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Abstract
Using modern deep learning models to make pre-
dictions on time series data from wearable sen-
sors generally requires large amounts of labeled
data. However, labeling these large datasets can
be cumbersome since each sequence is comprised
of many individual elements. In this paper, we
present a weak supervision framework for pro-
grammatically labeling time series training data.
We modify an existing weak supervision frame-
work by (1) accepting supervision sources that
operate over different temporal granularities and
(2) using a multi-task model to capture the relation
among elements that belong to the same sequence.
We apply our algorithm to label clinically rele-
vant freezing behavior (i.e., transient, interrupted
walking) in time series data from sensors worn
by patients with Parkinson’s disease. Training an
LSTM model with our weakly supervised method
outperforms traditional weak supervision by 4.3
F1 points and comes within 4.8 F1 points of mod-
els using 4× more hand-labeled data.

1. Introduction
Time series data generated by wearable sensors are an in-
creasingly common source of biomedical data. With their
ability to monitor events in non-laboratory conditions, sen-
sors offer new insights into human health across a diverse
range of applications, including continuous glucose mon-
itoring (Cappon et al., 2017), atrial fibrillation detection
(Tison et al., 2018), fall detection (Casilari et al., 2017),
and general human movement monitoring (Kumari et al.,
2017). Machine learning could help automate many of these
monitoring tasks and enable medical professionals to make
more informed decisions. However, building large labeled
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training sets is time consuming and expensive, especially for
human movement data that has considerable inter-subject
variability (Halilaj et al., 2018). Thus, there is a need to
efficiently label the large amounts of data that supervised
machine learning algorithms require for time series tasks.

Weak supervision has proven effective at mitigating this
problem in a variety of imaging and text classification ap-
plications (Xiao et al., 2015; Ratner et al., 2017; Fries et al.,
2018). Instead of using manually labeled training data, weak
supervision encodes domain insights into the form of noisy,
heuristic labeling functions, which are combined by a graph-
ical model to create probabilistically labeled training sets.
However, current weak supervision paradigms assume clas-
sification targets are i.i.d. and thus do not model correlations
between consecutive samples in sensor data. As a first step
towards applying weak supervision to time series data, we
adapt an existing multi-task weak supervision method (Rat-
ner et al., 2018) to operate over temporally correlated data.
We call this approach multi-frame weak supervision.

The two key contributions of this work are as follows. First,
sensor data is decomposed into a series of frames, where
each frame in a sequence is modeled as a separate task in a
multi-task weak supervision model. This formulation cap-
tures the chain dependency structure between frames and en-
ables defining multi-granular labeling functions, which can
operate over individual frames or larger frame sequences.
Second, we learn multiple accuracy parameters for each
labeling function, conditioned on the frame index in a se-
quence. This is useful when frames at different indices
follow different distributions. These additional modeling
capabilities enable our algorithm to label correlated sam-
ples more accurately than traditional weak supervision ap-
proaches.

Once the weak supervision model learns labeling function
parameters, we generate probabilistic training labels that
can be used to train any downstream classification model
such as a deep neural network. As a motivating use case, we
use ankle sensor data to classify freezing behaviors in peo-
ple with Parkinson’s disease, relying on labeling functions
to encode biomechanical knowledge about human move-
ment and Parkinson’s (Halilaj et al., 2018). Using our weak
supervision framework to model temporal correlations, we
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Figure 1. Full multi-frame weak supervision pipeline: from raw data to training the end model.

reduce the amount of hand-labeled data required by a factor
of 4×, and come within 4.8 F1 points of a fully supervised
model that uses all the hand-labeled data.

2. Methodology

Figure 2. Example with 3 labeling functions (λ1, λ2, λ3) voting
on candidates C1, ..., Cm in a (a) classical weak supervision setup
and (b) multi-frame weak supervision setup (sequence length 3).

2.1. Multi-frame Weak Supervision

In weak supervision, noisy training labels are programmat-
ically generated for unlabeled data using several heuristic
labeling functions which encode specific domain knowledge.
These labeling functions are modeled using a generative pro-
cess which allows us to denoise the labels by learning their
correlation structure and accuracies (Ratner et al., 2016).

However, current weak supervision paradigms model each
data point as being independent (See Figure 2a), making
them inappropriate for the temporally correlated data present
in time series problems. To model these correlations and
dependencies, we adapt a multi-task weak supervision ap-
proach to time series data, where successive data points, or

candidates, are treated as different tasks. We refer to this
approach as multi-frame weak supervision. In this setting,
we divide up our data into q small sequences which consist
of t candidates or tasks. If we need to label m total candi-
dates, and m mod t 6= 0, we pad the last sequence with
abstain labels so that every sequence is of length t. In each
sequence, we treat each candidate as a separate task, where
all the tasks are correlated in some manner.

To label the candidates in these sequences, we use labeling
functions λi : X → Y ∪ ∅ for i = 1...n which takes in one
or more candidates xi..xi+K ∈ X , and output a label y ∈ Y
or ∅, if the function abstains, . Using n labeling functions
on q sequences with t candidates each, we create a 3D label
tensor L = (Y ∪ ∅)q×t×n (See Figure 1).

Then, within each of the q sequences, we define a depen-
dency structure among the t tasks. This structure is a chain
dependency between the tasks, where the second task de-
pends on the first, the third on the second, and so on. In this
new setting, each labeling function λi, i = 1...n has an accu-
racy parameter φAcci,j , where j = 1...t. Here, each labeling
function has t accuracy parameters, one for each index in
the sequence. This is in direct contrast to a traditional weak
supervision setting, where each labeling function learns a
single accuracy parameter φAcci across all the candidates
(See Figure 2). By having a different accuracy parame-
ter per labeling function per candidate in a sequence, we
can capture information about the correlations among the
candidates within a sequence.

Using our label matrix L, we learn a label model
Pφacc(Y |L) that is parameterized by these accuracy param-
eters and uses our chain dependency structure (Ratner et al.,
2018). With this label model, we generate probabilistic
labels for our candidates which we use to train a discrimina-
tive model that we aim to generalize beyond the information
encoded in the labeling functions. We do this by minimizing
the expected loss with respect to Ỹ :

θ̂ = argmin
θ

m∑
i=1

Ey∼Ỹ l(hθ(xi), yi)
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With our multi-frame weakly supervised label model, we
can better model the temporal correlations between succes-
sive candidates and more accurately assign probabilistic
labels compared to traditional weak supervision models.

2.2. End Model

We then train a discriminative model on the probabilistic
labels generated from the label model. We use a single layer
bi-directional LSTM and hidden state dimension 300 for
our end model that takes in a multivariate sensor stream as
input. In order to provide longer temporal context, we pass
in a windowed version of each candidate that includes past
and future frames. Window size was tuned empirically, with
[-3,+1] performing best overall. Since the sequence length
of each frame slightly varies, we then pad these sequences
(with 0’s) and truncate any sequences over a pre-defined
maximum sequence length. To provide more contextual
signal, we also add multiplicative attention to pool over the
hidden states in the LSTM. Note, even with the windowed
version of each candidate, the classification task is still to
make a prediction on just the candidate itself. See Figure 1
for a depiction of the full process of training the end model.

3. Labeling Patient Data
3.1. Dataset

To test our approach, we use a dataset that contains series of
wearable sensor measurements from 36 trials from 9 patients
that have Parkinson’s Disease (PD) and exhibit freezing
behavior. PD is a neurodegenerative disease marked by
tremor, loss of balance, and other motor impairments, that
affects over 10 million people worldwide. Freezing of gait
(FOG) — a sudden and brief episode where an individual is
unable to produce effective forward stepping (Giladi et al.,
1992; 1997) —is one of the disabling problems caused by
PD, and often leads to falls (Bloem et al., 2004).

In this dataset, subjects walked in a laboratory setting that
the investigators designed to elicit freezing events. The
average trial length was about 2.5 minutes. Leg or shank
angular velocity was measured during the forward walking
task using wearable inertial measurement units (sampled at
128 Hz), which were positioned in a standardized manner
for all subjects and tasks on both shanks (lower leg).

3.2. Preprocessing

From each trial, we extract left and right shank gyroscope
data in the z-direction, along with the respective gold labels,
which were manually recorded by a neurologist. We com-
bine the data from all trials, and segment the sensor data
by gait cycle, i.e., the time interval required for one foot to
make successive contact with the ground. Gait cycle time is

Algorithm 1 Example labeling function
Input: Candidate xi, size p× l
if arrhythmicity(xi) > 0.55 then 2 (Non-freezing)
else if arrhythmicity(xi) < 0.15 then 1 (Freezing)
else 0 (Abstain)

computed analytically from the right shank sensor data and
is defined as the time period between two successive peaks
on an angular velocity versus time plot.

We then define a single candidate to be xp×l ∈ X where p
is the number of sensor streams and l is the sequence length.
For our task, p = 2 since we use the left and right shank
sensor streams, and l is the sequence length for a single gait
cycle (∼1.2 seconds). With this definition, our dataset is
composed of approximately 3500 candidates. Our binary
classification task is to predict a label y ∈ Y = {1, 2},
where we define y = 1 to indicate freezing behavior and
y = 2 to indicate non-freezing behavior.

3.3. Labeling Functions

To programatically label data, we use five labeling functions
with varying temporal granularity which draw on biome-
chanical domain knowledge and empirical observations.
Specifically, these labeling functions target features which
can distinguish freezing and non-freezing events.

For all labeling functions, we assign positive, negative, or
abstain labels based on empirically measured threshold val-
ues from the validation set. For example, one heuristic we
employ uses stride time arrhythmicity (Plotnik et al., 2005;
2007), which we calculate as average coefficient of variation
for the past 3 stride times of the left and right leg. For this
function, we label a candidate as freezing if the arrhythmic-
ity of that candidate is greater than 0.55, and not freezing
if the arrhythmicity is less than 0.15 (See Algorithm 1). If
arrhythmicity for a particular candidate is in between these
two values, we abstain. In addition to stride time arrhyth-
micity (LF1), other labeling functions we use involve the
swing angular range of the shank (LF2, LF3), and the am-
plitude and variance in shank angular velocity (LF4, LF5).
See Table 1 for the individual performance of each labeling
function on the validation set (data split described in Section
4.1) .

4. Experimental Evaluation
4.1. Experimental Setup

We create training/validation/test sets by splitting on patient
trials/sessions. In this setting, both the validation and test
set have a single trial from each patient, and the training
set has one or more trials from each patient. With this split,
our training set consists of about 1800 candidates and our
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Table 1. Labeling function (LF) evaluation results, where coverage
is the percentage of the validation set that the LF does not abstain
on, and empirical accuracy is the accuracy as compared to the
hand-labels (ground truth).

LFS COVERAGE (%) EMP. ACC. (%) F1

LF1 48.9 53.9 56.2
LF2 71.2 55.3 64.3
LF3 71.9 59.6 60.5
LF4 42.7 78.1 75.5
LF5 75.4 63.2 65.0

validation set has about 600 candidates. For both weak su-
pervision settings, we treat the training set as an unlabeled
dataset, and only use hand labels from the validation set.
Using the respective label models, we then generate proba-
bilistic training labels for the training set to use in the end
model. In the fully supervised setting, we train with the
hand-labeled training set and validate with the hand-labeled
validation set.

4.2. Label Model Results

Using the labeling functions described in Section 3.3, we
build factor graph-based label models in both the classi-
cal weak supervision and multi-frame weak supervision
settings, and predict probabilistic labels y ∈ Y for each
candidate xp×l ∈ X in the training set (Figure 1). In the
multi-frame setting, we test our label models (on the val-
idation set) with sequence lengths of 3 and 5 candidates,
and experiment with different class balance priors. Our best
multi-frame label model used a sequence length of 3 candi-
dates with a class balance prior derived from the validation
set.

We then compare performance to a simple ensembling of
the labeling functions (Majority Vote) by directly using our
label models on the test set. The performance of these
label models on the test set are summarized in Table 2.
We note that our multi-frame label model beats a classic
weak supervision label model by 3.1 F1 points, and 14.7
accuracy points. Our multi-frame model does exhibit a pre-
cision/recall trade-off, however, as we get a higher precision
but a lower recall than a classical weak supervision and ma-
jority vote label model. In practice, higher precision in the
label model is helpful in weak supervision settings, since
the end model can generalize better as models are scaled
with more unlabeled data (Ratner et al., 2017).

4.3. End Model Results

We evaluate our end model in both the weakly supervised
and multi-frame weakly supervised setting, and compare
performance with that of a fully supervised model. We
also compare performance with training an end model on

Table 2. Label Model (LM) test set performance

LABEL MODEL TYPE P R F1 ACC

MAJORITY VOTE 39.7 90.3 55.2 52.4
CLASSICAL LM 41.5 84.2 55.6 56.3
MULTI-FRAME LM 54.6 63.5 58.7 71.0

Table 3. End model (LSTM) test set performance

END MODEL TYPE P R F1 ACC

Fully Supervised 62.0 84.0 71.0 77.8
MV (WITH END MODEL) 46.3 92.1 61.6 62.7
CLASSICAL WS 48.3 86.3 61.9 65.6
MULTI-FRAME WS 60.2 73.6 66.2 75.6

probabilistic labels generated using a Majority Vote (MV)
ensemble of the labeling functions (Table 3), as well as just
using the trained label models directly (Table 2).

From Table 3, we note that our weakly supervised model
comes within 10 F1 points of a fully supervised model. This
model also beats using both ensembles of labeling functions,
the classical label model and majority vote, directly on the
test set by more than 6 F1 points (See Table 2). Further,
our multi-frame weakly supervised model improves upon
this classical weakly supervised model by 4.3 F1 points and
10.0 points in accuracy. This multi-frame weakly supervised
model comes within just 4.8 F1 points and 2.2 accuracy
points of the fully supervised model. As with the label
models, we note similar precision/recall trade-offs with our
multi-frame weak supervision end model: comparing with
the majority vote end model, we increase precision by 13.9
points at the expense of 18.5 points in recall, yielding an
overall improvement of 4.6 F1 points.

5. Conclusion and Next Steps
Our work demonstrates the potential of multi-frame weak
supervision on time series tasks. In our experiments, our
multi-frame weakly supervised model performed close to
fully supervised models, but used just a fourth (∼600 out
of ∼2400) of the number of hand labels. This model also
performed better than a classical weakly supervised model.
Further, the amount of data available for our gait freezing
task was fairly small — with more unlabeled data, we ex-
pect to see improved performance in both weak supervision
settings.

In the future, we plan to add more and different types of
sensor streams and modalities (e.g., video). We are also in-
terested in generating more unlabeled data from more novel
supervision sources, such as incorporating biomechanical
simulation data (Seth et al., 2018).
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