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Abstract
Single-input, single-output linear dynamical sys-
tems (SISO LDS) map a sequence of input num-
bers to a sequence of output numbers. We present
two results which support their use as a building
block for more complex RNNs. The first result
concerns computational efficiency. We show that
reachable SISO LDS, and their gradients, can be
computed in parallel across time, so they can be
used on very long time series. This is possible
because the eigenvectors of the LDS transition ma-
trix have closed-form expressions in terms of the
eigenvalues. The second result concerns expres-
sive power. We show a sum of reachable SISO
LDS can approximate any reachable, multiple-
input, single-output (MISO) LDS, whose inputs
are vectors. This construction involves randomly
projecting the vectors to a single dimension.

1. Introduction
Linear Dynamical Systems (LDS) are classical RNNs in
which the next state st+1 = Ast +Bxt is a linear function
of the current state st and input xt. They are a mainstay of
control theory and many engineering applications because
their behavior can be easily regulated (Zhou et al., 1996).
Under certain conditions, one can guide the system to any
internal state by using the appropriate inputs (reachabil-
ity), or may infer the system’s state from its input-output
behavior (observability). Recently, LDS have enjoyed a
renaissance in machine learning theory. They are simple
testbeds which elucidate gradient descent (Hardt et al., 2016)
and the importance of depth (Hardt & Ma, 2016). They cap-
ture the behavior of optimization algorithms (Lessard et al.,
2016) and establish baseline performance for reinforcement
learning (Recht) and online learning (Hazan et al., 2017).
Because they are well understood, it would be prudent if
LDS were used as a building block for more complex RNNs.
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However, RNNs (including reachable LDS) suffer from
a major computational bottleneck when used on long se-
quences of data: because the current state of the RNN
depends on the previous one, running the RNN is a se-
quential operation which cannot exploit parallel hardware.
This bottleneck has recently motivated many practitioners
to abandon RNNs altogether and to model time series by
other means. These include hierarchies of (dilated) convolu-
tions (Oord et al., 2016; Gehring et al., 2017), convolutions
applied to sliding windows (Miller & Hardt, 2019), and
attention mechanisms which encode positions of interest in
the input (Vaswani et al., 2017). In these models, highly-
parallel convolutions are the key underlying primitive.

1.1. Our Contributions

We find a parametrization of reachable, SISO LDS which is
very computationally appealing. The total number of param-
eters is minimal. No constraints need to be enforced upon
the parameters to ensure reachability. Most importantly,
forward and backward passes of the LDS may be computed
in parallel.

Proposition 1. Reachable, SISO, n-state LDS can be
parametrized by n eigenvalues and a row vector C ∈ R1×n,
without (nontrivial) constraints. Given the parameters and
a length-T sequence of inputs, it is possible to compute the
LDS outputs, and their gradients with respect to the param-
eters, in O(n(T/p+ log p)) time on p parallel processors.

The key to this parametrization is just a bit of linear alge-
bra. In an LDS, all the state variables interact with one
another through the transition matrix A. These interactions
disappear when A is diagonalized, i.e. when the LDS is
run in the basis of its eigenvectors. In this modal form, the
LDS may be run with a parallel linear recurrence (PLR)
solver. However, in that form, it is not possible to enforce
reachability. We show that, for reachable SISO LDS, the
eigenvectors of the LDS have closed-form expressions in
terms of the eigenvalues. By using these expressions, we
enforce reachability in the parallelism-friendly modal form.

The previous result applies only to SISO LDS (and prob-
ably cannot be generalized to MISO LDS), whereas most
input sequences in machine learning are high-dimensional.
The next result shows that SISO LDS can be composed to
handle higher-dimensional data. Any MISO LDS can be
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approximated by the average of k SISO LDS produced by
random projections.
Proposition 2. Let x1, . . . , xT be any sequence of d-
dimensional inputs, and let y1, . . . , yT be the correspond-
ing outputs of a reachable MISO LDS with parameters
(A,B,C,D). For each i ∈ [k], let r(i) be a d-dimensional

standard normal vector, x(i)t = rT(i)xt be a projected se-
quence of scalar inputs, and (A,Br(i), C,D) be the pa-

rameters of a SISO LDS producing outputs y
(i)
t . Let

ŷt = 1
k

∑k
i=1 y

(i)
t be the average output. For each t ≤ T ,

E(yt − ŷt)2 = 2 ||Zt||2F /k, where Zt is defined in (7). Fur-
thermore, the SISO LDS are reachable almost surely.

||Zt||2F is typically independent of t when A has spectral
radius less than 1 (c.f. equation 8).

By making reachable SISO LDS faster to run, and demon-
strating their compositional power, we highlight their poten-
tial as core primitives in more complex RNNs.

2. Linear Dynamical Systems
Let the input at time t ∈ [T ] be xt ∈ Rd. Single-input and
multiple-input LDS correspond to d = 1 and d > 1. An
LDS with state size n takes the following form:

st+1 = Ast +Bxt yt = Cst +Dxt (1)

whereA ∈ Rn×n,B ∈ Rn×d, C ∈ R1×n,D ∈ R1×d, st ∈
Rn×1 and yt ∈ R. The internal state st changes over the
course of time. Larger n make for a more powerful model
that is more expensive to run. By recursively unrolling
(1), we obtain the following expression for the outputs as a
convolution of the inputs:

yt = CAts0 +

t−1∑
τ=1

CAτBxt−τ +Dxt (2)

For notational simplicity, we may omit the term Dxt, in
which case the LDS is called strictly causal.

2.1. Reachability and Observability

More significantly, we focus on LDS that are reachable,
which means that we can make the system do anything we
want by supplying the right input.
Definition 1 (Reachability). A state s ∈ Rn is reachable
if there is a sequence of inputs x1, . . . , xT which leads to
sT = s. An LDS is reachable if every state s ∈ Rn is
reachable. 1

The following characterization of reachability will be useful.

1In continuous time, reachability and controllability are equiv-
alent. In discrete time, they are equivalent only when A is nonsin-
gular.

Lemma 1 (Hautus). An LDS is reachable iff A is nonsingu-
lar and, for all λ ∈ C, the n× (n+ d) matrix [λI −A;B]
has full rank n.

A reachable, SISO LDS can be written in the following
canonical form:

A =


0 1 0 0
0 0 1 0
0 0 0 1
−a0 −a1 . . . −an−1

B =


0
...
0
1

 (3)

An obvious advantage of this form is that the number of
parameters reduces from n2 + 2n to just 2n: n for the last
row of A, and n for the vector C. Another advantage is the
state update rule becomes very simple:

st+1 =


st,2

...
st,n

xt −
∑

1≤i≤n ai−1st,i

 (4)

A related notion to reachability is observability, which
means we can determine what is going on inside the system
just by observing its input-output behavior.

Definition 2 (Observability). An LDS is observable if,
from any input-output sequence (x1, y1), . . . , (xn, yn), the
(nonzero) initial state s0 may be determined.

Reachability and observability are mathematically dual: the
LDS (A,B,C,D) with inputs x and outputs y is reachable
iff the LDS (AT , CT , BT , DT ) with inputs y and outputs x
is observable. Though our results only apply to reachable
systems, it should be possible to develop analogues for
observable systems.

2.2. Modal Representation

A can be decomposed in terms of its eigenvalues and eigen-
vectors: A = UΛU−1 where Λ is a diagonal matrix with
the eigenvalues and U is a matrix whose columns are cor-
responding eigenvectors. Another way of writing this is
Λ = U−1AU . Since A is real, it may have complex eigen-
values, but these come in conjugate pairs; if λj = aj + bji
is an eigenvalue, then so too is λj+1 = λj = aj − bji. Let
us rewrite the LDS in the basis of the eigenvectors. Define
the state st as a rotation of an eigenstate: st = Us′t. The
LDS is:

Us′t+1 = AUs′t +Bxt yt = CUs′t (5)

Defining B′ = U−1B and C ′ = CU , we obtain the modal
representation of the LDS:

s′t+1 = U−1AUs′t + U−1Bxt = Λs′t +B′xt

yt = C ′s′t (6)
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3. Approximating MISO with SISO
We present the approximation result first because it is
slightly simpler. Let us take D = 0 and s0 = 0 for no-
tational simplicity. From the convolution representation (2)
and the random construction of the SISO LDS, we find that
the approximation is unbiased:

E ŷt = E
1

k

∑
i

t−1∑
τ=1

CAt−1−τBr(i)r
T
(i)xτ

=

t−1∑
τ=1

CAτBr(i)

(
1

k
Er(i)r

T
(i)

)
xt−τ = yt

Therefore the mean squared error is just the variance:

E (yt − ŷt)2 = E (E ŷt − ŷt)2 = V(ŷt)

By the independence of the r(i), and the cyclic property and
linearity of trace, we reduce to the variance of a quadratic
in normal variables:

V(ŷt) =V

(
t−1∑
τ=1

tr(CAτB

(
1

k

k∑
i=1

r(i)r
T
(i)

)
xt−τ )

)

=
1

k2

k∑
i=1

V

(
t−1∑
τ=1

tr(rT(i)xt−τCA
τBr(i))

)

=
1

k2

k∑
i=1

V

(
rT(i)

t−1∑
τ=1

xt−τCA
τB︸ ︷︷ ︸

Zt

r(i)

)
(7)

The inner quadratic is not changed by replacing Zt, which
is asymmetric, with Z̄t = 1

2 (Zt +ZTt ), which is symmetric,
diagonalizable, and shares the same eigenvalues λ1, . . . , λd.
r(i) retains its distribution under the rotationU that diagonal-
izes Z̄t. We find the variance is just the squared Frobenius
norm of Zt:

V
(
rT(i)Z̄tr

T
(i)

)
=V

(
rT(i)U

T diag(λ)Ur(i)

)
=V

 d∑
j=1

r2(i),jλj

 = 2

d∑
j=1

λ2j = 2 ||Zt||2F

To conclude the proof of Proposition 2, we verify that the
SISO LDS are almost surely reachable, assuming the MISO
LDS is reachable. By Lemma 1, we must show that if
[λI−A;B] has full rank for all λ ∈ C, then [λI−A;Br(i)]
also does, almost surely. This holds because r(i) has density
with respect to Lebesgue measure.

In the above proof, we used only equalities, and obtained
a result in terms of the somewhat opaque spectrum of Zt.
Here is some intuition for typical magnitude of ||Zt||2F =
tr(ZTt Zt). Suppose each xt has standard N(0, 1) compo-
nents, as is typical in dynamical systems literature. Also

assume that ||A||2 = ρ < 1 (i.e. the LDS is externally
stable), ||B||2 ≤ 1, and ||C|| ≤ 1. By the definition of the
Frobenius norm and independence of each input:

E tr(ZTt Zt) = tr

t−1∑
τ=1

BTAτTCT
(
E xTt−τxt−τ

)
CAτB

≤ d
t−1∑
τ=1

ρ2τ ≤ d ρ2

1− ρ2
(8)

4. Parallelizing Reachable SISO LDS
We briefly present a parallelization technique and discuss
the difficulties in naively applying it. We then present a
linear algebra fact about reachable SISO LDS, which allows
the technique to be applied.

4.1. Parallel Linear Recurrences

The following parallel linear recurrence (PLR) algorithm
underlies our approach.

Proposition 3. Let a1, . . . , aT and z1, . . . , zT be (possi-
bly parametrized) sequences of d-dimensional vectors. Let
� denote entrywise product between two vectors. For
t ∈ [T ], the recurrence ht+1 = at � ht + zt, and its gra-
dient with respect to the parameters, can be computed in
O
(
n
(
T
p + log p

))
depth, which is less thanO(n·T ) when

p ≥ 3 and T � p. (Martin & Cundy, 2018)

We do not have space to describe the details of the algorithm,
but we offer some background. The goal of parallelizing
a computation is to reduce its depth (i.e. wall clock time)
without substantially increasing its overall work (i.e. to-
tal processor time.) Parallel computation of h1, h2, . . . , hT
seems difficult when ht+1 depends on ht. Interestingly, par-
allelization is possible when ht is a linear recurrence, i.e.
when ht+1 = Atht+zt for general n×nmatricesAt (Blel-
loch, 1990). Unfortunately, the parallel algorithm involves
matrix multiplication, whose O(n3) work is prohibitive.
Martin & Cundy (2018) restrict attention to diagonal matri-
ces At, whose multiplication is just O(n) work. They offer
a GPU implementation of PLR and devise parallel variants
of LSTMs.

4.2. The Dilemma

Note that a modal form LDS (6) is compatible with PLR,
and may thereby be parallelized. However, the set of LDS
with a modal form is strictly larger than the set of reachable
LDS. In many applications, it may be desirable to consider
only reachable LDS. (For example, if one is learning an LDS
model of robot behavior, there should always be a series of
commands that cause it to halt, i.e. reach the origin.)

To ensure reachability, we begin with an LDS in canonical
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form (3), whose parameters are the last row of A and the
vector C. To attempt to make it compatible with PLR,
we diagonalize it with a rotation U , whose columns are
the eigenvectors of A, as in (5) and (6). However, this
introduces new parameters for the eigenvectors constituting
U , which belongs to the set of orthogonal matrices SO(n).
Parametrized in the usual way with n2 entries, such matrices
form a nonconvex set. The Givens reparametrization admits
a coordinate-descent algorithm (Shalit & Chechik, 2014),
but does not reduce the number of variables. This difficulty
is also encountered by (Huang et al., 2017), who develop a
different representation for MIMO LDS.

The dilemma is: how do we reparametrize the set of reach-
able SISO LDS without increasing the total number of pa-
rameters, or involving difficult constraints? Following the
rotation, A becomes a diagonal matrix Λ whose entries are
its eigenvalues, so we could use those as parameters. But
what about the eigenvectors U involved in B′ and C ′?

4.3. Explicit Eigendecomposition

For reachable SISO LDS, the eigenvectors of A can be
written in terms of the eigenvalues of A. We don’t need any
additional parameters for the eigenvectors.

Lemma 2. Let λj ∈ C be the j’th eigenvalue of A. Its

(unnormalized) eigenvector is uj =
[

1
λj

n−i

]
1≤i≤n.

Proof. We wish to show Auj = λjuj . If the theorem is
true, then λjuj,i = λj

1
λj

n−i = 1

λ
n−(i+1)
j

= uj,i+1. Recall

the state update (4) of the controllable LDS, which shifts
n− 1 entries and computes a dot product in the last entry:

Auj =


uj,2

...
uj,n−1

−
∑
i ai−1uj,i

 =


λjuj,1

...
λjuj,n

−
∑
i ai−1/λj

n−i


It suffices to show:

−
∑
i

ai−1/λ
n−i
j = λjuj,n = λj

i.e.
∑

1≤i≤n

ai−1

λ
n−(i−1)
j

= −1 (9)

It is well known that the characteristic polynomial of A is
p(t) = a0+a1t+a2t

2+. . .+an−1t
n−1+tn. By definition,

its roots (those t where p(t) = 0) are the eigenvalues of A.
So each λj satisfies:

0 =a0 + a1λj + a2λj
2 + . . .+ an−1λj

n−1 + λj
n

=λj
n

1 +
∑

1≤i≤n

ai−1

λ
n−(i−1)
j



Either we have a null eigenvalue λj = 0, or we have the
desired equation (9).

Since B is all zero except the last coordinate, B′ = U−1B
is just the last column of U−1. This can also be expressed
in terms of the eigenvalues of A.

Claim 1. The (unnormalized) last column of U−1 is:

B′ =

[
λn−1i∏

j 6=i (λi − λj)

]
1≤i≤n (10)

This claim builds upon the previous lemma. Its proof is
more involved, so we reserve it for a longer version. The
parametrization is summarized below.

Parameters: Vector C ∈ R1×n. For 1 ≤ j ≤ n/2,
aj ∈ R and bj ∈ R.

Algorithm: Define an n × n matrix with eigenvalues
λ1, . . . , λn (in conjugate pairs) on the diagonal:

Λ =

a1 + b1i 0 0 0 0
0 a1 − b1i 0 0 0

0 0
. . . 0 0

0 0 0 an/2 + bn/2i

0 0 0 0 an/2 − bn/2i

B′ is a function of the aj and bj defined in (10). For
each 1 ≤ t ≤ T , the sequence of states s′t+1 =
Λs′t + B′st and their gradients ∇s′t+1 (with respect
to aj and bj) may be computed using the algorithm of
proposition 3 on (6). Finally, compute the outputs as
yt = C ′h′t, where C ′ is defined in (6).

Conversion to canonical form (optional): Compute U
from Λ via lemma 2. Compute U−1 from U via matrix
inversion. Compute A = UΛU−1 ∈ Rn×n.

5. Future Work
Since convolution neural networks are so fast and popular,
it is somewhat surprising that LDS are not: per equation
2, LDS are convolution layers (with an infinite kernel size
and only one stride dimension). This work makes reach-
able, SISO LDS faster. But for them to become as popular
as their convolutional brethren, a number of questions still
remain to be answered. Just because we can train LDS
on very long time series doesn’t mean we should. The
vanishing/exploding gradient problem can occur in LDS
(Hochreiter, 1998). There is some question about the extent
to which RNNs, of any kind, take advantage of long-range
dependencies (Miller & Hardt, 2019). Interposing nonlin-
earities, while retaining the analytic virtues of LDS, remains
an open research problem.
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