Learning Poisson Intensities with Pseudo Mirror Descent

Abstract

Learning the intensity functions of a Poisson pro-
cess when approached by maximizing the likeli-
hood often proves to be computationally challeng-
ing, This stems from the positivity constraint on
the intensity function which requires expensive
projections at each iteration of the optimization
algorithm. In this paper, we propose a novel algo-
rithm, pseudo mirror descent, that yields efficient
an estimate of intensity functions without perform-
ing expensive projections. The algorithm ensures
the positivity of the estimate of the intensity by
applying a multiplicative update rule. It also guar-
antees the smoothness of intermediate updates by
exploiting pseudo-gradients. We provide a the-
oretical convergence analysis of the algorithm.
Additionally, through simulations, we show that
pseudo mirror descent outperforms the state-of-
the-art benchmarks for learning Poisson processes
both in terms of computational efficiency and pre-
diction accuracy.

1. Introduction

Point processes are the mathematical abstraction used in the
modeling and analysis of discrete events that arise in a wide
range of applications such as finance (Bacry et al., 2015),
social networks (Zhou et al., 2013), computer vision (Ge &
Collins, 2009), neuroscience (Quinn et al., 2011), etc.. Yet,
learning point processes, or more precisely, their intensity
functions, poses a major challenge mainly because the in-
tensity functions must be positive, a constraint that often
requires performing projections especially in the nonpara-
metric setting (see discussions in (Yang et al., 2017)). The
projection step could be computationally expensive, even
for simple Poisson processes.

For a Poisson process over [0, 1], learning the intensity func-
tion through maximizing the likelihood requires solving the
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where H is some function space and H is the part of H
that contains pointwise positive functions over their support,
and ¢, ...,ty are sampled from the Poisson process with
intensity z*(t).

A good learning algorithm that solves (1) must be able to:
(1) efficiently enforce the positivity constraint on intensity x,
and (ii) guarantee the smoothness of the estimate. Previous
work guaranteed the smoothness by requiring H to be a re-
producing kernel Hilbert space with a smooth kernel (Yang
et al., 2017; Bagnell & Farahmand, 2015; Flaxman et al.,
2017), or by adding regularization on the derivative of the
estiamtes (Yuan et al., 2010; Koenker et al.). Meanwhile,
the positivity constraint in some work was enforced either
by performing projection, which requires solving quadratic
programs (Yang et al., 2017; Sarfraz et al., 2010; Wahba,
1990) or by semi-definite relaxations (Bagnell & Farahmand,
2015). However, none of them scales well. Alternatively,
the positivity can be ensured by introducing a nonlinear link
function, e.g., x(t) = y*(t), which transforms (1) into an
unconstrained problem (Flaxman et al., 2017). However,
this could easily break convexity of the problem formulation
and consequently prevent obtaining theoretical guarantees.
Thus, an efficient algorithm with theoretical guarantees re-
mained elusive.

1.1. Our Contribution

We propose a novel algorithm, pseudo mirror descent, to
solve problem (1). Unlike existing approaches, which as-
sume H is an RKHS, we learn the Poisson intensity over
£L5([0, 1]), the space of square integrable functions equipped
with inner product (x, y) f[o 1] t)dt. We restrict
z to be continuous, so that the 0pt1mlzat10n problem is
well-defined. Positivity of x is ensured by imposing a multi-
plicative update inspired by the mirror descent (Nemirovski
& Yudin, 1983) as follows:

20D _ () (k+1))

exp{—kg
where z(®) is the update at the k-th iteration, and 7, is the
step size. Function ¢(*) is a pseudo-gradient, a properly
selected smooth function that is closely aligned with the
true gradient. The introduction of a pseudo-gradient is nec-
essary as the functional gradient of the maximum likelihood
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objective contains Dirac’s delta function, breaking the con-
tinuity of the updates. Generalizing the analysis in (Poljak
& Tsypkin, 1973), we provide theoretical guarantees for
pseudo mirror descent, showing O(1/k) convergence in ob-
jective value for n, = ©(1/k), in parallel to the rates of
stochastic gradient descent (Bottou et al., 2018). Numeri-
cally, we show that pseudo mirror descent generates fast and
competitive performance compared with the state-of-the-art
benchmarks from the aforementioned approaches. Last but
not least, the pseudo mirror descent algorithm can be easily
generalized to handle learning tasks on more complicated
point processes, such as spatial Poisson point processes,
multivariate Hawkes processes (Hawkes, 1971), etc..

2. Preliminaries on Poisson Processes

A nonhomogeneous Poisson process, N (t), is a counting
process whose behavior is determined solely by its intensity
function z* (). The value x*(¢) describes the average rate
of arrival at time ¢: E[dN (¢t)] = «*(¢)dt; while E[N(¢)] is
a Poisson random variable with rate fot x*(r)dr.

For a Poisson process, the negative of its log-likelihood
over one sample path that has arrival times %1, ..
represented in (1). If we take expectation over the sample
path, we obtain the negative of the expected log-likelihood:

.,tN is

f(z) = / o(t) — () logz(t)dt, ()

which is the average of the negative log-likelihood evalu-
ated over infinite number of sample paths. Indeed, if we
minimize f(z), the first order condition implies z*(¢) to be
the optimal solution because [V f(z)](t) = 1 — x*(t)/x(t).

3. Pseudo Mirror Descent

We present the pseudo mirror descent in Algorithm 1. The
core of the algorithm is the multiplicative rule that guaran-
tees positivity of z(¥) if £(*=1) is positive. This rule was
inspired by the classic mirror descent (Nemirovski & Yudin,
1983), and obtained via solving

k) — argmin {(g(k),@ + nl:—llA‘b (I’I(kil))} )
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where ¢(®) is a function that plays the role of the gradient
of objective (1) or (2), and Ag (x, z(*~1)) is the Bregman
divergence induced by a strongly convex function ®:
Ao(w,27D) = B(x) — D(a*D) -
— (VO (xFY), 2 — D),

For the purpose of guaranteeing positivity, we choose specif-
ically ®(z) = (x,log x — 1), which yields the multiplicative
update rule in Algorithm 1.

A major challenge facing the pseudo mirror descent is the
selection of the function ¢g(*) in (3), which, according to the
mirror descent algorithm, should either be the functional
gradient of (1) if we were to solve the maximum likelihood
objective, or the functional gradient of (2) if we were to
optimize over the expected log-likelihood. However, each
approach has its respective issue: on one hand, in order to
obtain the multiplicative update rule, the optimization of (3)
must be over £3[0, 1], but the £ gradient of the maximum
likelihood objective contains Dirac’s delta functions, which
makes the update discontinuous; on the other hand, the com-
putation of V f () requires the information of z*(t¢), which
is unavailable in practice. In order to solve the challenge of
generating an update that is both positive and continuous,
we introduce the concept of pseudo-gradients.

3.1. Pseudo-gradients

A function ¢(*) is a pseudo-gradient with respect to f and
& if it satisfies

(E[g®|FED], Ve (VER(2F1))) > 0,

where F(*~1) is the minimum o-algebra generated by
the intermediate updates z(®), ... 2(*=Y and fs(x) =
f(V®*(z)) with ®* being the Fenchel conjugate of ®.

Intuitively, a pseudo-gradient is a random function that
aligns closely with the direction of the true gradient. The
quantity V f(V®(x)) is a generalization of the gradient,
which can be retained upon setting ®(z) = ||z||3/2.

For the Poisson process problem of our interest, we have
V&(x) =logz, VO*(x) = exp(x), and

ful2) = [ om0t = [ o000t

Hence, Vf3(V®(z)) = x — z*. In practice, one does not
have access to the information of x*. Instead, only samples
can be drawn from a Poisson process with intensity function
being z*. Therefore, a natural pseudo-gradient to choose is

N
g(t) = /1 z(T)K(t,7)dr — Z K(m,t),
0 i=1
where K (-, -) is a positive definite kernel, and 74, ..., 7§
are arrival times sampled from a Poisson process with in-
tensity 2* (t) over the interval [0, 1]. Since E[g(*)|F (k=)
is the kernel embedding of V f5(V®(2(*~1))), we can im-
mediately show that g(¥) is a pseudo-gradient.
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Algorithm 1 Pseudo Mirror Descent

I: Input: iteration number T'; step sizes {ny}}_,; nega-
tive expected log-likelihood f, ®(z) = (x,logx — 1).
- Initialize z(°) € #_, positive and continuous.
:fork=1toT do
Compute pseudo-gradient g(*).
a® = 2= exp{—np_1g™}.
end for
: Output: z(T),

3.2. Asymptotic Convergence

In this section, we analyze the convergence of the proposed
pseudo mirror descent algorithm. To proceed, we make the
following basic assumptions.

Assumption 1 (General assumptions).

(i) The minimum of f, denoted by f*, is finite.

(ii) The functional f is Gateaux differentiable and M-
smooth: f(y) < f(z) + (Vf(z),y —x) + Flly -
||, Ve,y € H.

(iii) ®(z) = (x,logx—1), which is p-strongly-convex with
respect to || - ||1 when ||x]|oo < p L.

Under the above assumptions, we show that the inner prod-
uct between the pseudo-gradient and the true gradient con-
verges to 0.
Theorem 1. Suppose Assumption 1 holds, and for Al-
gorithm 1, suppose that the step sizes satisfy ni, > 0,
ZZO:O nE = 0o, and Zzio ni < oo. In addition, suppose
g%)’s satisfy, for some sequence \p, ZZOZO n]%)\k+1 < 00,
and for universal positive constants K1 and Ko,
Ellg™ 15| F* V] < A + K f(z*7 )+
+K2(V fa (VO(2*)), Elg™ 7)),

Under these assumptions, for x*)

1, limy oo f(x(k)) exists almost surely, and

lim inf(V fo (VO (z*~D)), E[g®|FE-D]) =0
— 00

generated by Algorithm

almost surely.

Remark 2. When the pseudo-gradient is properly selected,
the above theorem further implies that the gradient norm
converges to 0. For example, suppose that for Algorithm 1,
g\ satisfies E[g®)| FE=D] = V f(VO(x*~1D)). Then
limy o0 |[VF(2®)||o = 0 in probability. (See proof in
Appendix.)

We now provide a non-asymptotic convergence result to
characterize the accuracy of the estimate under finite number
of iterations.

3.3. Non-asymptotic Convergence Analysis

We assume that the original problem satisfies the Polyak-
Lojasiewicz condition (Polyak, 1963).

Assumption 2 (Polyak-Lojasiewicz condition). For any
x € H, suppose there exists vy > 0, such that

LIV = A (@)~ ).

Indeed, we can verify that the objective function of our
interest satisfies Polyak-Lojasiewicz condition with constant
v when sup, x(t) < (2v)~! (See Appendix B for proof).

The above condition is commonly used to guarantee linear
convergence of stochastic gradient descent up to a certain
distance of the optimal value when constant step size is
used (Karimi et al., 2016), or sublinear convergence with
diminishing step size. Below, we show a parallel result for
pseudo mirror descent.

Theorem 3. Suppose that Assumptions 1 and 2 hold, and
that there exists a universal constant c; > 0 such that for

all x%) satisfying f(fc(k)) # [
E[(V fo(VO(z*1)), E[g* | FE=D])]
> o1 E||V fo (VO(2™))]5. 4)

In  addition, suppose  there  exists  constants
co and c3 such that E[|g™|2] < A3 +
ARV f5(VO(2F~1)), E[g) | F*=1))], and that there
exists a constant \1 such that sup, (Amax(VZ2®(x))) < Ay,
where Amax is the largest eigenvalue of V2®(x). Under
these assumptions, we have

e Constant step size: choosing nm, = n <
min{\?/(2yey), 2M ~ ez %}, we have
Mp~'n? ,

E[f(™) = f1< Gl ) = 1T+ =5,

where Co = 1 — 2yc1 A2 (7] — M“;WQ 032))

e Decreasing step size: choosing n, = min{(2k +
1)/[yei Ay 2(k + 1)), M~ ey}, we have, for k >
Me3AY/ (yerp),

Mp~tc3
E (k) _ % < H_C
FE) =P < S sann

4. Numerical Experiment
4.1. Synthetic Dataset

Simulation setup. We set z*(¢) = exp(—t), and simulated
n=10% trajectories, each containing a set of arrival times
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Figure 1. Convergence of objective value for pseudo mirror descent under constant (left) and vanishing (middle) step sizes, as well as the

Lo error of the estimate (right).

in [0, 1]. When executing Algorithm 1, the pseudo gradient
was computed from a set of 10 randomly chosen trajectories
out of the entire pool. The number of iterations was set to
10°, and the initialization was () (¢) = 10.

Results. We plot log(f(x(¥))— f*) versus the iteration num-
ber k in Figure 1. The left-hand side, which uses constant
step sizes, shows almost linear convergence at the beginning;
the subplot in the middle, which uses diminishing step size,
shows sublinear convergence. We also plot the Ly-error of
the estimates generated by the pseudo mirror descent, pro-
jected gradient descent, and the link function approaches,
over the first 1000 iterations, shown on the right-hand side of
the figure. The hyper parameters of all algorithms were fine
tuned to optimize their respective performances. By compar-
ison, pseudo mirror descent generates superior performance
over the benchmarks.

4.2. Real Dataset: Learning London Traffic Accidents

Experiment setup. We tested the performance of pseudo
mirror descent on a dataset that contains the traffic accidents
between 2005 and 2007 in London. The dataset is available
online, 'and contains more than 60000 entries. Each entry
records a traffic accident, including its time of happening,
and other information. For our purpose, we modeled the
time of occurrence of each accident as random arrivals from
a Poisson process, and applied the pseudo mirror descent,
and the aforementioned benchmark algorithms to estimate
the underlying intensity. For all methods, we set the initial-
ization to be a constant function with value 1 (roughly 1
accident per day), and the step sizes were fine tuned. At each
iteration, the gradient was evaluated randomly drawing 10
entries as a minibatch, and using their arrival times to com-
pute the pseudo-gradient ¢(t) as specified in the previous
section. The positive definite kernel used in pseudo-gradient

computation was a Gaussian kernel with bandwidth 0.1.
The maximum number of iterations was set to 10%.

Results. The resolution of the arrival time of the data is
down to the minute level, and the projected gradient descent
method requires computing a Grammian matrix of more
than a million entry, which takes more than an hour to
compute. By comparison, both the link function and the
pseudo mirror descent approaches generated results that
resemble the shape of the histogram of the dataset. Both
algorithms took less than 1 minute.
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Figure 2. Estimated intensity of a Poisson process modeling the
time of occurance of traffic accidents in London.

5. Conclusion

In this paper, we proposed a novel algorithm for estimating
the intensity function of Poisson processes. The algorithm,
named pseudo mirror descent, is both efficient in the sense
that it circumvents the need of performing computationally
inefficient projections, and possesses theoretical guarantees.
This is achieved by using the multiplicative update rule and
pseudo-gradients, which guarantee updates that are both pos-
itive and smooth. Simulation on synthetic and real datasets

'Dataset available at: https://www.kaggle.com/daveianhickey/2000- provides numerical proof on the algorithm’s convergence,

16-traffic-flow-england-scotland-wales

and demonstrates its superior performance in practice.
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Appendix

A. Proof of Theorem 1 and its Remark
A.1. Proving Theorem 1

The proof follows the procedure of (Poljak & Tsypkin, 1973). The key to the proof is to show that f (x(k)) — f*isa
semimartingale, and that its limit exists almost surely. Below are the details of the proof.

1

Since f is M-smooth and  is u-strongly-convex with respect to norm || - ||1, fo is M p~"'-smooth with respect to || - || oo:

IVF(VO*(z +y)) = VA(VE* (2))ll2 < M|V (z +y) — VO (2)]l2 < Mp~ |[ylloo,
where the two steps use smoothness of f and the smoothness of ®*, guaranteed by the strong convexity of ®. Hence,

Mp
2

folz +v) — folz) — (Via(z) 1) < 2 |ly|%.

Letz = V®(z* D) and y = —1x_19*), we have

(k) (k—1) (k—1) )« MBIy o
£) = F@ED) 4+ (7 £a (V0D ey g )] < T g2

which further implies
Mp=tni_y

f@®) < fEED) = (Vo (VO D),¢®) + ——

lg™ 12 5)
Taking conditional expectations on both sides of (5),
E[f(z™) = FAIFED < (S50 = 1) = e (Ve (VO( 1)), Blg® | FED)+

M —1,.2
i M277k71E

< (D=1 (1+

(g™ 12| F 2]

KlMu_1n§1> _
2

- _ My 'Ky
- 77k71<vf<b(v¢($(k 1)))7E[9(k)\f(k 1)]> (1 Ty ke +
Mp='Nenp_y | Mp~'np_ K,
+
2 2
KiMp~t Mp=tNmi_
< (f(kfl) _ f*) <1 + 12’117713_1) + %4,
Mﬂflﬁi_lfﬁ f*
2 3
where the last step holds for sufficiently large k. Let

f*

(6)

oo
KM —-1,,2
29 = (@) - ] (1 n 15”%) +
rk=k
Mp='Aeni | Mp~'nlKi .\ 1 KMy~ o,
+> ( S o) I (v ——5—)

rk=k m=r+1
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Then, we immediately have, upon substituting z(*) into (6),
E[z(®|F-D] < z(k=1),

Since for any sequence z(®), f(2(*)) — f* can be uniquely determined (nothing else is random), we can take conditional
expectations on both sides of (6) with respect to z(l), e 2(=1) and obtain

E[z(®)zV . kD] < 261,

This shows that 2(*) is a semimartingale, and that Ez(*) < ... < Ez(1) < co. This implies limj_,~. 2(*) exists almost
surely, and hence, limy, s o (f(z(*)) — f*) exists almost surely, and that E[f(x(*)) — f*] are uniformly upper bounded.

Taking unconditional expectations on both sides of (6), we now have

KiMp~'ng_, +>A1u‘1Akni_1_
2 2

E[f(e®) — 1] < BLf(z*D) — f] (1 n

~ DB fo (V0 ),Bly WA (1 - M“Kn) "

2
5 .
For sufficiently large k, 2 — Mu~! Kon;, > 0. Hence, summing both sides from k = 1 to oo, we get
ooKM*12 OOMfl)\ 2 M712K
(0)y _ p* AaMp g (k)Y _ p* o k+175% pIni Ky L, N
E[f () - f1]+ Y ———LE[f(@®) fHZ( det M 0EK Y
h=0 k=0
00 Y 71K
> mEV fa(VE (™)), E[g* VI FH])] <1 - M22”k)

k=0

Recall that, for the left-hand side, we have shown that E[f(z(*)) — £*] is uniformly bounded, and that, by assumption,
S oreomiA, and Yoo o m? are finite. Hence, the left-hand side of the above inequality is finite. In other words,

_ Mp 'K,

> B[V fa V(o). Bl D] (1~ 2

k=0
On the other side, we also have Y_;o (n = oo, (Vfa(V®(z(M)),E[g++D|FF)]) > 0, while for sufficiently large
k, 1 — M pfle /2 > e > 0 for some small constant . Therefore, there exists a subsequence k; such that
(Vfs(VO(x™*)),E[g+D|FP®)]) converges in distribution:

lim E[(V fo(V®(z*:~1)) E[gk
1— 00

77k> < 0.

Fr=bn] = 0.

Since the sequence converges in distribution to a constant, it also converges in probability, which further implies almost sure
convergence of a subsequence:

(Vfa(V(a™57 D)), E[g")|FF D]y = 0

lim
Jj—oo
almost surely. This implies the final result.
A.2. Proving the remark
By the last step in proof in previous part, we have
lim [V fo(VE(2 )] =0
k—o0
in probability. By chain rule and boundedness of eigenvalues of V2®, this further implies
lim [V f(@®)5=0
k—o0

in probability.
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B. Proving f satisfies the Polyak-Y.ojasiewicz condition

First notice that
and

We wish to prove that

/01 (1—§(t)>2dt>2y/01 (x_f*—x*log%) (1)t

Notice that the left-hand side resembles the form of a x? divergence, whereas the right-hand side resembles the form of a
Kullback-Leibler divergence. In fact, when sup,¢( 1 2(t) < (2v)~", we have

2. [/Ol(x—x*)(t)dt—/le*(t)log;i(t)dt} — o [/Ol(x—x*)(t)dt—l—/le*(t)logi(t)dt}



