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Learning Poisson Intensities with Pseudo Mirror Descent

Abstract
Learning the intensity functions of a Poisson pro-
cess when approached by maximizing the likeli-
hood often proves to be computationally challeng-
ing, This stems from the positivity constraint on
the intensity function which requires expensive
projections at each iteration of the optimization
algorithm. In this paper, we propose a novel algo-
rithm, pseudo mirror descent, that yields efficient
an estimate of intensity functions without perform-
ing expensive projections. The algorithm ensures
the positivity of the estimate of the intensity by
applying a multiplicative update rule. It also guar-
antees the smoothness of intermediate updates by
exploiting pseudo-gradients. We provide a the-
oretical convergence analysis of the algorithm.
Additionally, through simulations, we show that
pseudo mirror descent outperforms the state-of-
the-art benchmarks for learning Poisson processes
both in terms of computational efficiency and pre-
diction accuracy.

1. Introduction

Point processes are the mathematical abstraction used in the
modeling and analysis of discrete events that arise in a wide
range of applications such as finance (Bacry et al., 2015),
social networks (Zhou et al., 2013), computer vision (Ge &
Collins, 2009), neuroscience (Quinn et al., 2011), etc.. Yet,
learning point processes, or more precisely, their intensity
functions, poses a major challenge mainly because the in-
tensity functions must be positive, a constraint that often
requires performing projections especially in the nonpara-
metric setting (see discussions in (Yang et al., 2017)). The
projection step could be computationally expensive, even
for simple Poisson processes.

For a Poisson process over [0, 1], learning the intensity func-
tion through maximizing the likelihood requires solving the
problem:

min
x∈H+

∫ 1

0

x(t)dt−
N∑
k=1

log x(tk), (1)

where H is some function space and H+ is the part of H
that contains pointwise positive functions over their support,
and t1, . . . , tN are sampled from the Poisson process with
intensity x∗(t).

A good learning algorithm that solves (1) must be able to:
(i) efficiently enforce the positivity constraint on intensity x,
and (ii) guarantee the smoothness of the estimate. Previous
work guaranteed the smoothness by requiringH to be a re-
producing kernel Hilbert space with a smooth kernel (Yang
et al., 2017; Bagnell & Farahmand, 2015; Flaxman et al.,
2017), or by adding regularization on the derivative of the
estiamtes (Yuan et al., 2010; Koenker et al.). Meanwhile,
the positivity constraint in some work was enforced either
by performing projection, which requires solving quadratic
programs (Yang et al., 2017; Sarfraz et al., 2010; Wahba,
1990) or by semi-definite relaxations (Bagnell & Farahmand,
2015). However, none of them scales well. Alternatively,
the positivity can be ensured by introducing a nonlinear link
function, e.g., x(t) = y2(t), which transforms (1) into an
unconstrained problem (Flaxman et al., 2017). However,
this could easily break convexity of the problem formulation
and consequently prevent obtaining theoretical guarantees.
Thus, an efficient algorithm with theoretical guarantees re-
mained elusive.

1.1. Our Contribution

We propose a novel algorithm, pseudo mirror descent, to
solve problem (1). Unlike existing approaches, which as-
sume H is an RKHS, we learn the Poisson intensity over
L2([0, 1]), the space of square integrable functions equipped
with inner product 〈x, y〉 =

∫
[0,1]

x(t)y(t)dt. We restrict
x to be continuous, so that the optimization problem is
well-defined. Positivity of x is ensured by imposing a multi-
plicative update inspired by the mirror descent (Nemirovski
& Yudin, 1983) as follows:

x(k+1) = x(k) exp{−ηkg(k+1)},

where x(k) is the update at the k-th iteration, and ηk is the
step size. Function g(k) is a pseudo-gradient, a properly
selected smooth function that is closely aligned with the
true gradient. The introduction of a pseudo-gradient is nec-
essary as the functional gradient of the maximum likelihood
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objective contains Dirac’s delta function, breaking the con-
tinuity of the updates. Generalizing the analysis in (Poljak
& Tsypkin, 1973), we provide theoretical guarantees for
pseudo mirror descent, showing O(1/k) convergence in ob-
jective value for ηk = Θ(1/k), in parallel to the rates of
stochastic gradient descent (Bottou et al., 2018). Numeri-
cally, we show that pseudo mirror descent generates fast and
competitive performance compared with the state-of-the-art
benchmarks from the aforementioned approaches. Last but
not least, the pseudo mirror descent algorithm can be easily
generalized to handle learning tasks on more complicated
point processes, such as spatial Poisson point processes,
multivariate Hawkes processes (Hawkes, 1971), etc..

2. Preliminaries on Poisson Processes

A nonhomogeneous Poisson process, N(t), is a counting
process whose behavior is determined solely by its intensity
function x∗(t). The value x∗(t) describes the average rate
of arrival at time t: E[dN(t)] = x∗(t)dt; while E[N(t)] is
a Poisson random variable with rate

∫ t
0
x∗(τ)dτ .

For a Poisson process, the negative of its log-likelihood
over one sample path that has arrival times t1, . . . , tN is
represented in (1). If we take expectation over the sample
path, we obtain the negative of the expected log-likelihood:

f(x) =

∫ 1

0

x(t)− x∗(t) log x(t)dt, (2)

which is the average of the negative log-likelihood evalu-
ated over infinite number of sample paths. Indeed, if we
minimize f(x), the first order condition implies x∗(t) to be
the optimal solution because [∇f(x)](t) = 1− x∗(t)/x(t).

3. Pseudo Mirror Descent

We present the pseudo mirror descent in Algorithm 1. The
core of the algorithm is the multiplicative rule that guaran-
tees positivity of x(k) if x(k−1) is positive. This rule was
inspired by the classic mirror descent (Nemirovski & Yudin,
1983), and obtained via solving

x(k) = argmin
x∈H

{
〈g(k), x〉+ η−1

k−1∆Φ(x, x(k−1))
}
, (3)

where g(k) is a function that plays the role of the gradient
of objective (1) or (2), and ∆Φ(x, x(k−1)) is the Bregman
divergence induced by a strongly convex function Φ:

∆Φ(x, x(k−1)) = Φ(x)− Φ(x(k−1))−

− 〈∇Φ(x(k−1)), x− x(k−1)〉.

For the purpose of guaranteeing positivity, we choose specif-
ically Φ(x) = 〈x, log x−1〉, which yields the multiplicative
update rule in Algorithm 1.

A major challenge facing the pseudo mirror descent is the
selection of the function g(k) in (3), which, according to the
mirror descent algorithm, should either be the functional
gradient of (1) if we were to solve the maximum likelihood
objective, or the functional gradient of (2) if we were to
optimize over the expected log-likelihood. However, each
approach has its respective issue: on one hand, in order to
obtain the multiplicative update rule, the optimization of (3)
must be over L2[0, 1], but the L2 gradient of the maximum
likelihood objective contains Dirac’s delta functions, which
makes the update discontinuous; on the other hand, the com-
putation of∇f(x) requires the information of x∗(t), which
is unavailable in practice. In order to solve the challenge of
generating an update that is both positive and continuous,
we introduce the concept of pseudo-gradients.

3.1. Pseudo-gradients

A function g(k) is a pseudo-gradient with respect to f and
Φ if it satisfies

〈E[g(k)|F (k−1)],∇fΦ(∇Φ(x(k−1)))〉 ≥ 0,

where F (k−1) is the minimum σ-algebra generated by
the intermediate updates x(0), . . . , x(k−1), and fΦ(x) =

f(∇Φ∗(x)) with Φ∗ being the Fenchel conjugate of Φ.

Intuitively, a pseudo-gradient is a random function that
aligns closely with the direction of the true gradient. The
quantity ∇fΦ(∇Φ(x)) is a generalization of the gradient,
which can be retained upon setting Φ(x) = ‖x‖22/2.

For the Poisson process problem of our interest, we have
∇Φ(x) = log x,∇Φ∗(x) = exp(x), and

fΦ(z) =

∫ 1

0

[exp(z)](t)dt−
∫ 1

0

x∗(t)z(t)dt.

Hence, ∇fΦ(∇Φ(x)) = x − x∗. In practice, one does not
have access to the information of x∗. Instead, only samples
can be drawn from a Poisson process with intensity function
being x∗. Therefore, a natural pseudo-gradient to choose is

g(t) =

∫ 1

0

x(τ)K(t, τ)dτ −
N∑
i=1

K(τi, t),

where K(·, ·) is a positive definite kernel, and τ1, . . . , τN
are arrival times sampled from a Poisson process with in-
tensity x∗(t) over the interval [0, 1]. Since E[g(k)|F (k−1)]

is the kernel embedding of∇fΦ(∇Φ(x(k−1))), we can im-
mediately show that g(k) is a pseudo-gradient.
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Algorithm 1 Pseudo Mirror Descent
1: Input: iteration number T ; step sizes {ηk}Tk=0; nega-

tive expected log-likelihood f , Φ(x) = 〈x, log x− 1〉.
2: Initialize x(0) ∈ H+, positive and continuous.
3: for k = 1 to T do
4: Compute pseudo-gradient g(k).
5: x(k) = x(k−1) exp{−ηk−1g

(k)}.
6: end for
7: Output: x(T ).

3.2. Asymptotic Convergence

In this section, we analyze the convergence of the proposed
pseudo mirror descent algorithm. To proceed, we make the
following basic assumptions.

Assumption 1 (General assumptions).

(i) The minimum of f , denoted by f∗, is finite.

(ii) The functional f is Gâteaux differentiable and M -
smooth: f(y) ≤ f(x) + 〈∇f(x), y − x〉 + M

2 ‖y −
x‖22,∀x, y ∈ H.

(iii) Φ(x) = 〈x, log x−1〉, which is µ-strongly-convex with
respect to ‖ · ‖1 when ‖x‖∞ ≤ µ−1.

Under the above assumptions, we show that the inner prod-
uct between the pseudo-gradient and the true gradient con-
verges to 0.
Theorem 1. Suppose Assumption 1 holds, and for Al-
gorithm 1, suppose that the step sizes satisfy ηk ≥ 0,∑∞
k=0 ηk = ∞, and

∑∞
k=0 η

2
k < ∞. In addition, suppose

g(k)’s satisfy, for some sequence λk,
∑∞
k=0 η

2
kλk+1 < ∞,

and for universal positive constants K1 and K2,

E[‖g(k)‖2∞|F (k−1)] ≤ λk +K1f(x(k−1))+

+K2〈∇fΦ(∇Φ(x(k−1))),E[g(k)|F (k−1)]〉.

Under these assumptions, for x(k) generated by Algorithm
1, limk→∞ f(x(k)) exists almost surely, and

lim inf
k→∞

〈∇fΦ(∇Φ(x(k−1))),E[g(k)|F (k−1)]〉 = 0

almost surely.

Remark 2. When the pseudo-gradient is properly selected,
the above theorem further implies that the gradient norm
converges to 0. For example, suppose that for Algorithm 1,
g(k) satisfies E[g(k)|F (k−1)] = ∇fΦ(∇Φ(x(k−1))). Then
limk→∞ ‖∇f(x(k))‖2 = 0 in probability. (See proof in
Appendix.)

We now provide a non-asymptotic convergence result to
characterize the accuracy of the estimate under finite number
of iterations.

3.3. Non-asymptotic Convergence Analysis

We assume that the original problem satisfies the Polyak-
Łojasiewicz condition (Polyak, 1963).

Assumption 2 (Polyak-Łojasiewicz condition). For any
x ∈ H, suppose there exists γ > 0, such that

1

2
‖∇f(x)‖22 ≥ γ(f(x)− f∗).

Indeed, we can verify that the objective function of our
interest satisfies Polyak-Łojasiewicz condition with constant
ν when supt x(t) ≤ (2ν)−1 (See Appendix B for proof).

The above condition is commonly used to guarantee linear
convergence of stochastic gradient descent up to a certain
distance of the optimal value when constant step size is
used (Karimi et al., 2016), or sublinear convergence with
diminishing step size. Below, we show a parallel result for
pseudo mirror descent.

Theorem 3. Suppose that Assumptions 1 and 2 hold, and
that there exists a universal constant c1 > 0 such that for
all x(k) satisfying f(x(k)) 6= f∗,

E[〈∇fΦ(∇Φ(x(k−1))),E[g(k)|F (k−1)]〉]

≥ c1E‖∇fΦ(∇Φ(x(k)))‖22. (4)

In addition, suppose there exists constants
c2 and c3 such that E[‖g(k)‖2∞] ≤ c22 +

c23E[〈∇fΦ(∇Φ(x(k−1))),E[g(k)|F (k−1)]〉], and that there
exists a constant λ1 such that supx(λmax(∇2Φ(x))) ≤ λ1,
where λmax is the largest eigenvalue of ∇2Φ(x). Under
these assumptions, we have

• Constant step size: choosing ηk ≡ η <
min{λ2

1/(2γc1), 2M−1µc−2
3 }, we have

E[f(x(k))− f∗] ≤ Ck
0 [f(x(0))− f∗] +

Mµ−1η2

2
c22,

where C0 = 1− 2γc1λ
−2
1

(
η − Mµ−1η2

2 c23

)
.

• Decreasing step size: choosing ηk = min{(2k +
1)/[γc1λ

−2
1 (k + 1)2],M−1µc−2

3 }, we have, for k ≥
Mc23λ

2
1/(γc1µ),

E[f(x(k))− f∗] ≤ Mµ−1c22
2γ2c21λ

−4
1 k

.

4. Numerical Experiment

4.1. Synthetic Dataset

Simulation setup. We set x∗(t) = exp(−t), and simulated
n = 104 trajectories, each containing a set of arrival times
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Figure 1. Convergence of objective value for pseudo mirror descent under constant (left) and vanishing (middle) step sizes, as well as the
L2 error of the estimate (right).

in [0, 1]. When executing Algorithm 1, the pseudo gradient
was computed from a set of 10 randomly chosen trajectories
out of the entire pool. The number of iterations was set to
105, and the initialization was x(0)(t) ≡ 10.

Results. We plot log(f(x(k))−f∗) versus the iteration num-
ber k in Figure 1. The left-hand side, which uses constant
step sizes, shows almost linear convergence at the beginning;
the subplot in the middle, which uses diminishing step size,
shows sublinear convergence. We also plot the L2-error of
the estimates generated by the pseudo mirror descent, pro-
jected gradient descent, and the link function approaches,
over the first 1000 iterations, shown on the right-hand side of
the figure. The hyper parameters of all algorithms were fine
tuned to optimize their respective performances. By compar-
ison, pseudo mirror descent generates superior performance
over the benchmarks.

4.2. Real Dataset: Learning London Traffic Accidents

Experiment setup. We tested the performance of pseudo
mirror descent on a dataset that contains the traffic accidents
between 2005 and 2007 in London. The dataset is available
online, 1and contains more than 60000 entries. Each entry
records a traffic accident, including its time of happening,
and other information. For our purpose, we modeled the
time of occurrence of each accident as random arrivals from
a Poisson process, and applied the pseudo mirror descent,
and the aforementioned benchmark algorithms to estimate
the underlying intensity. For all methods, we set the initial-
ization to be a constant function with value 1 (roughly 1
accident per day), and the step sizes were fine tuned. At each
iteration, the gradient was evaluated randomly drawing 10
entries as a minibatch, and using their arrival times to com-
pute the pseudo-gradient g(t) as specified in the previous
section. The positive definite kernel used in pseudo-gradient

1Dataset available at: https://www.kaggle.com/daveianhickey/2000-
16-traffic-flow-england-scotland-wales

computation was a Gaussian kernel with bandwidth 0.1.
The maximum number of iterations was set to 104.

Results. The resolution of the arrival time of the data is
down to the minute level, and the projected gradient descent
method requires computing a Grammian matrix of more
than a million entry, which takes more than an hour to
compute. By comparison, both the link function and the
pseudo mirror descent approaches generated results that
resemble the shape of the histogram of the dataset. Both
algorithms took less than 1 minute.
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Figure 2. Estimated intensity of a Poisson process modeling the
time of occurance of traffic accidents in London.

5. Conclusion

In this paper, we proposed a novel algorithm for estimating
the intensity function of Poisson processes. The algorithm,
named pseudo mirror descent, is both efficient in the sense
that it circumvents the need of performing computationally
inefficient projections, and possesses theoretical guarantees.
This is achieved by using the multiplicative update rule and
pseudo-gradients, which guarantee updates that are both pos-
itive and smooth. Simulation on synthetic and real datasets
provides numerical proof on the algorithm’s convergence,
and demonstrates its superior performance in practice.
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Appendix

A. Proof of Theorem 1 and its Remark

A.1. Proving Theorem 1

The proof follows the procedure of (Poljak & Tsypkin, 1973). The key to the proof is to show that f(x(k)) − f∗ is a
semimartingale, and that its limit exists almost surely. Below are the details of the proof.

Since f is M -smooth and Φ is µ-strongly-convex with respect to norm ‖ · ‖1, fΦ is Mµ−1-smooth with respect to ‖ · ‖∞:

‖∇f(∇Φ∗(x+ y))−∇f(∇Φ∗(x))‖2 ≤M‖∇Φ∗(x+ y)−∇Φ∗(x)‖2 ≤Mµ−1‖y‖∞,

where the two steps use smoothness of f and the smoothness of Φ∗, guaranteed by the strong convexity of Φ. Hence,

|fΦ(x+ y)− fΦ(x)− 〈∇fΦ(x), y〉| ≤ Mµ−1

2
‖y‖2∞.

Let x = ∇Φ(x(k−1)) and y = −ηk−1g
(k), we have

|f(x(k))− f(x(k−1)) + 〈∇fΦ(∇Φ(x(k−1))), ηk−1g
(k)〉| ≤

Mµ−1η2
k−1

2
‖g(k)‖2∞,

which further implies

f(x(k)) ≤ f(x(k−1))− ηk−1〈∇fΦ(∇Φ(x(k−1))), g(k)〉+
Mµ−1η2

k−1

2
‖g(k)‖2∞. (5)

Taking conditional expectations on both sides of (5),

E[f(x(k))− f∗|F (k−1)] ≤ (f (k−1) − f∗)− ηk−1〈∇fΦ(∇Φ(x(k−1))),E[g(k)|F (k−1)]〉+

+
Mµ−1η2

k−1

2
E[‖g(k)‖2∞|F (k−1)]

≤ (f (k−1) − f∗)
(

1 +
K1Mµ−1η2

k−1

2

)
−

− ηk−1〈∇fΦ(∇Φ(x(k−1))),E[g(k)|F (k−1)]〉
(

1− Mµ−1K2

2
ηk−1

)
+

+
Mµ−1λkη

2
k−1

2
+
Mµ−1η2

k−1K1

2
f∗

≤ (f (k−1) − f∗)
(

1 +
K1Mµ−1

2
η2
k−1

)
+
Mµ−1λkη

2
k−1

2
+

+
Mµ−1η2

k−1K1

2
f∗, (6)

where the last step holds for sufficiently large k. Let

z(k) = (f(x(k))− f∗)
∞∏
κ=k

(
1 +

K1Mµ−1η2
κ

2

)
+

+
∑
κ=k

(
Mµ−1λκη

2
k

2
+
Mµ−1η2

κK1

2
f∗
) ∞∏
m=κ+1

(
1 +

K1Mµ−1η2
m

2

)
.
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Then, we immediately have, upon substituting z(k) into (6),

E[z(k)|F (k−1)] ≤ z(k−1).

Since for any sequence z(k), f(x(k))− f∗ can be uniquely determined (nothing else is random), we can take conditional
expectations on both sides of (6) with respect to z(1), . . . , z(k−1), and obtain

E[z(k)|z(1), . . . , z(k−1)] ≤ z(k−1).

This shows that z(k) is a semimartingale, and that Ez(k) ≤ · · · ≤ Ez(1) < ∞. This implies limk→∞ z(k) exists almost
surely, and hence, limk→∞(f(x(k))− f∗) exists almost surely, and that E[f(x(k))− f∗] are uniformly upper bounded.

Taking unconditional expectations on both sides of (6), we now have

E[f(x(k))− f∗] ≤ E[f(x(k−1))− f∗]
(

1 +
K1Mµ−1η2

k−1

2

)
+
Mµ−1λkη

2
k−1

2
−

− ηk−1E[〈∇fΦ(∇Φ(x(k−1))),E[g(k)|F (k−1)]〉]
(

1− Mµ−1K2

2
ηk−1

)
+

+
Mµ−1η2

k−1K1

2
f∗.

For sufficiently large k, 2−Mµ−1K2ηk > 0. Hence, summing both sides from k = 1 to∞, we get

E[f(x(0))− f∗] +

∞∑
k=0

K1Mµ−1η2
k

2
E[f(x(k))− f∗] +

∞∑
k=0

(
Mµ−1λk+1η

2
k

2
+
Mµ−1η2

kK1

2
f∗
)
≥

∞∑
k=0

ηkE[〈∇fΦ(∇Φ(x(k))),E[g(k+1)|F (k)]〉]
(

1− Mµ−1K2

2
ηk

)
Recall that, for the left-hand side, we have shown that E[f(x(k)) − f∗] is uniformly bounded, and that, by assumption,∑∞
k=0 η

2
kλk and

∑∞
k=0 η

2
k are finite. Hence, the left-hand side of the above inequality is finite. In other words,
∞∑
k=0

ηkE[〈∇fΦ(∇Φ(x(k))),E[g(k+1)|F (k)]〉]
(

1− Mµ−1K2

2
ηk

)
<∞.

On the other side, we also have
∑∞
k=0 ηk = ∞, 〈∇fΦ(∇Φ(x(k))),E[g(k+1)|F (k)]〉 ≥ 0, while for sufficiently large

k, 1 − ηkMµ−1K2/2 ≥ ε > 0 for some small constant ε. Therefore, there exists a subsequence ki such that
〈∇fΦ(∇Φ(x(k))),E[g(k+1)|F (k)]〉 converges in distribution:

lim
i→∞

E[〈∇fΦ(∇Φ(x(ki−1))),E[g(ki)|F (ki−1)]〉] = 0.

Since the sequence converges in distribution to a constant, it also converges in probability, which further implies almost sure
convergence of a subsequence:

lim
j→∞
〈∇fΦ(∇Φ(x(kij−1))),E[g(kij )|F (kij−1)]〉 = 0

almost surely. This implies the final result.

A.2. Proving the remark

By the last step in proof in previous part, we have

lim
k→∞

‖∇fΦ(∇Φ(x(k)))‖22 = 0

in probability. By chain rule and boundedness of eigenvalues of∇2Φ, this further implies

lim
k→∞

‖∇f(x(k))‖22 = 0

in probability.
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B. Proving f satisfies the Polyak-Łojasiewicz condition

First notice that

‖∇f(x)‖22 =

∫ 1

0

(
1− x∗

x
(t)

)2

dt,

and

2ν(f(x)− f∗) = 2ν ·
[∫ 1

0

(x− x∗)(t)dt−
∫ 1

0

x∗(t) log
x

x∗
(t)dt

]
.

We wish to prove that ∫ 1

0

(
1− x∗

x
(t)

)2

dt ≥ 2ν

∫ 1

0

(
x− x∗ − x∗ log

x

x∗

)
(t)dt.

Notice that the left-hand side resembles the form of a χ2 divergence, whereas the right-hand side resembles the form of a
Kullback-Leibler divergence. In fact, when supt∈[0,1] x(t) ≤ (2ν)−1, we have

2ν ·
[∫ 1

0

(x− x∗)(t)dt−
∫ 1

0

x∗(t) log
x

x∗
(t)dt

]
= 2ν ·

[∫ 1

0

(x− x∗)(t)dt+

∫ 1

0

x∗(t) log
x∗

x
(t)dt

]
≤ 2ν ·

[∫ 1

0

(x− x∗)(t)dt+

∫ 1

0

x∗(t)

(
x∗

x
(t)− 1

)
dt

]
= 2ν

∫ 1

0

x(t)

(
x∗

x
(t)− 1

)2

dt

≤
∫ 1

0

(
x∗

x
(t)− 1

)2

(t)dt.


