} event at time t, given the history is simply $f^*(t) = \lambda^*(t) \exp(-\int_{t_{n-1}}^t \lambda^*(\tau)d\tau)$. The linear form in Eq. 1 allows calculating the time log-likelihood in analytical form. We can also choose to directly model time probability density function using an arbitrary non-linear parameterization (Xiao et al., 2017c). In Section 2, we discuss our model agnostic to any choice of time/intensity density parameterization.

Following the success of the recurrent approach to model point processes, several neural network-based algorithms have been proposed. In an attempt to generalize these processes, Mei & Eisner (2017) proposed the Neural Hawkes process using a modified continuous time LSTM cell. To further incorporate an inherent clustering in the sequence of dynamics, a mixture of Hawkes processes was proposed (Xu & Zha, 2017; Du et al., 2015). However, real-world data is often generated by a mixture of diverse dynamic processes, and an algorithm that learns only certain types of tempo-
ral processes can lead to model bias. For example, in the clinical setting, the health status of a patient with diabetes may decline over time (self-exciting events), while a patient with hypertension may recover over time (self-correcting events) implicating separate point process dynamics within the same electronic health records dataset.

Furthermore, real-world stochasticity is often ignored while modeling point processes. This has been the focus of recent work on augmenting a deep state-space model with a recurrent neural network to effectively model sequential data (Fraccaro et al., 2016; Krishnan et al., 2017). We propose a stochastic sequential generative model for point processes augmented by recurrent deterministic hidden states, stochastic sequential states, and categorical latent states to capture mixtures of different point processes while learning useful cluster representations among the sample dynamics.

In this work, we make the following contributions: we propose two generative models that try to capture the dynamics of marked point processes. These models aim to capture mixtures of point processes that could be generating the data using additional stochastic latent states.

2. Methods

We define a deep generative model, \(p_{\theta} \), with deterministic hidden recurrent states, \(h_{1:T} \), stochastic continuous states, \(z_{1:T} \), as well as a categorical discrete latent state, \(y \), on the temporal dynamics. In the subsequent discussion, we will use \(\tilde{a} \) as a shorthand for \(a_{1:T} \) and use \(A = \{ z, h \} \) to denote initial states. With this overall structure, we propose two models to capture the latent dynamics of the marked temporal point process. In Figure 1, the generative and inference modules are shown for both the models.

2.1. Generative Model

We can write the joint distribution of the data, the continuous states \((z_{1:T}) \), the deterministic states \((h_{1:T}) \), and the discrete categorical prior \((y) \) in the graphical Model 1 (Figure 1a) as:

\[
p_{\theta}(\tilde{x}, \tilde{t}, \tilde{z}, \tilde{h}, y | A) = \prod_{i=1}^{T} p_{\theta_{z}}(z_{i}) p_{\theta_{d}}(x_{i}, t_{i} | y, z_{i}, h_{i})
\times p_{\theta_{h}}(h_{i} | x_{i-1}, t_{i-1}, h_{i-1})
\]

while for Model 2 (Figure 1c), the joint \(p_{\theta}(\tilde{x}, \tilde{t}, \tilde{z}, \tilde{h}, y | A) \) factorizes as:

\[
p_{\theta_{y}}(y) \prod_{i=1}^{T} p_{\theta_{z}}(z_{i} | z_{i-1}) p_{\theta_{h}}(h_{i} | (x, t, h)_{i-1})
\times p_{\theta_{x,z}}((x, t)_{i} | y, (z, h)_{i})
\]

The log-likelihood of observed event and time sequence of the samples \(S \) is,

\[
\mathcal{L}(\theta) = \sum_{i} \log p_{\theta}(x_{1:T}^{i}, t_{1:T}^{i} | z_{0}, h_{0}) = \sum_{i} \mathcal{L}_{i}(\theta)
\]

To aid readability, we omit the sample index \(i \) from the equations to whenever it is clear from context. To compute the log-likelihood, we need to marginalize the variables \(\tilde{z}, \tilde{y} \) and \(\tilde{h} \). The distribution of deterministic states \(h_{i} \) can be thought as a dirac delta function centered at \(\tilde{h}_{i} = f_{\theta_{h}}(h_{i-1}, x_{i-1}, t_{i-1}) \) and \(\theta_{h} \) being the RNN parameters. Thus by replacing \(h_{1:T} \) with \(h_{i} \), we can marginalize \(h \) (Fraccaro et al., 2016). The marginalization of the discrete state, as well as sequential continuous states, can be approximated using ancestral Monte Carlo sampling. We discuss this in the subsequent section.

2.2. Inference Model

To maximize log-likelihood of the observed data, stochastic sequential states as well as the discrete latent states need to be marginalized out. Due to non-linear nature of the parameterization, analytically marginalizing out the variables is not possible. Furthermore, for the non-linearly dependent categorical discrete latent variable, exact inference would increase computation as \(O(K) \) where \(K \) is the number of states the variable can take. For large enough datasets, even
Figure 1. (a) Generative Model for Model 1 (b) Inference Model for Model 1, (c) Generative Model for Model 2 (d) Inference Model for Model 2. z_i are stochastic sequential nodes. y is categorical latent state. h and a are deterministic hidden states of forward and reverse RNN. x, t are observation of the marked temporal point process.

the linear increase in computation is impractical. Thus, we resort to variational inference, where we maximize the variational evidence lower bound (ELBO), $\mathcal{F}(\theta, \phi)$, to the likelihood. We estimate the posterior distribution $p_h(\tilde{z}, y, \tilde{h}, \tilde{t})$ with an approximate posterior $q_\phi(\tilde{z}, y, \tilde{h}, \tilde{t})$. Thus the log-likelihood can be written as:

$$L(\theta) \geq \mathcal{F}(\theta, \phi) = \int q_\phi(\tilde{z}, \tilde{h}, y|\tilde{x}, \tilde{t}, A) \log \frac{p_\theta(\tilde{z}, \tilde{h}, \tilde{x}, \tilde{t}, y|A)}{q_\phi(\tilde{z}, \tilde{h}, \tilde{x}, \tilde{t}, y|A)} dy d\tilde{z} d\tilde{h}$$

where ϕ are the parameters of the variational bayes inference network while θ are the parameters of the generative neural network. We can maximize $\{\theta, \phi\}$ using stochastic gradient ascent.

To efficiently perform inference, we factorize the joint in a way that exploits the temporal structure of the model. Also, we do the same for the posterior to get the following decomposition for Model 1:

$$p_\theta(\tilde{z}, \tilde{h}, y|\tilde{x}, \tilde{t}, A) = p_\theta(y|\tilde{x}, \tilde{t}, \tilde{h}, \tilde{x}) \prod_i p_\theta(z_i|\langle x, t \rangle_i, y, \tilde{h}_i)$$

We design our approximate posterior to take the same factorized form:

$$q_\phi(\tilde{z}, \tilde{h}, y|\tilde{x}, \tilde{t}, A) = q_\phi(y|\tilde{x}, \tilde{t}, \tilde{h}, \tilde{x}) \prod_i q_\phi(z_i|\langle x, t \rangle_i, y, \tilde{h}_i)$$

where the deterministic hidden state $\tilde{h}_i = f_{\theta_h}(\tilde{h}_{i-1}, x_{i-1}, t_{i-1})$ accounts for the effect of the past.

Similarly, for Model 2, the factorization of the posterior and its approximation are:

$$p_\theta(\tilde{z}, \tilde{h}, y|\tilde{x}, \tilde{t}, A) = p_\theta(y|\tilde{x}, \tilde{t}, \tilde{h}, \tilde{x}) \prod_{i=1}^T p_\theta(z_i|z_{i-1}, \langle x, t \rangle_{i:T}, y, \tilde{h}_{i:T})$$

$$q_\phi(\tilde{z}, \tilde{h}, y|\tilde{x}, \tilde{t}, A) = q_\phi(y|\tilde{x}, \tilde{t}, \tilde{h}, \tilde{x}) \prod_{i=1}^T q_\phi(z_i|z_{i-1}, \langle x, t \rangle_{i:T}, y, \tilde{h}_{i:T})$$

Now we discuss how we sample from each of these distributions in the approximate posterior. Approximate posterior of the categorical latent variable, $q_\phi(y|\tilde{x}, \tilde{t}, \tilde{h}, \tilde{x})$ is a Categorical distribution, parameterized by a neural network that takes in the observed variables and the hidden states as input. We accomplish this using a reverse RNN but choose to drop the dependence on \tilde{h} for Model 1 to keep its inference much faster. The hidden state of the reverse RNN evolves as $a_t = f_\theta_h(a_{t+1}, \langle x_t, t_t, \tilde{h}_t \rangle)$. This is usually a fast and independent step, which only requires the knowledge of the inputs x_t, t_t to compute. The inference network for continuous latent variables z_t is amortized over time and is modeled using a diagonal Gaussian: $z_t \sim \mathcal{N}(\mu^t_z, \sigma^t_z)$. The parameters of this distribution have no temporal dependence in the case of Model 1, leading to much faster inference. In the case of Model 2, since there is temporal dependence of z_t on z_{t-1} (all the other inputs to this network can be computed beforehand), we need to perform inference in a serial manner.

We can sample a sequence \tilde{z} using ancestral sampling, starting with sampling from z_1, using the sampled z_{i-1} to obtain the next distribution. Each of these sampling steps is performed in a differentiable manner using the reparameterization trick (Kingma & Welling, 2013). Next, we discuss...
We evaluate our models on both synthetically generated datasets. The expected behavior provided by the REINFORCE method (Williams, 2005) had a high variance for our experiments. Therefore we choose the Gumbel-softmax estimator (Jang et al., 2016), which provides a biased, but low variance estimator for the gradient, in practice.

Given the generative and inference network parameters \(\{\theta, \phi\} \), we take a Monte Carlo sample using the reparameterization trick and maximize the ELBO \(^2\) using stochastic gradient ascent.

3. Experiments

We evaluate our models on both synthetically generated and real-world datasets. For both cases, we report the log-likelihood (ELBO for our model which is a lower bound on the log-likelihood). The datasets we choose/generate differ greatly from each other in sequence-lengths, time-scales, and domains. We compare our results with the Recurrent Marked Temporal Point Process (RMTPP) model (Du et al., 2016). For all the experiments, we model the timestamp likelihood, \(f^*(t) \), using a Gaussian distribution (Xiao et al., 2017c). Our inference network uses smoothing, thus the predictive metrics (e.g., the accuracy of next event, rmse of next event time) of future time steps are not valid. All models were implemented using PyTorch. All expectations were approximated (wherever necessary) using single samples to reduce runtime of the models.

3.1. Synthetic Data

To illustrate the effect of a mixture of multiple disparate point processes, we generate sequences from the Hawkes process, Homogenous Poisson Process, Non-homogenous Poisson process, and Self-correcting process. To generate a sequence from a process, we randomly sample \(k \) separate sets of pertinent parameters, where \(k \in \{4, 8, 16\} \). For each set of \(k \) parameters, we sample 200 training sequences, 40 validation sequences and 50 test sequences. The mean and median sequence lengths for the training dataset is \(\sim 35 \) and \(\sim 20 \) respectively. We report the log-likelihood numbers in Table 1. Additional details about the synthetic data, parameters, hyper-parameter and network structure are provided in Appendix C.

3.2. Real World Data

We evaluate our model on five real-world datasets and report the results in Table 2. The MIMIC-II, Stack Overflow, and Financial datasets were processed as described in (Du et al., 2016), while the preprocessing of MemeTrack and Retweets datasets was identical to that of (Mei & Eisner, 2017).

From Table 2, we can observe that extra stochasticity (through latent states) can be powerful in modeling sequential behavior of marked point processes. MemeTrack and LastFM datasets contain 5000 and 3150 dimensional categorical markers, which makes it a difficult task to extract information from them to help the modeling process. We posit that this is a potential reason that the improvement in our model in these two datasets is small. MIMIC-II dataset also contains about 585 samples with 75 marker labels, making it difficult to effectively learn the behavior.

4. Discussion & Future Work

In this work, we propose a stochastic sequential model which combines both deep state space model as well as the deterministic RNN for modeling marked temporal point processes. To perform inference, we used smoothing techniques. However, in practical applications we are often interested in the prediction task, which leads us take up filtering as part of future work. With respect to the modeling decisions, instead of assuming conditionally independence for the marker and timestamp at a certain point in time, jointly modeling them dependent should make the model more effective. Finally, while using Gaussian distribution to model the time density allows us to parameterize any non-linear function, the conditional intensity function is more meaningful in case of point processes. Furthermore, modeling conditional intensity as a non-linear function also remains a challenge. We intend to compare these design choices as part of future work.

\(^2\)derived in the supplementary section

Table 1. Average log-likelihood for synthetic data for different sizes of parameter sets

<table>
<thead>
<tr>
<th>(k)</th>
<th>RMTPP</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>−0.0694</td>
<td>≥ 0.1311</td>
<td>≥ 0.2285</td>
</tr>
<tr>
<td>8</td>
<td>−0.0672</td>
<td>≥ 0.0003</td>
<td>≥ 0.1863</td>
</tr>
<tr>
<td>16</td>
<td>−0.1776</td>
<td>≥ 0.0209</td>
<td>≥ 0.0445</td>
</tr>
</tbody>
</table>

Table 2. Average log-likelihood for real-world datasets using Gaussian parameterization of time density

<table>
<thead>
<tr>
<th>DATASET</th>
<th>RMTPP</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIMIC-II</td>
<td>−2.0668</td>
<td>≥ −1.8330</td>
<td>≥ −1.7462</td>
</tr>
<tr>
<td>Stack Overflow</td>
<td>−5.1148</td>
<td>≥ −4.0039</td>
<td>≥ −3.3568</td>
</tr>
<tr>
<td>MemeTrack</td>
<td>−2.5614</td>
<td>≥ −2.5930</td>
<td>≥ −2.5117</td>
</tr>
<tr>
<td>Retweet</td>
<td>−1.2560</td>
<td>≥ −0.0765</td>
<td>≥ 0.2707</td>
</tr>
<tr>
<td>Financial</td>
<td>−0.4008</td>
<td>≥ 0.6687</td>
<td>≥ 1.1937</td>
</tr>
<tr>
<td>LastFM</td>
<td>−8.0050</td>
<td>≥ −7.9869</td>
<td>≥ −6.7539</td>
</tr>
</tbody>
</table>
References

A. Related Work

Temporal point processes have been widely used for modeling complex dynamics in the field of finance, econometrics, information diffusion (Du et al., 2013; Rodriguez et al., 2011; Zhao et al., 2015). Hawkes process has been used to model self-exciting events such as after-shocks of earthquakes (Hawkes & Oakes, 1974; Bacry et al., 2016). However, most standard point processes incorporate some assumptions about the distribution of the time intervals. In the case of the Poisson process, distribution of event intervals is a stationary process while non-homogeneous Poisson process model time-dependent intervals, while still being independent of the history. Hawkes processes and self-correcting processes have explicit dependence on history to model future time steps.

In a different formulation, Du et al. (2016) use a recurrent neural network to model marked temporal point processes. The RNN models do not need any specific assumption about the model, and yet are very effective in learning future timesteps from history through their memory state. Furthermore, recently different neural network structure has been proposed to model either the conditional intensity function or explicit time interval successfully (Yang et al., 2018; Xiao et al., 2017a; Zhao et al., 2017; Li et al., 2017; Wang et al., 2017; Xiao et al., 2017b). The use of a neural network to compute the Hawkes process parameter has been also proposed (Mei & Eisner, 2017).

On the other hand, models have been proposed to learn a hierarchical structure of the point process. Dirichlet Hawkes process has been proposed to learn mixture of Hawkes process in the presence of multiple clusters (Xu & Zha, 2017). In (Sharma et al., 2018), the authors proposed a sequential state space model to understand larval zebrafish behavior. Our work takes the latter approach where we like to learn some disentangled representation. While RNN is powerful in modeling time-intensity function, explanability is often lost due to their black-box nature. On the other hand, parameterizing point processes using the standard model may not be enough. Real world data might be a mixture of different standard processes with different parameters.

There has been a lot of progress in stochastic sequential modeling. It has been shown that deterministic hidden states are not enough to model real-world stochasticity (Fraccaro et al., 2016; Krishnan et al., 2017). Based on the seminal work of Kingma & Welling (2013) on auto-encoding variational Bayes, several stochastic sequential models have been proposed, showing state of the art log-likelihoods on speech and audio datasets (Chung et al., 2015; Bayer & Osendorfer, 2014; Maddison et al., 2017; Goyal et al., 2017). However, learning a hierarchical structure from a deep generative model has not found much success (Zhao et al., 2017). It has been observed that if the lower layer latent state can max-
imize the ELBO objective, a higher layer latent state will collapse to prior distribution minimizing the KL divergence loss. Several tricks have been applied to learn to prevent this. In the KL annealing trick, loss from KL divergence is given weight from 0 to 1 over several epochs (Fraccaro et al., 2016). In β-VAE, authors outweighed KL loss to learn disentangled useful representation (Higgins et al., 2017). Discrete latent variables pose their own challenge in that they’re not amenable to the reparameterization trick. Thus, several algorithms have been proposed using biased Gumbel softmax trick, unbiased REINFORCE algorithm (Jang et al., 2016; Williams, 2005). While using Gumbel-softmax distribution to approximate categorical distribution results in a biased estimate, variance decreases largely compared to the REINFORCE estimator.

B. Model Derivation

In this section, we use \tilde{a} as a shorthand for $a_{1:T}$. We can derive the lower bound on the likelihood $L((x, t)_{1:T})$:

$$\log p_0((x, t)_{1:T})$$

$$\geq \int_{y, z, h} q_0(z, y, h) \log \frac{p_0(h, \tilde{y}, \tilde{t}, z, \tilde{h})}{q_0(\tilde{z}, y, h | x, t)}$$

$$= \mathbb{E}_{q_0(z, y, h | x, t)} \left[p_0(\tilde{y}, \tilde{t} | y, z, h) \right] - \text{KL} \left(q_0(z, y | x, t) \| p_0(y, z) \right)$$

For simplicity of the equations, we replace (x, t), with x.

B.1. Model 1

The expectation term can be written as:

$$\mathbb{E}_{q_0(z, y, h | x)} \left[\prod_{t=1}^T \log p_0(x_t | y, h_t, z_t) \right]$$

$$= \sum_{t=1}^T \int \int \int q_0(\tilde{y} | x) q_0(y | \tilde{h}, \tilde{x}) q_0(\tilde{x} | \tilde{y}, \tilde{t}) \log p_0(x_t | y, h_t, z_t)$$

$$= \sum_{t=1}^T \int \int q_0(y | \tilde{h}, \tilde{x}) q_0(z_t | \tilde{h}, y, x_t) \times \log p_0(x_t | y, h_t, z_t)$$

$$= \sum_{t=1}^T \int \int q_0(y | \tilde{h}, \tilde{x}) q_0(z_t | \tilde{h}, y, x_t) \times \log p_0(x_t | y, h_t, z_t)$$

$$= \sum_{t=1}^T \mathbb{E}_{q_0(y | \tilde{h}, \tilde{x})} \mathbb{E}_{q_0(z_t | \tilde{h}, y, x_t)} \left[\log p_0(x_t | y, \tilde{h}_t, z_t) \right]$$

The KL term:

$$\text{KL} \left(q_0(y, \tilde{z}, \tilde{h} | \tilde{x}) \| p_0(y \prod_{t=1}^T p_0(h_t | h_{t-1}x_{t-1}) p_0(z_t | z_{t-1}) \right)$$

$$= \int \int q_0(y | \tilde{h}, \tilde{x}) q_0(\tilde{z} | \tilde{h}, y, \tilde{x})$$

$$\times \left[\log \frac{q_0(y | \tilde{h}, \tilde{x})}{p_0(y)} + \log \frac{q_0(\tilde{z} | \tilde{h}, y, \tilde{x})}{\prod_{t=1}^T p_0(z_t | z_{t-1})} \right]$$

$$= \text{KL} \left(q_0(y | \tilde{h}, \tilde{x}) \| p_0(y) \right) + \sum_{t=1}^T \int \int q_0(y | \tilde{h}, \tilde{x}) \times q_0(z_t | \tilde{h}_t, y, x_t) \log \frac{q_0(z_t | \tilde{h}_t, y, x_t)}{p_0(z_t)}$$

$$= \text{KL} \left(q_0(y | \tilde{h}, \tilde{x}) \| p_0(y) \right)$$

B.2. Model 2

The expectation term:

$$\mathbb{E}_{q_0(y, \tilde{h}, \tilde{x} | x)} \left[\prod_{t=1}^T \log p_0(x_t | y, h_t, z_t) \right]$$

$$= \sum_{t=1}^T \int \int \int q_0(\tilde{y} | x) q_0(y | \tilde{h}, \tilde{x}) q_0(\tilde{x} | \tilde{y}, \tilde{t}) \log p_0(x_t | y, h_t, z_t)$$

$$= \sum_{t=1}^T \int \int q_0(y | \tilde{h}, \tilde{x}) q_0(z_t | \tilde{h}, y, x_t) \times \log p_0(x_t | y, h_t, z_t)$$

$$= \sum_{t=1}^T \mathbb{E}_{q_0(y | \tilde{h}, \tilde{x})} \mathbb{E}_{q_0(z_t | \tilde{h}, y, x_t)} \left[\log p_0(x_t | y, \tilde{h}_t, z_t) \right]$$

The KL term:

$$\text{KL} \left(q_0(y, \tilde{z}, \tilde{h} | \tilde{x}) \| p_0(y \prod_{t=1}^T p_0(h_t | h_{t-1}x_{t-1}) p_0(z_t | z_{t-1}) \right)$$
Generative Marked Point Processes

\[
= \int \int q_\theta(y \mid \tilde{h}, \tilde{x}) q_\phi(\tilde{z} \mid \tilde{h}, y, \tilde{x}) \times \left[\log \frac{q_\phi(\tilde{z} \mid \tilde{h}, y, \tilde{x})}{\prod_{t=1}^T p_\theta(z_t \mid z_{t-1})} + \log \frac{q_\phi(y \mid \tilde{h}, \tilde{x})}{p_\theta(y)} \right] \\
= KL \left(q_\phi(y \mid \tilde{h}, \tilde{x}) \parallel p_\theta(y) \right) + \sum_{t=1}^T \int y, z_{t-1}, z_t \ q_\phi(z_{t-1} \mid \tilde{h}_{t-1:T}, y, x_{t-1:T}, z_{t-2}) \times q_\phi(y \mid \tilde{h}, \tilde{x}) q_\phi(z_t \mid \tilde{h}_{t:T}, y, x_{t:T}, z_{t-1}) \times \log \frac{q_\phi(z_t \mid \tilde{h}_{t:T}, y, x_{t:T}, z_{t-1})}{p_\theta(z_t \mid z_{t-1})} \\
= KL \left(q_\phi(y \mid \tilde{h}, \tilde{x}) \parallel p_\theta(y) \right) + \sum_{t=1}^T \mathbb{E}_{q_\phi(y \mid \tilde{h}, \tilde{x})} \mathbb{E}_{q_\phi(z_{t-1} \mid \tilde{h}_{t-1:T}, y, x_{t-1:T}, z_{t-2})} \left[KL \left(q_\phi(z_t \mid \tilde{h}_{t:T}, y, x_{t:T}, z_{t-1}) \parallel p_\theta(z_t \mid z_{t-1}) \right) \right]
\]

C. More Experimental Details

C.1. Synthetic Dataset

To illustrate the effect of mixture of multiple disparate point processes, we generate sequences from Hawkes process, Homogenous Poisson Process, Non-homogenous Poisson process and Self-correcting process.

C.1.1. HAWKES PROCESS

Conditional Intensity function of Hawkes process is defined as:

\[
\lambda^*(t) = \lambda_0 + \alpha \sum_{i:t_i < t} \exp \left(-\frac{t - t_i}{\sigma} \right)
\]

The parameters necessary for defining this density are \(\Theta = \{\lambda_0, \alpha, \beta\}\). We sample \(\lambda_0 \sim \text{unif}(0, 2), \alpha \sim \text{unif}(0, 1), \sigma \sim \text{unif}(\alpha, 1)\). We do this \(k\) times, where \(k \in \{4, 8, 16\}\). For each of the values of \(k\)

C.1.2. SELF-CORRECTING PROCESS

For self-correcting point process, conditional intensity function can be written as:

\[
\lambda^*(t) = \exp(\mu t - \sum_{i:t_i < t} \alpha)
\]

The parameters necessary for defining this density are \(\Theta = \{\mu, \alpha\}\). We sample \(\mu \sim \text{unif}(0.5, 1.5), \alpha \sim \text{unif}(0.1, 0.5)\).

C.1.3. HOMOGENEOUS POISSON PROCESS

For Homogeneous Poisson process, the intensity function is constant, i.e., \(\lambda^*(t) = \lambda_0\). The parameters necessary for defining this density are \(\Theta = \{\lambda_0\}\), sampled as \(\alpha \sim \text{unif}(0.1, 1)\).

C.1.4. NON-HOMOGENEOUS POISSON PROCESS

For non-homogeneous Poisson process, the intensity function is independent of the past, but is still a function of time. We define the intensity function as:

\[
\lambda^*(t) = 0.08 \cdot (0.1 \sin(\pi t) + 0.3 \cos(0.4 \pi t) + 1)
\]

For the purposes of illustration, we did not incorporate any marker information into the sequences.

C.2. Real-world Dataset

We provided empirical performance on six real world datasets from various domain used in previous research (Du et al., 2016; Mei & Eisner, 2017). For all datasets, 20% of training data was further splitted in validation dataset.

- **MIMIC-II** contains deidentified clinical visits information from critical care patient from the year 2002 to 2009. Event data encodes major disease of the patients over time and the time information represents the interval after which patient visits the hospital. We used benchmark datasets from earlier research. There are 585 and 65 patients in the training and testing datasets. Number of disease was 75.

- **Financial Transaction dataset** was collected from raw limited book order of high frequency transaction from NYSE for a stock. Events are either Buy or Sell. Input data contains a single sequence of buy or sell events. Train and test sequence length is 624,149 and 69,350.

- **Stackoverflow Dataset** contains awarded badge information of the users. The data was collected from the period of 2012-01-01 to 2014-01-01 resulting 480K events from 6K users for a total of 22 different types of badges.

- **Meme-Tracker Dataset** has 5000 event or online media site. The sequence for a meme defines what time it will be mentioned at some website. Training dataset contains 93267 event tokens and test dataset contains 14932 event tokes.

- **Retweet Dataset** contains retweet history of many tweet sequences. Event type classifies popularity of

3 https://github.com/dunan/NeuralPointProcess
4 https://github.com/HMEJH/NeuralPointProcess

Generative Marked Point Processes

The retweeter among small, medium and large tweeter. Number of training and testing events are 1739547 and 215521.

- **LastFM** dataset contains sequential listening habits of users involving millions of songs. The datasets contains 3150 events.

C.3. Experimental Framework

For all experiments, we used early stopping on validation dataset, and the model at stopping epoch was used for testing. We only computed log-likelihood for the models.

C.3.1. Hyper-Parameters

We used the following hyper-parameter settings:

1. We used GRU implementation of RNN in PyTorch. Hidden state size of the RNN is varied from \{128, 256, 512\}.
2. Batch size was fixed to 32 for all datasets, except for financial transaction dataset which had only few long sequences as train data. We used batch size of 10 for financial transaction dataset.
3. We used Maxgradnorm, l2 as well as dropout regularizations. Maxgradnorm was varied in \{0.1, 1., 10.\}. Dropout was varied in \{0.25, 0.4\}. L2 (weight decay) regularization was varied in \{10^{-5}, 10^{-3}\}.
4. Number of cluster \(k\) for variable \(y\) was set to 10 for Model 1 and Model 2. Latent variable \(z\) dimension was fixed to 32.
5. We annealed KL loss from 0 to 1 over 40 epochs.
6. Learning rates that were tried were \(1e^{-3}\) and \(1e^{-4}\). The optimizer used was ADAM.

C.3.2. Network Architecture

The network architecture was fixed as follows.

1. The marker and time information was embedded into fixed dimension of 128 and 8 respectively before feeding to RNN. We used a shared representation layer of dimension 256 from hidden states to output before creating the output event and time prediction.
2. We used ReLU as a non-linearity after each hidden state. From shared output representation, we used two multi-layer perceptron to predict time as well as event outputs. We used dropout regularizer at this layer.
3. For all models, we compute \(\mu_t\) as well as \(\log\var_t\) instead of a point estimation for the next event’s timestamp. This allows us to compute log-likelihood while flexibly modeling variance in the observation.
4. For modeling marker information, the marker network models the logits in case of categorical marker. For real valued marker, similar to time, we parameterize mean and standard deviation of the output using a Normal distribution. For multi-label marker, we used a sigmoid at the output layer to separate give us the probability of each of the events occurring.
5. For our proposed model, we used additional reverse RNN which takes input as shown in Figure 1. Hidden dimension of the reverse RNN is kept same as the forward RNN.
6. The inference module for \(z\) is shared over time and implemented using a MLP with a ReLU non-linearity and dropout regularization. The inference network for Categorical random variable was parameterized using the final state of the Reverse RNN.
7. The full generative and inference network was then trained with stochastic gradient ascent with maxgradnorm and weight decay.